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Abstract. In seismic prone areas it is possible to meet very different objects (equipment components,
on shelf artefacts, simple architectural elements) that can be modelled as a rigid body rocking on a rigid
foundation. The interest in their behaviour can have different reasons: seismological, in order to estimate
the ground motion intensity, or more strictly mechanical, in order to limit the response severity and to
avoid overturning. The behaviour of many rigid bodies subjected to twenty wide ranging acceleration
recordings is studied here. The response of the blocks is described using kinematic and energy parameters.
A condition under which a so called scale effect is tangible is highlighted. The capacity of the signals to
produce overturning is compared to different ground motion parameters, and a good correlation with the
Peak Ground Velocity is unveiled. 

Key words: rocking rigid body; natural accelerograms; ground motion parameters; response measure;
scale effect; structural dynamics.

1. Introduction

In seismic prone areas it is not uncommon to meet a whole set of simple building and

archaeological structural elements (tombstones, boundary walls, columns), equipment and industrial

components, on shelf stored boxes and artefacts, that, if adequately slender and with a non circular

cross section (Koh and Mustafa 1990), lend themselves to be modelled as a rigid body rocking on a

moving rigid foundation. In the last hundred and twenty years the response of such elements to

seismic actions has attracted a certain interest in engineering literature. Initially such interest was

motivated by seismological intents, like estimating the intensity of ground shaking through

observation of overturned objects (see Omori 1900, Yim et al. 1980, Ishiyama 1982, 1984, Allen et al.

1986, Shenton and Jones 1991, and references therein). The resolution to explain counterintuitive

behaviours, such as the toppling of structures stubbier than others was added later (Housner 1963).

Then came the aim to estimate the vulnerability of architectural and archaeological objects, but also

industrial equipment, exposed to earthquake risk. Nonetheless, although seismic danger was the

reason for such attention, the driving forces usually considered to evaluate the response of a rocking

rigid block were induced by simple pulses, steady-state harmonic functions or spectrum-compatible

synthetic accelerograms. Rarer is the resort to strong ground motion recordings, however used in a
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limited number or over a limited set of blocks (e.g., Shi et al. 1996, Anooshehpoor et al. 1999,

Liberatore and Spera 2001a, Makris and Black 2002, Makris and Konstantinidis 2003). In this paper

the response of 240 rocking rigid blocks to a collection of 20 natural accelerograms will be studied.

This choice has been motivated by the sensitivity of rocking bodies’ response to the signals used,

reported many times (e.g., Yim et al. 1980, Aslam et al. 1980), therefore requesting the use of

earthquake ground motions. On the contrary, steady-state functions have been rejected since non-

transient. Similarly, artificial accelerograms generated to agree to code spectra are not considered

adequate, because they are usually based on the damped linear elastic single degree of freedom

(SDOF) oscillator, whose behaviour is different under a number of points from the one of rocking

rigid bodies (Makris and Konstantinidis 2003). Moreover, due to the highly geometric non linear

behaviour of the oscillator considered and the consequent scatter in the results (Yim et al. 1980), the

response of a wide ranging number of objects will be evaluated through the so called Housner

model (Housner 1963).

2. Rocking rigid body model

Considering only plane motions, a rigid body with a non convex base, resting on a horizontal

rigid foundation in motion can either move with the ground, rock, slide, slide-rock, or be

completely detached from the base (Ishiyama 1982, 1984, Shenton and Jones 1991, Lipscombe and

Pellegrino 1989, 1993). 

The Housner model can only move with the ground or oscillate alternatively around the two

inferior corners O and O’ without the possibility of rebounds, as showed in Fig. 1. Therefore it is

assumed that the static friction coefficient between block and base is high enough to prevent any

sliding. Although it has been analytically demonstrated (Shenton 1996) that slide and slide-rock

motions depend also on the amplitude of the excitation used, and not only on block and foundation

characteristics, experimental tests have shown that for adequately slender objects sliding is

negligible (Liberatore and Spera 2001a). Therefore, in the following pages sliding will be neglected. 

Because the body is assumed infinitely rigid, a hypothesis valid whenever any displacement is

mainly due to a rigid motion and not to a material deformation, the model has only one degree of

freedom, and here is assumed as lagrangian coordinate the rotation θ, positive when anticlockwise.

Fig. 1 Parameters describing Housner model of a rigid body and its displacement.
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Considering a body symmetric with respect to a vertical axis, the equation of motion is (Housner

1963):

(1)

with the dots indicating derivation with respect to time, sgn signum function, 

frequency parameter, m mass of the body, IO polar moment of inertia of the body relative to the

corner, R distance of the centroid from the corner, α = arctan(b/h) angle between R and the vertical

passing through the corner, with b and h respectively horizontal and vertical projections of R, g

gravity acceleration,  a horizontal acceleration varying with time t acting on the ground (see

Fig. 1).

Starting from zero initial conditions, Eq. (1) states that the block will initiate rocking only if the

ground acceleration is greater than a threshold value . Consequently,

accelerograms with smaller amplitudes are “not felt” by a rocking rigid body with a perfectly plane

base, while (due to the inescapable geometrical imperfections) experiments suggested that the actual

threshold acceleration is usually lesser (Ishiyama 1984). 

Considering a body undergoing rocking, when rotation θ becomes zero the body hits the

foundation. Determining the type of motion after the impact is not an easy problem to solve,

because the cardinal equations of impulsive dynamics do not set sufficient conditions. Different

paths have been explored (Ishiyama 1982, Shenton and Jones 1991, Lipscombe and Pellegrino

1989, 1993, Sinopoli 1987, Augusti and Sinopoli 1992). 

Experiments on adequately slender bodies, characterised by usual values of the static friction

coefficient, showed that the type of motion after impact will be a rotation around the corner

opposite to the rotation one (Liberatore and Spera 2001a). Moreover, coupling this condition with

the classical ones of impulsive dynamics it is possible to demonstrate that some kinetic energy is

lost, and the angular velocity after the impact is a fraction e of the one before. In literature e is

frequently called coefficient of restitution, a designation not completely proper when the impact

regards a finite extension surface (Shenton and Jones 1991). Energy dissipation measured by the

coefficient of restitution has also been increased or substituted by means of an equivalent viscous

damping (Iyengar and Manohar 1991, Hogan 1992a,b). The value of e depends on the position of

the point where the resultant impact impulse is applied, being minimum if such point is coincident

with the centre of the base, and maximum if coincident with the corner. If this is the case, e is (as

will be assumed in the rest of the paper) a function of the sole height to thickness ratio (Housner

1963). Such conjecture is always true only for concave base blocks, while for plane base blocks it is

valid only on average, although with some scatter (Liberatore and Spera 2001b), and provided that

the body considered is not too stubby (i.e., h/b not less than 3.5, Tocci 1996). 

The trigonometric terms of Eq. (1) have been often linearised, in the literature, implying however

an error the more pronounced the smaller the oscillations (Allen and Duan 1995). In this paper,

considering that the integration will be performed numerically, no linearisation will take place.

Numerical integration has been carried out in a state-space formulation using a Runge-Kutta

algorithm, of variable order and time step (The MathWorks 2003). Numerical sensitivity of the

solution has been reported several times (e.g., refer to Yim et al. 1980, Suherman et al. 1997).

Therefore, the numerical solution has been compared to the closed form one available for the case

of free vibrations (Pompei et al. 1998). The comparison has been carried out in Fig. 2 where ,

reference angular velocity necessary to bring a body initially at rest to the position of unstable

θ
··

p
2

sgn θ( )sin α θ–( ) x··g

g
----cos α θ–( )+–=

p mR/I0=

x··g

x··t b/h( )g tan α( )g= =

θ
·
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equilibrium θ = α , is equal to:

(2)

To achieve the accuracy of Fig. 2 the default error tolerances of the differential equation solver

have been sensibly reduced. 

3. Recorded accelerograms used

To evaluate the response of the model to seismic ground motions, twenty natural accelerograms,

part of a much wider database described elsewhere (Decanini and Mollaioli 1998a, Mollaioli  et al.

2002), have been chosen. Their most significant features are reported in Table 1. Such signals vary

with reference to event, magnitude, duration, distance and position between source and recording

station, soil type, and so on. They have been selected to represent quite a wide-ranking set of

ground motions in terms of amplitude, duration, frequency content, and sequence of pulses.

Beside signals like El Centro 1940 and Taft 1952, frequently recurring in the technical literature,

some others have been considered:

• near fault recorded accelerograms, with forward (LucN80W, KJM000, RRS228, Syl360, and so

on), backward (Joshua90) or neutral (BCr230) directivity;

• long duration signals, with different distance from the source (1St280, LlollN10, CalitWE,

SecreN27);

• accelerograms recorded during events with deep energy release source and great distance from

the causative fault (Bucar0);

• signals registered in different soil conditions: from stiff, S1, to soft, S3 (Decanini and Mollaioli

1998a).

θ
·
r

3

2
---

g

R
--- 1 cosα–( )=

Fig. 2 Comparison of analytic (closed form) solution and numeric integration for free vibration. (b) is a zoom
of (a).
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Table 1 Recorded accelerograms used and their main features

Event Date MW
a Station

Dc
 

km
Soild PGAe

g
PGVe

cm/s
PGDe

cm
Δt f

s
Record

1 Imperial Valley, 
CA, USA

1940-V-19 7.0 El Centro Array 
#9

6.4 S2 0.35 29.8 13.3 53.8 40ElC180

2 Kern County, 
CA, USA

1952-VII-21 7.4 Taft Lincoln 
School

40 S1 0.18 17.5 9 54.4 Taft111

3 San Fernando, 
CA, USA

1971-II-9 6.6 Pacoima Dam, 
abutment

3.2 S1 1.17 114.4 44.5 41.78 Pac164

4 Friuli, Italy 1976-V-6 6.5 Tolmezzo 16 S2 0.35 30.8 5.1 36.5 TolmezWE

5 Romania 1977-III-4 7.5 Bucarest, Romania 
Building Research 
Institute

150 S3 0.21 73.6 24.4 16.2 Bucar0

6 Imperial Valley, 
CA, USA

1979-X-15 6.5 Bonds Corner 2.8 S2 0.78 45.9 14.9 37.595 BCr230

7 Imperial Valley, 
CA, USA

1979-X-15 6.5 El Centro Array 
#7

0.2 S2 0.46 109.3 44.5 36.795 IVC230

8 Irpinia, Italy 1980-XI-23 6.8b Calitri 20.7 S2 0.18 18.7 5.1 68.9 CalitWE

9 Michoacan, 
Mexico

1985-IX-19 8.1b Secretaria 
comunicacion and 
tran. Texcoco lake 
bed zone

389 S3 0.17 59.8 94 135.2 SecreN27

10 Nahanni, 
Canada

1985-XII-23 6.8 Site 1 0.1 S1 1.10 46.1 14.6 20.545 1St280

11 Chile 1985-III-3 7.8b Llolleo 33 S2 0.71 41.9 77.6 49.3 LlollN10

12 Loma Prieta, 
CA, USA

1989-X-18 6.9 Los Gatos 
Presentation 
Center

0.1 S1 0.56 94.8 41.2 24.95 LGPC000

13 Landers, 
CA, USA

1992-VI-28 7.3 Joshua Tree Fire 
Station

11.3 S2 0.28 43.2 14.5 80 Joshua90

14 Landers, 
CA, USA

1992-VI-28 7.3 Lucerne Valley 1.8 S1 0.64 146.5 262.7 40 LucN80W

15 Northridge, 
CA, USA

1994-I-17 6.7 Rinaldi Receiving 
Station

0.1 S2 0.84 166.1 28.8 14.945 RRS228

16 Northridge, 
CA, USA

1994-I-17 6.7 Sylmar - Olive 
View Med Parking 
Lot Free Field

2 S2 0.84 129.6 32.7 39.98 Syl360

17 Kobe, Japan 1995-I-16 6.9 KJMA 1 S2 0.82 81.3 17.7 47.98 KJM000

18 Kobe, Japan 1995-I-16 6.9 Takatori 1.8 S3 0.61 127.1 36 40.95 Tak000

19 Kocaeli, Turkey 1999-VIII-17 7.4 Yarimca 
Petrokimya 
Tesisleri

2.6 S3 0.35 62.2 51 34.995 YPT330

20 ChiChi, Taiwan 1999-IX-20 7.6 TCU129 1.2 S1 1.01 60 50.4 89.995 TCU129W

aMW = moment magnitude.
bMS = surface waves magnitude.
cD = Distance from the surface projection of the source.
dSoil: S1 = stiff, S2 = intermediate, S3 = soft (Decanini and Mollaioli 1998a).
ePeak Ground: PGA = Acceleration, PGV = Velocity, PGD = Displacement.
f
Δt = Duration.
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4. Computed rocking curves

For each accelerogram, “rocking” curves have been computed for 240 parallelepiped blocks,

meaning for 30 values of α and eight values of R. The latter has been assumed equal to: 1.5, 2

… 5 m, the former to: 0.01, 0.02 … 0.3 rad. The upper bound of α has been chosen so that the

hypotheses at the base of the model previously discussed are still valid, at least approximately. For

purpose of comparison between different accelerograms the set of α values has been kept equal for

all the accelerograms, thus involving (due to the threshold acceleration) that some blocks under

certain recordings are not set into motion. The curves have been represented with the angle α as

abscissa, and different curves for the values of R considered. This has been done because α is

approximately equal to the static load multiplier that causes overturning. Therefore, in the rocking

curves, for a given accelerogram and a particular block, it is possible to check the outcome of a

dynamic analysis against the prediction of a static one.

As for the ordinates, different quantities have been evaluated, in order to establish which better

represents the severity of the response. These are: the absolute maximum rotation, velocity,

mechanical energy E (sum of potential and kinetic energies) and the dissipated energy ED. 

All these quantities have been normalised: the displacement by the angle α, the velocity by θ
·
r

Fig. 3 Sample time histories of, from top to bottom, normalised angular displacement and velocity,
mechanical energy, dissipated energy and ground acceleration. Accelerograms: (a) LGPC000, (b)
BUCAR0 (refer to Table 1).
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and the two energies by the difference in potential energy Vr between the values for θ = α and θ = 0.

Therefore, Vr is equal to:

(3)

Starting from rest, Vr is a measure of the energy that is necessary to bring the block to the verge of

overturning under gravity only. Similarly, the two quantities α and  have been chosen so that the

exceeding the unity value of normalised rotation or angular velocity, while the other parameter is

nil, implies overturning under the sole gravity forces. 

Some sample time histories are presented in Fig. 3. From (a) it is possible to observe that

normalised displacement, velocity and mechanical energy may cross the threshold of the unity value

without the block necessarily overturning. As a matter of fact, a favourable combination of input

and mechanical energies can lead to the excitation bringing back the body to bounded oscillations.

These behaviours have been observed more frequently for very slender bodies, whose potential and

dissipated energies are small fractions of the input one. Due to the possibility of the rotation safely

Vr mgR 1 cosα–( )=

θ
·
r

Fig. 4 Rocking curves as a function of α and R in terms of kinematic parameters: (a) and (b) normalised
maximum absolute rotation, (c) and (d) normalised maximum absolute angular velocity, for different
accelerograms: (a) and (c) SecreN27, (b) and (d) TCU129W, both unscaled (refer to Table 1). The
circle indicates an overturning.
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exceeding the value of α the integration has been extended up to θ = π /2 (as in Ishiyama 1982,

Virgin et al. 1996). 

The mechanical energy can assume, although quite rarely, negative values as shown in Fig. 3(b).

This happens when, due to a very large rotation, the height of the centroid on ground level is lower

than the one in the rest position, while the angular velocity is next to zero. Again, such phenomena

have been observed almost exclusively for very slender bodies. 

Sample rocking curves, as a function of α, are represented in Fig. 4 and in Fig. 5. For the sake of

representation, only four values of R are displayed and the abscissa values start from zero

(corresponding theoretically to an infinite slender body), assuming fictitiously a unity normalised

displacement, velocity and mechanical energy and a zero dissipated energy. Due to the possibility of

crossing the unity threshold without overturning, this has been marked with a circle. Such crossings

are more frequent, in ascending order, for the angular velocity and the mechanical energy than for

rotation. Therefore the latter is closer related to overturning. However, it is possible to observe a

common trend: while α increases (i.e., the block becomes stubbier) rotation, velocity, and

mechanical energy tend to decrease.

Fig. 5 Rocking curves as a function of α and R in terms of energy parameters: (a) and (b) normalised
maximum mechanical energy, (c) and (d) normalised dissipated energy, for different accelerograms:
(a) and (c) SecreN27, (b) and (d) TCU129W, both unscaled (refer to Table 1). The circle indicates
an overturning.
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With reference to the dissipated energy, it is possible to note that it is a parameter poorly related

to the severity of the response. As a matter of fact, the highest values of dissipated energy will be

registered for blocks set into motion for the longest time but not overturned, whereas toppled

elements will not have the time to dissipate the same level of kinetic energy, although suffering a

much more serious outcome. Such remarks are valid for any parameter computed over the entire

time history, instead than in a single, critical instant. Of course this is also due to the characteristics

of the model that does not take into account any progressive damage of the system in the equation

of motion. 

In the curves of Fig. 4(b) it is possible to observe a “scale effect”: the larger (i.e., with higher R)

of two blocks with same aspect ratio (i.e., angle α) usually experiences a smaller maximum

rotation, as well as velocity and mechanical energy. However, comparing Fig. 4(b) with Fig. 4(a),

one can note that this effect is not always evenly tangible. To account for this diversity it is useful

to recur to the reference potential energy Vr: let us consider two blocks with same α, but diverse R.

Fig. 6 Tangibility of the scale effect. (a): normalised difference of reference potential energy V
r
 of two blocks

with same angle α , but different length R. (b) and (c): rocking curves as a function of α and R in terms
of normalised maximum absolute rotation for the same accelerogram, RRS228 (refer to Table 1), scaled
to different PGA: 0.2 g (b) and 0.5 g (c). The circle indicates an overturning.
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The difference between the respective energies of Eq. (3) is a measure of the difference of input

energy that is necessary to supply to bring both blocks to the unstable position. Such difference

becomes more and more relevant the bigger α (refer to Fig. 6(a)). But to have stubby blocks set

into motion it is necessary to use high amplitude accelerograms, such as that in Fig. 4(b). This

explanation has been confirmed scaling up a signal. Whereas for a certain PGA the maximum

rotation was lightly dependent upon R, an increase of the signal amplitude led to a much more

pronounced dependency from the size of the blocks. This is shown in Fig. 6(b) and (c) where, once

the accelerogram has been scaled up, the curves of equal size become further apart from each other.

5. Searching for a parameter of the dangerousness of a signal

There are many synthetic parameters proposed to measure the ground motion destructiveness

potential (for a review of many of them refer to e.g., Decanini and Mollaioli 1998b). Some are

based solely on the signal’s characteristics, and upon its integration in time and frequency domains,

Fig. 7 For R = 3 m, rocking curves in terms of normalised maximum absolute rotation to different signals
(refer to Table 1), sorted by PGA in ascending order from (a) to (d), as reported in each legend. The
circle indicates an overturning.
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some others refer to the response of a set of SDOF oscillator. The latter depend of course on the

oscillator’s dynamic features, the most widespread being the damped linear elastic. Recent studies

have confirmed how much the rocking rigid bodies’ behaviour is different from the one of this

oscillator (Makris and Konstantinidis 2003). Therefore, to evaluate which signal is more dangerous,

i.e., capable to determine the highest number of overturnings, it is necessary to look directly to the

rigid body’s response. Moreover, it is crucial to take into account a set of blocks both to represent

those objects whose behaviour during an earthquake will be a rocking one, and to account for the

scatter in the response, which can change dramatically for small changes in the input motion or in

the system parameters (Aslam et al. 1980, Yim et al. 1980, Plaut et al. 1996). 

Among the accelerograms’ synthetic parameters, probably the first and most widespread is the

Peak Ground Acceleration (PGA). As aforementioned, in the Housner model the rigid-softening

stiffness makes the PGA very important: in fact if the amplitude of the recording is smaller than the

threshold acceleration the motion cannot start. In Fig. 7, for a given R, the rocking curves to

different accelerograms are sorted by PGA. 

Defining α lim as the maximum value of α among those of the overturned blocks, two different

extreme behaviours may be observed. The first one is characterised by a tangent of α lim

(approximately equal to α lim in the range considered) well below PGA/g, therefore highlighting the

existence of a safety reserve, with respect to the prediction of a static analysis, sometimes quite

noteworthy. Among such signals is Taft111, one of the most used in early earthquake engineering.

The second one shows a tangent of α lim almost equal to the normalised PGA, therefore meaning

that nearly the whole set of blocks set into motion is overturned. Among such recordings are

SecreN27, Bucar0, RRS228. If, however, the comparison is made not between overturned over

rocked blocks but between overturned over whole set of blocks considered, from Fig. 7 it is

possible to affirm that a signal with low PGA will not be extremely dangerous, since, due to the

threshold acceleration, it will not be able to set stubby blocks into rocking. Meanwhile, a high PGA

is not necessarily a guarantee of toppling, because a block can be set into motion without

automatically overturning. An example of the latter behaviour is the recording 1St280 which has the

second highest PGA but is the 15th considering the number of overturnings (refer again to Fig. 7). 

In order to compare more promptly signals’ parameter to blocks’ response, an Overturning Index

IOver has been defined, for each value of R, as:

(4)

with nOver number of overturned blocks and nTot total number of blocks of equal R (30 in this paper).

To account for the scatter in the response, the value of IOver reported in Fig. 8 and in Fig. 9 has been

computed as the mean (and interquartile range, to assess an incidental skew scatter) over a

population of eight values of R, normally distributed around a mean equal to 3.0 m with a standard

deviation equal to 0.05 m. The standard deviation has been kept small in order to make the

influence of the scale effect negligible. Consequently, each value of IOver displayed, being the result

of eight R curves each constituted by 30 α values (ranging as before between 0.01 and 0.3 rad),

represents the outcome of 240 time histories. An example of this kind of representation is in Fig. 8(a),

where it is very clear that the PGA is not a strongly correlated parameter to the ultimate response of

the family of blocks considered here. Thus, it is apparent that the sole PGA is not sufficient to

convey the destructiveness potential of the ground motion towards a rocking block, and it is

necessary to account for other features of the accelerograms.

IOver R( )
nOver

nTot

----------=
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Among the synthetic parameters of a signal is the so-called destructiveness potential factor, PD.

The equation proposed in Araya and Saragoni (1984) is: 

(5)

with ν0 number of time axis crossings per time unity, and IA Arias Intensity (Arias 1970), equal to:

(6)

The correlation between PD and IOver is showed in Fig. 8(b), where for the sake of illustration a

logarithmic scale has been used for abscissa. The agreement is not faultless because ν0 tends to

exaggeratedly exalt some accelerograms, as the no.9 – SecreN27, and to belittle some other, e.g.,

no.14 – LucN80W. Modifying Eq. (5), dividing Arias Intensity by ν0 instead of its square, led to

little improvement. Moreover, correlation with Arias Intensity proved even worse. The destructiveness

PD

IA

νo

2
-----=

IA
π

2g
------ x·· g

2
td

 

∫=

Fig. 8 For  = 3 m and unscaled PGA, correlation between the mean value and the interquartile range of the
Overturning Index of Eq. (4) and PGA (a), destructiveness potential of Eq. (5) (b), Significant Duration
(c), root mean square acceleration (d). Numbering refers to signals as reported in Table 1.

R
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potential of Eq. (5) tends to exalt, through ν0, the signals characterized by low frequencies, while

accounting for amplitudes and duration, through Arias Intensity. The duration, however, weakly

affects the block response because the model does account neither for any cumulative damage, nor

for any sliding, that in stubbier and multiblock structures can lead to collapse due to degradation of

geometric configuration (Sinopoli and Sepe 1993). Even the use of the so called Significant

Duration Δt80, i.e., the time interval between the instants t10 and t90 when 10% and 90% of Arias

Intensity are released (Trifunac and Brady 1975), did not lead to a better agreement, as showed in

Fig. 8(c). 

Other quantities related to the significant duration where considered too. This is the case of the

root mean square acceleration   (Housner and Jennings 1964):

(7)

reported in Fig. 8(d), and of the Characteristic Intensity Ia (Park et al. 1985):

(8)

not plotted here. Both correlations proved meagre. This is also the case of the magnitude, and not

only because the accelerograms considered were recorded at different distances from the fault, since

in Makris and Black (2002), where only near-fault accelerograms were used to shake two different

blocks, no good agreement was found. 

An additional line of inquiry considered the predominant period Tp of the recording. A first

simplified comparison has been outlined with reference to the soil type. A reasonably good

correlation has been obtained if the signals are scaled to a common PGA, with soft soils being most

dangerous. However if the excitations are unmodified the correlation deteriorates sharply. Evidently

the scaling, by praising the differences between frequency contents and soothing those between

amplitudes, strongly affects the block’s response. Yet, soil type can only partially influence the

predominant period of the accelerogram, therefore this has been directly computed as the period

associated with the peak of the Fourier amplitude spectrum of the accelerogram (Ojeda and Escallon

2000). Other definitions of Tp present in the literature (Ojeda and Escallon 2000, Miranda and Ruiz-

Garcia 2002), although usually leading to similar values, are not fit for the present discussion since

referred to different oscillators or to the definition of site characteristics on the base of amplification

ratios. The comparison of a predominant period, as early defined, versus overturning index is

presented in Fig. 9(a), where it is evident that no clear correlation is recognizable. However, it is

possible to remark that signals with a high Tp are usually capable of overturning the large part of

the blocks set into motion, as even more evident when all the signals are scaled to the same PGA,

and in agreement with the sensitivity to low frequencies observed experimentally and numerically

on multiblock columns (Psycharis et al. 2000, Papantonopoulos et al. 2002). Yet, neglecting the

amplitude an important piece of information is lost. Other attempts based on the Fourier Transform

were therefore made, using for example the ratio between absolute amplitude and frequency of the

Power Spectral Density’s centroid, but without marked enhancement. Accelerograms’ phase spectra

did not yield better results. 

Finally the correlation with other parameters, such as Peak Ground Displacement (PGD) and Peak

Ground Velocity (PGV) has been investigated. This has been done only for the non scaled signals.

x·· g

x·· g
1

t80Δ
--------- x·· g

2
td

t
10

t
90

∫=

Ia x·· g
1.5

t80

0.5Δ=
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Even if this is the case, such values must be considered carefully (Gregor and Bolt 1997). In fact

they are affected by the type of recording (accelerogram or velocigram), the instrument used to

record the signal and its dynamic features, the filtering process, etc. These reasons discouraged the

attempt to compute their values for scaled signals. Even the figures of  Table 1 have been obtained

from the issuing fonts of the recordings. Nonetheless, the PGD values of the accelerograms

TolmezWE, CalitWE, SecreN27 and LucN80W should be considered warily. 

The comparison of PGD and IOver shown in Fig. 9(b) demonstrates a correlation worse than the

preceding ones. 

In Fig. 9(c) the same comparison has been realized considering the PGV. In this case it is possible

to witness a far better agreement, certainly the best one among those attempted here. Almost as

good are the correlations with the maximum incremental velocity, IV, that is the maximum area

under an acceleration pulse, proposed by Anderson and Bertero (1987), and the Fajfar Intensity Iv
(Fajfar et al. 1989):

Fig. 9 For unscaled PGA, correlation between the mean value and the interquartile range of the Overturning
Index of Eq. (4) and predominant period (  = 3 m) (a), PGD (  = 3 m) (b), PGV (  = 3 m) (c)
and PGV (  = 1.5 m) (d). In figure (b) the PGD of the record LucN80W is not represented, because
out of range. Numbering refers to signals as reported in Table 1.

R R R
R
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(9)

two velocity based parameters. However, the latter, for reasons already discussed regarding the role

of the duration, does not bear a marked improvement with reference to the simpler PGV.

The good correlation of blocks’ overturning and PGV is a result of some interest, since the

ground velocity can be assessed more robustly than the displacement, or even directly measured

using the proper instrument. As a matter of fact, such findings are in agreement with Makris and

Black (2002), where the best parameter for predicting a rocking block’s overturning was established

in the product of amplitude and duration of the most dominant velocity pulse of the record, again

therefore a velocity related quantity. Moreover, velocity based intensity parameters proved well

related with collapse or damage of more complicated masonry assemblies (Casolo 2001, de Felice

and Giannini 2001). 

In order to check if the results obtained are valid only for the assumed values of R, a complete

new set of numerical analyses has been performed, considering the same values of α while R was

part of a Gaussian distributed population with mean 1.5 m and standard deviation 0.025 m. The plot

PGV versus IOver is presented in Fig. 9(d), and the correlation holds. A higher number of

overturning is noticeable, as expected, since the scale has been reduced. However, the increase in

the number of toppling is small for signals 9, 5, 19, 2 and 8 (all having relatively moderate PGA,

see Table 1) and more pronounced for the others, thus confirming as already noted that the scale

effect is more tangible with high amplitude signals. 

To explain the good correlation between peak ground velocity and overturning index it is useful to

consider a very simple ground motion: a half-sine pulse of acceleration. For this motion a

straightforward equation relates PGA and PGV:

(10)

with ω being the circular frequency of the ground motion. The minimum non dimensional

acceleration amplitude, given the non dimensional frequency, necessary to overturn a certain block,

was correctly determined by Shi et al. (1996), for the case of the linearised equation of motion.

This is:

(11)

with ψ = arcsin(αg/PGA) phase angle necessary to have a ground acceleration equal to the threshold

one when t = 0. Considering Eq. (11) it is possible to observe that a certain combination of

amplitude and frequency is necessary to overturn a block, and an increase in the frequency requests

an appropriate increase in the amplitude. Therefore, the sole frequency or amplitude is not

significant for the overturning of a block, since high amplitudes might not be enough if associated

with high frequencies, and the same is true if low frequencies are coupled with low amplitudes.

Vice versa the PGV seems to have the capability to grasp both amplitude and frequency, so that to

have a certain peak ground velocity if the frequency is increased the amplitude will also have to be

increased (refer to Eq. (10)), in a way qualitatively similar to the one stated by Eq. (11).
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6. Conclusions

In this paper the response of a rocking rigid body, the so called Housner model, to twenty

recorded accelerograms has been studied. The use of such excitations have been chosen due to the

limited number of studies on this matter, due to the seismic related interest to the response of block

like structures, and to the undeniable physical meaningfulness of the excitations considered. 

Different parameters have been used to measure the response of the system. Rotation was the

closer related to toppling, whereas angular velocity and mechanical energy can more frequently (and

largely) cross the instability threshold without any overturning. The dissipated energy proved itself

badly correlated to the severity of the response.

The consideration of the rocking curves, in terms of maximum absolute rotation, angular velocity

and mechanical energy, as functions of the angle α and the dimension R, has confirmed that

(although with some scatter) a system is safer the stubbier and the bigger it is. The latter behaviour,

also known as “scale effect”, is not equally tangible varying the accelerogram. It has been

demonstrated here that this effect is much more pronounced the less a block is slender, and

therefore is predominantly emphasized by high amplitude excitations. 

Exactly the absolute peak amplitude, the PGA, is one of the parameters most frequently used in

earthquake engineering to express seismic hazard (Chen and Scawthorn 2003). For a rocking rigid

body it certainly has no little importance, due to the existence of a threshold acceleration. However,

it is not completely satisfactory, and the same is true for duration related quantities. A comparison

between response and predominant period was partially adequate only for signals scaled to a

common peak, thus underlining the sensitivity to low frequencies, already reported for similar types

of structures. Also the comparison with the peak ground displacement and velocity has been carried

out. Especially the first, which incidentally did not lead to encouraging results, must be considered

sceptically due to the uncertainties in PGD evaluation. On the contrary the PGV brought to a much

more interesting outcome, confirmed also by a different choice of the system parameters. This is

due to its characteristic to summarize both amplitude and frequency, as necessary when overturning

of a rocking body is under inquiry. Therefore PGV should be used when assessing seismic hazard

for rocking objects.
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