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Exact solution for forced torsional vibration 
of finite piezoelectric hollow cylinder
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Abstract. An exact solution is obtained for forced torsional vibration of a finite class 622 piezoelectric
hollow cylinder with free-free ends subjected to dynamic shearing stress and time dependent electric
potential at both internal and external surfaces. The solution is first expanded in axial direction with
trigonometric series and the governing equations for the new variables about radial coordinate r and time
t are derived with the aid of Fourier series expansion technique. By means of the superposition method
and the separation of variables technique, the solution for torsional vibration is finally obtained. Natural
frequencies and the transient torsional responses for finite class 622 piezoelectric hollow cylinder with
free-free ends are computed and illustrated.
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1. Introduction

Torsional vibrations often occur in rotating machinery systems such as turbogenerators,

compressors and motors etc. High torsional vibration will result in severe deformation and shaft

fatigue failure. So to know the torsion vibration characteristics exactly is very important for the sake

of the system’s safety and reliability.

There are numerous works on the subject of torsional vibration. The torsional vibration of circular

shafts can be cited in the book (Timoshenko et al. 1974). Mitra and Mukherji (1972) investigated

the torsional vibration of a finite circular cylinder of non-homogeneous material subjected to a

particular type of twist on one of its ends. Xie and liu (1998) studied the transient torsional wave

propagation in a transversely isotropic tube. Wang et al. (2003) obtained the elastodynamic solution

of finite orthotropic hollow cylinder under torsion impact. Singh et al. (2006) investigated the

torsional vibration of functionally graded finite solid cylinder. 

Some works have also been carried out on torsional vibrations for piezoelectric cylinders.
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Srinivasamoorthy and Anandam (1980) investigated the torsional wave propagation in an infinite

crystal class 622 piezoelectric cylinder. Lin (1996) studied the resonance frequencies of tabgentially

polarized piezoelectric torsional tube. Paul and Sarma (1977) obtained the transient torsional

solution subjected to prescribed shearing stress on the internal surface by applying Green’s function

technique. While with the limitation of computation level at that time, no numerical results for

torsional responses are performed. 

In this study, an exact solution is obtained for torsional vibration of a finite class 622 piezoelectric

hollow cylinder with free-free ends subjected to dynamic shearing stresses and time dependent

electric potentials at both internal and external surfaces. The solution procedure is operated

thoroughly in time domain and the obtained solution is suitable for the finite piezoelectric hollow

cylinder subjected to dynamic mechanical and electric loads with arbitrary time variation form.

2. Basic formulations

Consider a finite piezoelectric hollow cylinder. Its length, inner and outer radii are denoted as L, a

and b, respectively. In the following, we refer the problem in cylindrical coordinate system .

The z-axis lies along the rotation axis of hollow cylinder and the ends of the hollow cylinder lies

along the planes  and , as shown in Fig. 1. 

For torsional vibration problem, both the components of displacement and electric potential are

independent of θ and especially we have

(1)

Then the constitutive relations of class 622, axially polarized piezoelectric media are

(Srinivasamoorthy and Anandam 1980, Paul and Sarma 1977)

(2)

r θ z, ,( )

z 0= z L=

ur uz 0, uθ uθ r z t, ,( ), Φ Φ r z t, ,( )= = = =

τθz c44

∂uθ

∂z
-------- e14

∂Φ
∂r
-------, τrθ+ c66

∂uθ

∂r
--------

uθ

r
-----–⎝ ⎠

⎛ ⎞
= =

Drr e14

∂uθ

∂z
-------- ε11

∂Φ
∂r
-------, Dzz– ε33

∂Φ
∂z
-------–= =

Fig. 1 Model of the finite piezoelectric hollow cylinder
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where  and  are shearing stresses, Drr and Dzz are electric displacements. c44 and c66 are

elastic, e14 is piezoelectric and ε11 and ε33 are dielectric constants. In the absence of body force and

free charge density, the equation of motion and the charge equation of electrostatics are

(3a)

(3b)

where ρ is the mass density. The boundary conditions considered here are

(4a)

(4b)

(5a)

(5b)

For dynamic problem, the initial conditions should be completed as

(6)

where a dot over a quantity denotes its partial derivative with respect to time.

 For the sake of simplicity, the following non-dimensional forms are introduced as

 (7)

Then Eqs. (2) and (3) can be rewritten as

(8)

(9a)

τθz τrθ

c66

∂2
uθ

∂r
2

----------
1

r
---
∂uθ

∂r
--------

uθ

r
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

c44

∂2
uθ

∂z
2

---------- e14

∂2Φ
∂r∂z
-----------+ + ρ

∂2
uθ

∂t
2

----------=

e14

∂2
uθ

∂r∂z
-----------

1

r
---
∂uθ

∂z
--------

uθ

r
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

ε11

∂2Φ

∂r
2

---------
1

r
---
∂Φ
∂r
-------+⎝ ⎠

⎛ ⎞
– ε33

∂2Φ

∂z
2

---------– 0=

Φ r 0 t, ,( ) 0= , Φ r L t, ,( ) 0=

Φ a z t, ,( ) Φa z t,( ) and Φa 0 t,( ) Φa L t,( ) 0===

Φ b z t, ,( ) Φb z t,( ) and Φb 0 t,( ) Φb L t,( ) 0===

τθz r 0 t, ,( ) 0, τθz r L t, ,( ) 0==

τrθ a z t, ,( ) τa z t,( ), τrθ b z t, ,( ) τb z t,( )==

uθ r z 0, ,( ) U0 r z,( ), u· θ r z 0, ,( ) V0 r z,( )= =

c1

c66

c44

------, e1

e14

c44ε33

-----------------, ε1

ε11

ε33

------, ξ
r

b
---, η

z

b
---, l

L

b
---, s

a

b
---= = = = = = =

v
uθ

b
-----, φ

Φ
Φ0

------, Dr

Drr

D0

-------, Dz

Dzz

D0

-------, σθz

τθz

c44

------, σrθ
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c44

------= = = = = =

φa

Φa

Φ0

------, φb

Φb

Φ0

------, pa=
τa

c44

------, pb

τb

c44

------, χ0

U0

b
------, χ1

V0

cv

-----= = = = =

Φ0 b
c44

ε33

------, D0 c44ε33, cv

c44

ρ
------, τ

cv

b
----t====

σθz
∂v

∂η
------ e1

∂φ
∂ξ
------, σrθ+ c1

∂v

∂ξ
------

v

ξ
--–⎝ ⎠

⎛ ⎞
= =

Dr e1

∂v

∂η
------ ε1

∂φ
∂ξ
------, Dz–

∂φ
∂η
------–= =

c1

∂2
v

∂ξ2
--------

1

ξ
---
∂v

∂ξ
------

v

ξ
2

-----–+⎝ ⎠
⎛ ⎞ ∂2
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(9b)

The boundary conditions are rewritten as

 (10a)

(10b)

(10c)

(10d)

The initial conditions are rewritten as

(11)

In Eq. (11) and there after, a dot over a quantity denotes its partial derivative with respect to non-

dimensional time.

3. Solving technique

3.1 Series solution form

The solution is firstly written in the form as

(12)

where

(13)

The substitution of Eq. (12) into Eq. (9a,b) derives

(14a)

(14b)

By inspecting Eq. (12), we find that the boundary conditions at the ends, Eqs. (10a) and (10c), are

satisfied automatically. By virtue of Eq. (12), the boundary conditions at internal and external

surfaces Eqs. (10b) and (10d), can be rewritten as

(15a)

e1

∂2
v

∂ξ∂η
-------------

1

ξ
---
∂v

∂η
------+⎝ ⎠

⎛ ⎞ ε1

∂2
φ

∂ξ2
--------

1

ξ
---
∂φ
∂ξ
------+⎝ ⎠

⎛ ⎞
–

∂2
φ

∂η2
--------– 0=

φ ξ 0 τ, ,( ) 0, φ ξ l τ, ,( ) 0= =

φ s η τ, ,( ) φa η τ,( ) and φa 0 τ,( ) φa l τ,( ) 0= = =

φ 1 η τ, ,( ) φb η τ,( ) and φb 0 τ,( ) φb l τ,( ) 0= = =

σθz ξ 0 τ, ,( ) 0= , and σθz ξ l τ, ,( ) 0=

σrθ s η τ, ,( ) pa η τ,( ), and σrθ 1 η τ, ,( ) pb η τ,( )==

v ξ η 0, ,( ) χ0 ξ η,( ), v· ξ η 0, ,( ) χ1 ξ η,( )==

v ξ η τ, ,( ) vi ξ η,( )cos αiη( ), φ ξ η τ, ,( ) φ i ξ τ,( )sin αiη( )
i 0=

∞

∑=
i 0=

∞

∑=

αi iπ/l=

c1

∂2
vi

∂ξ2
---------

1

ξ
---
∂vi

∂ξ
-------

vi

ξ
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

αi

2
vi– e1αi

∂φ i

∂ξ
-------+

∂2
vi

∂τ2
---------=

e1αi

∂vi

∂ξ
-------

vi

ξ
---+⎝ ⎠

⎛ ⎞ ε1

∂2
φ i

∂ξ2
---------

1

ξ
---
∂φ i

∂ξ
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

– αi

2
φ i– 0=

φ s η τ, ,( ) φ i s τ,( )sin αiη( ) φa η τ,( )=

i 0=

∞

∑=

φ 1 η τ, ,( ) φ i 1 τ,( )sin αiη( ) φb η τ,( )=

i 0=

∞

∑=
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(15b)

By employing Fourier series expansion technique, we have

(16a)

(16b)

where

(17a)

(17b)

By comparing Eqs. (15a,b) with Eqs. (16a,b), we then obtain

(18a)

, (18b)

By utilizing Eq. (12), the initial conditions (11) are rewritten as

(19)

Recall the Fourier series expansion technique, we obtain

(20)

where

(21)

Then the following relations can be derived from Eqs. (19) and (20).

(22)

σrθ s η τ, ,( ) c1

∂vi ξ τ,( )
∂ξ

--------------------
vi ξ τ,( )

ξ
----------------–

ξ s=

cos αiη( ) pa η τ,( )=

i 0=

∞

∑=

σrθ 1 η τ, ,( ) c1

∂vi ξ τ,( )
∂ξ

--------------------
vi ξ τ,( )

ξ
----------------–

ξ 1=

cos αiη( ) pb η τ,( )=

i 0=

∞

∑=

φa η τ,( ) φai τ( )sin αiη( ), φb η τ,( ) φbi τ( )sin αiη( )
i 0=

∞

∑=
i 0=

∞

∑=

pa η τ,( ) 1

c1

---- pai τ( )cos αiη( ), pb η τ,( ) 1

c1

---- pai τ( )cos αiη( )
i 0=

∞

∑=

i 0=

∞

∑=

φa0 τ( ) 0, φai τ( ) 1

l
--- φa η τ,( )sin αiη( )dη

0

 l

∫= = i 1 2 … ∞, , ,=( )

φb0 τ( ) 0, φbi τ( ) 1

l
--- φb η τ,( )sin αiη( )dη

0

 l

∫= = i 1 2 … ∞, , ,=( )

pa0 τ( ) 2

l
--- pa η τ,( )dη, pai τ( )

0

 l

∫
1

l
--- pa η τ,( )cos αiη( )dη i 1 2 … ∞, , ,=( )

0

 l

∫= =

pb0 τ( ) 2

l
--- pb η τ,( )dη, pbi τ( )

0

 l

∫
1

l
--- pb η τ,( )cos αiη( )dη i 1 2 … ∞, , ,=( )

0

 l

∫= =

φ i s τ,( ) φai τ( )= , φ i 1 τ,( ) φbi τ( )=

∂vi ξ τ,( )
∂ξ

--------------------
vi ξ τ,( )

ξ
----------------–

ξ s=

pai τ( )=
∂vi ξ τ,( )

∂ξ
--------------------

vi ξ τ,( )
ξ

----------------–

ξ 1=

pbi τ( )=

v ξ η 0, ,( ) vi ξ 0,( )cos αiη( )
i 0=

∞

∑ χ0 ξ η,( )= =

v· ξ η 0, ,( ) v· i ξ 0,( )cos αiη( )
i 0=

∞

∑ χ1 ξ η,( )= =

χ0 ξ η,( ) χ0i ξ( )cos αiη( ), χ1 ξ η,( ) χ1i ξ( )cos αiη( )
i 0=

∞

∑=
i 0=

∞

∑=

χ00 ξ( ) 2

l
--- χ0 ξ η,( )dη, χ0i ξ( )

0

 l

∫
1

l
--- χ0 ξ η,( )cos αiη( )dη i 1 2 … ∞, , ,=( )

0

 l

∫= =

χ10 ξ( ) 2

l
--- χ1 ξ η,( )dη, χ1i ξ( )

0

 l

∫
1

l
--- χ1 ξ η,( )cos αiη( )dη i 1 2 … ∞, , ,=( )

0

 l

∫= =

vi ξ 0,( ) χ0i ξ( ), v· i ξ 0,( ) χ1i ξ( )==
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3.2 The homogenization for boundary conditions

In order to homogenize the boundary conditions (18a,b),  and  are assumed as

(23)

in which  and  are named as the quasi-static parts and should satisfy the following

equations.

(24a)

(24b)

, (24c)

While the dynamic parts  and  are the solution of the following equations.

  (25a)

(25b)

(25c)

(25d)

(25e)

3.3 Solution for quasi-static part

We first find the solutions for quasi-static part  and . The governing equations are

presented in Eqs. (24a-c). Fortunately, the governing equations can be separated into two groups as

(26a)

(26b)

(27a)

(27b)

Then  and  can be solved independently. The general solutions of Eqs. (26a) and

(27a) can be written as

vi ξ τ,( ) φ i ξ τ,( )

vi ξ τ,( ) vi

s
ξ τ,( ) vi

d
ξ τ,( ), φ i ξ τ,( ) φ i

s
ξ τ,( ) φ i

d
ξ τ,( )+=+=

vi

s
ξ τ,( ) φ i

s
ξ τ,( )

e1αi

∂vi

s

∂ξ
-------
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s

ξ
----+⎝ ⎠

⎛ ⎞ ε1

∂2
φ i

s

∂ξ 2
----------

1

ξ
---
∂φ i

s

∂ξ
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

αi

2
φ i

s
–+ 0=

φ i

s
s τ,( ) φai τ( ), φ i

s
1 τ,( ) φbi τ( )==

∂vi

s
ξ τ,( )

∂ξ
--------------------
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s
ξ τ,( )
ξ

-----------------–

ξ s=

pai τ( )=
∂vi

s
ξ τ,( )

∂ξ
--------------------
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s
ξ τ,( )
ξ

-----------------–

ξ 1=

pbi τ( )=

vi

d
ξ τ,( ) φ i

d
ξ τ,( )

c1

∂2
vi

d

∂ξ2
----------

1

ξ
---
∂vi

d

∂ξ
-------
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d

ξ
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞
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2
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d
– e1αi

∂φ i

d

∂ξ
--------

∂2
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d

∂τ2
----------–+

∂2
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s

∂τ2
--------- e1αi

∂φ i

s

∂ξ
-------– αi

2
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s
c1

∂2
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s

∂ξ2
---------

1

ξ
---
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s

∂ξ
-------
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s

ξ
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

–+=

e1αi

∂vi

d

∂ξ
-------
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d

ξ
----+⎝ ⎠

⎛ ⎞ ε1

∂2
φ i

d

∂ξ 2
----------

1

ξ
---
∂φ i

d

∂ξ
--------+

⎝ ⎠
⎜ ⎟
⎛ ⎞
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2
φ i

d
– 0=

φ i

d
s τ,( ) 0, φ i

d
1 τ,( ) 0==

∂vi

d
ξ τ,( )

∂ξ
--------------------
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d
ξ τ,( )
ξ

-----------------–

ξ s=

0,
∂vi

d
ξ τ,( )

∂ξ
--------------------

vi

d
ξ τ,( )
ξ

-----------------–

ξ 1=

0==

vi

d
ξ 0,( ) χ0i ξ( ) vi

s
ξ 0,( ), v· i

d
ξ 0,( ) χ1i ξ( ) v· i

s
ξ 0,( )–=–=

vi

s
ξ τ,( ) φ i

s
ξ τ,( )

e1αi

∂vi

s

∂ξ
-------
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s

ξ
----+⎝ ⎠

⎛ ⎞ 0=

∂vi

s
ξ τ,( )

∂ξ
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s
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-----------------–

ξ s=

pai τ( ),
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s
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∂ξ
--------------------
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s
ξ τ,( )
ξ

-----------------–

ξ 1=
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∂2
φ i
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∂ξ 2
----------

1

ξ
---
∂φ i

s

∂ξ
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

αi

2
φ i

s
– 0=

φ i

s
s τ,( ) φai τ( ), φ i

s
1 τ,( ) φbi τ( )==

vi

s
ξ τ,( ) φ i

s
ξ τ,( )
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(28a)

(28b)

where  and  are undetermined function.  and  are modified Bessel

functions of zero-order and

(29)

Substituting Eq. (28a) into the first of Eq. (26b), we obtain

(30)

The substitution of Eq. (28b) into Eq. (27b) derives.

(31)

It should be particularly mentioned here that the prescribed shear stress at the internal surface

 and that at the external surfaces  are connected each other with the equilibrium of

torque about z-axis. We write it in a formula form as

(32)

That is

(33)

Similarly, by utilizing the Fourier series expansion technique, we further have 

(34)

With the aid of (34), we learn that Eq. (28a) satisfy simultaneously the two equations in Eq.

(26b).

3.4 Solution for dynamic part

3.4.1 The eigenequation and eigenfunctions

Dropping the right hand side of Eq. (25a) and ignoring the initial conditions (25e), we then obtain

a homogeneous system. In this system, if we assume

(35)

where ω is angular frequency. Utilizing Eq. (35), the homogeneous system then can be transformed

as

(36a)

(36b)

vi

s
ξ τ,( ) A1i τ( )ξ 1–

=

φ i

s
ξ τ,( ) A2i τ( )I0 βiξ( ) B2i τ( )K0 βiξ( )+=

A1i τ( ), A2i τ( ) B2i τ( ) I0( ) K0( )

βi αi/ ε1=

A1i τ( ) s
2
pai τ( )/2–=

A2i τ( )
K0 βi( )φai τ( ) K0 βis( )φbi τ( )–

I0 βis( )K0 βi( ) I0 βi( )K0 βis( )–

--------------------------------------------------------------------, B2i τ( )
I0 βis( )φbi τ( ) I0 βi( )φai τ( )–

I0 βis( )K0 βi( ) I0 βi( )K0 βis( )–

--------------------------------------------------------------------==

pai τ( ) pbi τ( )

pa η τ,( ) 2π s l s⋅ ⋅ ⋅ ⋅ pb η τ,( ) 2π 1 l 1⋅ ⋅ ⋅ ⋅=

s
2
pa η τ,( ) pa η τ,( )=

s
2
pai τ( ) pbi τ( )=

vi

d
ξ τ,( ) Ri ξ( )eiωτ

, φ i

d
ξ τ,( ) Ti ξ( )eiωτ

==

c1

d
2
Ri ξ( )

dξ
2

------------------
1

ξ
---

dRi ξ( )
dξ

---------------
Ri ξ( )

ξ
2

------------–+ ω
2

αi

2
–( )Ri ξ( ) e1αi

dTi ξ( )
dξ

---------------+ + 0=

e1αi

dRi ξ( )
dξ

---------------
Ri ξ( )
ξ

------------+ ε1

d
2
Ti ξ( )

dξ
2

-----------------
1

ξ
---

dTi ξ( )
dξ

---------------+– αi

2
Ti ξ( )– 0=
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and the boundary conditions (25c,d) are rewritten as

(36c)

(36d)

By inspecting Eqs. (36a,b), the general solutions for  and  can be written as

(37)

where ki is undetermined constant. J0( ) and J1( ) denote Bessel functions of the first kind of order 0

and 1 and Y0( ) and Y1( ) are Bessel functions of the second kind of order 0 and 1. Substituting

Eq. (37) into Eqs. (36a,b), we obtain

(38a)

(38b)

The existence of nontrivial solution for Eqs. (38a,b) leads to the following auxiliary equation.

(39)

Obviously, four roots  and , can be obtained from Eq. (39). Then  and

 can be written in a form as

(40a)

(40b)

By means of Eqs. (38a,b), for each , we have the relations as

(41)

Then Eq. (40b) is rewritten as

(42)

Utilizing the properties of Bessel function, we have the relations as

(43)

Substituting Eqs. (40a) and (42) into the boundary conditions (36c,d) and utilizing Eq. (43), we

then obtain

Ti s( ) 0, Ti 1( ) 0==

dRi ξ( )
dξ

---------------
Ri ξ( )
ξ

------------–

ξ s=

0,
dRi ξ( )

dξ
---------------

Ri ξ( )
ξ

------------–

ξ 1=

0==

Ri ξ( ) Ti ξ( )

Ri ξ( ) R1iJ1 kiξ( ) R2iY1 kiξ( ), Ti ξ( ) T1iJ0 kiξ( ) T2iY0 kiξ( )+=+=

c1ki

2
– αi

2
ω

2
+– e1αiki–

e1αiki ε1ki

2
αi

2
–

R1i

T1i⎩ ⎭
⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

c1ki

2
– αi

2
ω

2
+– e1αiki–

e1αiki ε1ki

2
– αi

2
–

R2i

T2i⎩ ⎭
⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

c1ε1ki

4
αi

2
c1 e1

2
ε1 1

ω
2

αi

2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ + ki

2
αi

4
1

ω
2

αi

2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ + 0=

k1i k2i k1i–, , k2i– Ri ξ( )
Ti ξ( )

Ri ξ( ) R1jiJ1 kjiξ( ) R2jiY1 kjiξ( )+[ ]
j 1=

2

∑=

Ti ξ( ) T1jiJ0 kjiξ( ) T2jiY0 kjiξ( )+[ ]
j 1=

2

∑=

kji j 1 2,=( )

T1ji

R1ji

--------
T2ji

R2ji

--------
c1kji

2
αi

2
ω

2
–+

e1αikji

---------------------------------– Eji= = =

Ti ξ( ) Eji R1jiJ0 kjiξ( ) R2jiY0 kjiξ( )+[ ]
j 1=

2

∑=

dJ1 x( )
dx

---------------
J1 x( )

x
------------– J2 x( ),

dY1 x( )
dx

----------------
Y1 x( )

x
------------– Y2 x( )–=–=
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(44)

where

(45a)

(45b)

Also, the existence of nontrivial solution for Eq. (44) leads to

(46)

Eq. (46) is just the eigenequation from which a series of  can be determined.

Then for each , the eigenfunctions  and  can be determined

completely as

(47a)

(47b)

where  are the cofactors of  of the first row for . We also

can verify  has the following orthogonal property (Paul and Sarma 1977)

(48)

3.4.2 The inhomogeneous solution

By means of the separation of variables method, the dynamic part  and  can be

assumed as

(49)

The substitution of Eq. (49) into Eq. (25a) derives

(50)

where

(51)

Utilizing Eq. (48), the following equation can be derived from Eq. (50) as

(52)

Gi[ ]
4 4×

Xi{ }
4 1×

0{ }=

Gi[ ]
4 4×

k1iJ2 k1is( ) k1iJ2 k1is( ) k2iJ2 k2is( ) k2iJ2 k2is( )

k1iJ2 k1i( ) k1iY2 k1i( ) k2iJ2 k2i( ) k2iY2 k2i( )

E1iJ0 k1is( ) E1iY0 k1is( ) E2iJ0 k2is( ) E2iY0 k2is( )

E1iJ0 k1i( ) E1iY0 k1i( ) E2iJ0 k2i( ) E2iY0 k2i( )

=

Xi{ }
4 1×

R11i  R21i  R12i  R22i[ ]T=

Det Gi[ ] gi ω( ) 0= =

ωim m 1 2 … ∞, , ,=( )
ωim m 1 2 … ∞, , ,=( ) Ri ξ( ) Ti ξ( )

Rim ξ( ) g11i

m
J1 k1i

m
ξ( ) g12i

m
Y1 k1i

m
ξ( ) g13i

m
J1 k2i

m
ξ( ) g14i

m
Y1 k2i

m
ξ( )+ + +=

Tim ξ( ) E1i
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m
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m
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m
g12i

m
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m
ξ( ) E2i

m
g13i

m
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m
ξ( ) E2i

m
g14i

m
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m
ξ( )+ + +=

g1j

m
j 1 2 3 4, , ,=( ) Gi[ ] ωim m 1 2 … ∞, , ,=( )
Rim ξ( )

ξRim ξ( )Ril ξ( )dξ
s

1

∫ 0 m l≠( )=

ξRim

2
ξ( )dξ

s

1

∫ Nim 0≠=

vi

d
ξ τ,( ) φ i

d
ξ τ,( )
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d
ξ τ,( ) Rim ξ( )Ωim τ( ), φ i
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m 1=

∞

∑=

m 1=

∞

∑=

Rim ξ( )
d

2Ωim τ( )

dτ
2

--------------------- ωim

2 Ωim τ( )+

m 1=

∞

∑ Fi ξ τ,( )=

Fi ξ τ,( )
∂2
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s

∂τ2
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2
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–– c1

∂2
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∂ξ2
---------

1
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∂vi
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∂ξ
-------
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s

ξ
2

-----–+

⎝ ⎠
⎜ ⎟
⎛ ⎞
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∂φ i

s

∂ξ
-------+ +=

d
2Ωim τ( )

dτ
2

--------------------- ωim

2 Ωim τ( )+ fim τ( )=
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where

(53)

The solution of Eq. (48) is

(54)

where  and  are unknown constants. By means of Eqs. (44) and (45a),  and

 can be determined as

(55)

Thus exact solutions of the displacement and electric potential are finally obtained as

(56)

4. Numerical results and discussions

4.1 Natural frequency

We will first exam the eigenroots of the eigenequation (46). Specially, we should note here that

the eigenroots of Eq. (46) are just the non-dimensional natural frequencies of the finite piezoelectric

hollow cylinder which is traction free and electrically shorted at both two ends and two cylindrical

surfaces. In the numerical calculations, the physical constants are taken from as (Paul and Sarma

1977)

fim τ( ) 1

Nim

-------- ξFi ξ τ,( )Rim ξ( )dξ
s

1

∫=

Ωim τ( ) Ωim 0( )cosωimτ
Ω· im 0( )
ωim

----------------sinωimτ
1

ωim

-------- fim p( )sinωim τ p–( )dp
0

τ

∫+ +=

Ωim 0( ) Ω· im 0( ) Ωim 0( )
Ω· im 0( )

Ωim 0( ) 1

Nim

-------- ξ χ0i ξ( ) vi

s
ξ 0,( )–[ ]Rim ξ( )dξ

s

1

∫=

Ω· im 0( ) 1

Nim

-------- ξ χ1i ξ( ) v· i
s
ξ 0,( )–[ ]Rim ξ( )dξ

s

1

∫=

v ξ η τ, ,( ) Rim ξ( )Ωim τ( ) A1i τ( )ξ 1–
+

m 1=

∞

∑ cos αiη( )
i 0=

∞

∑=

φ ξ η τ, ,( ) Tim ξ( )Ωim τ( ) A2i τ( )I0 βiξ( ) B2i τ( )K0 βiξ( )++

m 1=

∞

∑ sin αiη( )
i 0=

∞

∑=

Table 1 Comparison of the first five nondimensional natural frequencies for s = 1/6 and l = 5/3

Torsional
vibration
mode m

Present method Paul and Sarma (1977)

Order of terms in trigonometric series i Order of terms in trigonometric series i

1 2 3 4 5 1 2 3 4 5

1 3.1434 6.2854* 9.4268* 12.5681 15.7095 3.1416 11.9958 13.9013 12.2191 14.6376

2 10.6915 11.9980 13.9043 16.2001 18.7427 10.6907 18.1633 19.4744 16.1970 18.7393

3 17.3298 18.1656 19.4784 21.1792 23.1827 17.3290 24.8005 25.7763 21.1739 23.1768

4 24.1968 24.8026 25.7802 27.0890 28.6835 24.1962 31.7187 32.4874 27.0832 28.6763

5 31.2490 31.7205 32.4909 33.5393 34.8405 31.2485 38.8034 39.4342 33.5338 34.8331
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Table 2 First eight nondimensional natural frequencies of the finite piezoelectric hollow cylinder with s = a/b =
0.25 for different shape parameter l = L/b 

Shape 
parameter

l = L/b

Torsional
vibration
mode m

Order of terms in trigonometric series i

1 2 3 4 5

l = 0.5 1 10.4737 20.9451 31.4168 41.8886 52.3604

2 14.8275 23.4285 33.1245 43.1842 53.4027

3 20.8608 27.6468 36.2318 45.6117 55.3842

4 27.9240 33.3034 40.7145 49.2488 58.4165

5 35.4803 39.8546 46.2293 53.8988 62.3878

6 43.2875 46.9411 52.4636 59.3344 67.1408

7 51.2349 54.3576 59.1937 65.3625 72.5243

8 59.2673 61.9871 66.2699 71.8349 78.4091

l = 1.0 1 5.2378 10.4737 15.7094 20.9451 26.1809

2 11.7285 14.8275 18.8936 23.4285 28.2073

3 18.7829 20.8608 23.9240 27.6468 31.7984

4 26.4068 27.9240 30.2825 33.3034 36.8238

5 34.2987 35.4803 37.3658 39.8546 42.8412

6 42.3242 43.2875 44.8464 46.9411 49.5030

7 50.4236 51.2349 52.5589 54.3576 56.5854

8 58.5673 59.2673 60.4156 61.9871 63.9502

l = 2.0 1 2.6193 5.2378 7.8559 10.4737 13.0915

2 10.8153 11.7285 13.1094 14.8275 16.7797

3 18.2260 18.7829 19.6757 20.8608 22.2916

4 26.0135 26.4068 27.0495 27.9240 29.0093

5 33.9967 34.2987 34.7960 35.4803 36.3411

6 42.0799 42.3242 42.7283 43.2875 43.9960

7 50.2186 50.4236 50.7632 51.2349 51.8349

8 58.3909 58.5673 58.8600 59.2673 59.7868

l = 5.0 1 1.0478 2.0955 3.1430 4.1905 5.2378

2 10.5452 10.7004 10.9540 11.2995 11.7285

3 18.0669 18.1580 18.3088 18.5177 18.7829

4 25.9023 25.9659 26.0716 26.2188 26.4068

5 33.9117 33.9603 34.0412 34.1541 34.2987

6 42.0112 42.0505 42.1158 42.2071 42.3242

7 50.1611 50.1940 50.2488 50.3253 50.4236

8 58.3415 58.3697 58.4168 58.4827 58.5673

l = 10.0 1 0.5239 1.0478 1.5716 2.0955 2.6193

2 10.5061 10.5452 10.6101 10.7004 10.8153

3 18.0441 18.0669 18.1049 18.1580 18.2260

4 25.8864 25.9023 25.9288 25.9659 26.0135

5 33.8995 33.9117 33.9320 33.9603 33.9967

6 42.0014 42.0112 42.0276 42.0505 42.0799

7 50.1529 50.1611 50.1748 50.1940 50.2186

8 58.3344 58.3415 58.3532 58.3697 58.3909
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, , (57)

For the sake of comparison, the normalization method for the roots (natural frequencies) adopted

in Paul and Sarma (1977) is reused in this section. The comparison of the first five nondimensional

natural frequencies with those by Paul and Sarma (1977) for the finite piezoelectric hollow cylinder

with the geometric parameters  and  are listed in Table 1. From Table 1,

we find that the obtained results are very close to those gained by Paul and Sarma (1977). The

correctness of the present calculation is then verified. Furthermore, by inspecting Table 1, we learn

that the results followed by “*” are just those omitted by Paul and Sarma (1977).

Table 2 show the first eight nondimensional natural frequencies for the finite piezoelectric hollow

cylinder with  for different shape parameter . Clearly, the natural frequencies

decrease with the increase of l. It is physical reasonable that the torsional stiffness of the finite

hollow cylinder decrease with the increase of l. We also notice that the natural frequencies of the

first mode are very sensitive to l. 

4.2 Transient response

As an illustrative example, the transient responses of a finite piezoelectric hollow cylinder with

electrically shorted and free-free ends subjected to a time dependent electric potential at the external

surface will be performed. The physical constants are presented in Eq. (57) and the boundary

conditions at the two cylindrical surfaces are employed as

, (58a)

, (58b)

c1

c66

c44

------ 1.400552= = ε1

ε11

ε33

------ 0.955642= = e1

e14

c44ε33

----------------- 0.002933= =

s a/b 1/6= = l L/b 5/3= =

s a/b 0.25= = l L/b=

φa η τ,( ) 0.0= φb η τ,( ) sin
π

l
---η⎝ ⎠
⎛ ⎞ 1 e

2τ–

–( )=

pa η τ,( ) 0= pb η τ,( ) 0=

Fig. 2 Distributions of displacement along the axial
direction at the internal surface (ξ = 0.2)

Fig. 3 Distributions of displacement along the axial
direction at the external surface (ξ = 1.0)
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In the following calculation, the geometric parameters of the finite hollow cylinder are taken as

, . Also, the first 40 terms in Eq. (49) are employed.

Figs. 2 and 3 show the distributions of displacement along the axial direction at the internal

surface (ξ = 0.2) and external surface (ξ = 1.0) at different times, respectively. We find that the

distributions of displacement is anti-symmetric with the middle plane (η = 1.0). From Figs. 3 and 4,

we also find that at the each time, the maximum amplitude of the displacement appears at the two

ends. 

The Distributions of electric potential along the axial direction at the middle surface (ξ = 0.6) are

s a/b 0.2= = l L/b 2.0= =

Fig. 4 Distributions of electric potential along the
axial direction at the middle surface (ξ = 0.6)

Fig. 5 Dynamic responses of shearing stress σ
rθ at

two prescribed points

Fig. 6 Dynamic responses of shearing stress σθz at two prescribed points
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illustrated in Fig. 4. We notice that the distributions of electric potential is symmetric with the

middle plane (η = 1.0) and the maximum amplitude appears at the middle plane. Also, with the time

processing, maximum amplitude increases gradually. 

Figs. 5 and 6 depict the dynamic responses of shearing stresses σrθ and σθz at the points (ξ, η) =

(0.4, 0.5) and (0.4, 1.0) respectively. By the numerical tests, we observe that the dynamic responses

of τrθ always keep zero at the middle plane (η = 1.0). The same phenomena can also be found for

electric displacement Dz
. Such numerical results can be easily verified by substituting the obtained

series solution (56) into Eq. (8). 

Fig. 7 2D distribution of shearing stress σ
rθ at the

time τ = 0.2
Fig. 8 2D distribution of shearing stress σ

rθ at the
time τ = 20.0

Fig. 9 2D distribution of shearing stress σθz at the
time τ = 0.2

Fig. 10 2D distribution of shearing stress σθz at the
time τ = 20.0

Fig. 11 2D distribution of radial electric displacement
Dr at the time τ = 0.2

Fig. 12 2D distribution of radial electric displacement
Dr at the time τ = 20.0
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The 2D distributions of the shearing stresses σrθ, σθz and the electric displacements Dr
 and Dz

 at

the initial time τ = 0.2 and the long time τ = 20.0 are shown in Figs. 7-14. The surfaces display

clearly that distribution forms of the mechanical and electric fields. It is noticed that the distribution

forms of σθz and Dr
 are like a saddle. The distribution forms of σθz is convex while that of Dr

 is

concave. We also find that the maximum amplitudes of the field distributions at the time τ = 20.0

are always larger than those at τ = 0.2.

5. Conclusions

An exact dynamic solution is developed for torsional vibration of a finite piezoelectric hollow

cylinder with free-free ends. The hollow cylinder is made of crystal class 622 and polarized in axial

direction. The excitation can be dynamic shearing stress or time dependent electric potential applied

on the internal and external surfaces.

The obtained solutions of the displacement and electric potential are expressed as a sum of two

infinite series. One series contains Bessel functions and the other contains trigonometric functions.

Numerical tests show the validity of the present solution. The potential application of the present

solution will be found in exact analysis of dynamic behavior of piezoelectric torsional actuators.
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