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Abstract. The purpose of this study is to calculate the torsional rigidity of arbitrarily shaped composite
sections on the basis of hybrid finite element approach. An analogy is used between the torsion problem and
deformation of a plate which exhibits only shear behavior. In the analysis a simple hybrid finite element based
on Hellinger-Reissner functional is presented and a set of numerical examples are performed to demonstrate
and asses the performance of the developed element in practical applications.

Keywords: torsional rigidity; Saint-Venant’s stress function; plate; hybrid finite element.

1. Introduction

Composite cross sections are widely used in structural members in the civil and mechanical

engineering applications. Therefore, a great deal of attention has been paid to develope efficient

methods to calculate the properties of such sections. Continous research efforts have been devoted in

the recent years to the development of the more efficient and accurate methods.

Since many engineering structures, such as beams, shafts and airplane wings, are subjected to

torsional moments, the torsional problem has been of practical importance in structural analysis. Krenk

and Jeppesen (1989) studied elastic beam cross sections of moderate wall thickness in terms of finite

elements with the warping function as primary variable, Savoia and Tullini (1993) investigated elastic

response of inhomogeneous orthotropic beams with general cross-section and subject to uniform

torsion. Ladeveze and Simmonds (1998) presented the exact beam theory for anisotropic, heterogeneous

and axially piecewise constant cross sections, Swanson (1998) reviewed an existing solution for the

problem of torsion of orthotropic laminated rectangular bars and then extended to the case of laminated

cross-sections with high aspect ratio. Li et al. (2000) studied the torsional rigidity of arbitrarily shape

bar made of different materials and proposed a finite element based on Galerkin’s method. El Fatmi and

Zenzri (2004) proposed a numerical method for the exact elastic beam theory and its applications to
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homogeneous and composite beams. Kolodziej and Fraska (2005) studied the torsion of bars possessing

a regular polygonal cross-section by means of boundary collocation method, Najera and Herrera (2005)

presented a method to approximate the torsional rigidity of any cylindrical solid cross-section. 

Obtaining the torsional rigidty of the section precisely is essential in torsion problems. The exact

solutions can be found for few cross-sections such as circle, ellipse and equilateral triangle. Since the

analytical solutions were limited to boundary conditions, loading and geometry, it was necessary to get

the numerical solutions. Numerical methods are usually necessary for more complicated shapes. In this

paper calculation of torsional rigidity of arbitrarily shaped composite sections on the basis of hybrid

finite element approach is presented. Some available analytical results and numerical results from the

previous studies will be compared to verify the proposed method. Finally, a hollow bridge deck and a

viaduct column will be presented for complex geometries. 

2. Formulation

General shape of a composite section is given in Fig. 1. Each region of the composite section is

considered to be linearly elastic and isotropic. The classical solution of the displacements are given by

Lekhnitskii (1963).

(1)

(2)

(3)

where u, v and w are displacements in the x, y, and z directions. θ is the twist angle per unit length.

 is the warping function for the ith region. The standard strain-displacement relation in terms of

the warping function is given by

u θzy–=

ν θ zx=

w θψi x y,( )=

ψi x y,( )

Fig. 1 General shape of the composite cross-section
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(4)

(5)

For the stress-strain relation, following equations can be written by using Eqs. (4) and (5)

(6)

(7)

where Gi is the shear modulus of the ith region.

By introducing the Saint-Venant’s stress function, one can write the shear stresses as:

(8)

(9)

where φi is called the Saint-Venant’s stress function.

By taking the derivatives of the Eqs. (8) and (9) and substituting in the Eqs. (6) and (7) and then

taking the differences of the Eqs. (6) and (7) gives the final partial differential equation to be solved and

it is given by

(10)

There are two boundary conditions. The stress function should be continuous at each interface of the

region and should be zero at the boundaries of section. 

Torsional rigidity of cross-sections require the solution to the following partial differential Eq. (10).

The torsional rigidity, assuming θ = 1, can be obtained by

(11)

Differential Eq. (10) is mathematically equal in form to the differential equation of a plate which

exhibits only shear behavior. Displacements of such a plate behavior is governed by the equation

 (12)

where Gp is the shear rigidity of the plate with unit height, w is the deflection, p(x, y) is the external

load. The volume of the deformed plate region is recovered by 
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 (13)

By using the analogy between Eq. (12) and Eq. (10), one can solve Eq. (12), substitude in Eq. (13) and

obtain the torsional rigidity as

GJ = 2V  (14)

In this paper Eq. (12) is discritezed by an assumed stress hybrid finite element. By using different

material properties for different elements, the torsional rigidity of the arbitrarily composite sections can

be easily obtained.

While using assumed stress hybrid finite element, the Hellinger-Reissner, two field variational

principal in which stresses and displacements are assumed independently (Pian and Chen 1982, Gendy

et al. 1992, Washizu 1982, Darilmaz 2005) is utilized. For a typical shear plate element the Hellinger-

Reissner functional can be written as

 (15)

where {σ} is the independently assumed stress-resultant vector which can be conveniently written in

terms of extensional plate shear forces as

{σ} = {Qx Qy}
T  (16)

where Q is the shear force; [D] is the differential operator matrix, [S] is the is the compliance matrix and

A is the area of element.

(17)

(18)

The approximation for stress and displacements can now be incorporated in the functional. The stress

field is described in the interior of the element as

{σ} = [P]{β}  (19)

and a compatible displacement field is described by

{w} = [N]{q}  (20)

where [P] and [N] are matrices of stress and displacement interpolation functions and {β} and {q} are

the unknown stress and nodal displacement parameters, respectively. Intra-element equilibrating stresses and

compatible displacements are independently interpolated. Since stresses are independent from element

V w Ad
A

∫=

ΠRH σ{ }T
D[ ]

A

∫ w{ }dA
1

2
--- σ{ }T

S[ ]
A

∫ σ{ }dA–=

S[ ] 1 Gp⁄ 0

0 1 Gp⁄
=

D[ ] ∂ ∂x⁄ 0

0 ∂ ∂y⁄
=
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to element, the stress parameters are eliminated at the element level and a conventional stiffness matrix

results. This leaves only the nodal displacement parameters to be assembled into the global system of

equations.

Substituting the stress and displacement approximations Eq. (19), Eq. (20) in the functional Eq. (15)

 (21)

where

 (22)

 (23)

Now imposing stationary conditions on the functional with respect to the stress parameters {β} gives

 (24)

Substitution of {β} in Eq. (17), the functional reduces to 

 (25)

where

 (26)

is recognized as stiffness matrix.

The plate element which exhibits only shear behavior and the nodal unknowns are depicted in Fig. 2.

The assumed stress field for the element which satisfies the equilibrium conditions for zero body

forces and avoids rank deficiency is given as

(27a)

(27b)

where β1, β2 and β3 are stress parameters.

ΠRH β[ ]T G[ ] q[ ] 1

2
--- β[ ]T H[ ] β[ ]–=

H[ ] P[ ]T

V

∫ S[ ] P[ ]dV=

G[ ] P[ ]T∫ D[ ] N[ ]dV=

β[ ] H[ ] 1–
G[ ] q[ ]=

ΠRH

1

2
--- q[ ]T G[ ]T H[ ] 1–

G[ ] q[ ] 1

2
--- q[ ]T K[ ] q[ ]= =
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G[ ]=

Qx β1 β2x β3y+ +=

Qy β4 β5x β3– y+=

Fig. 2 Node numbering and nodal unknowns of the plate finite element



246 Kutlu Darllmaz et al.

3. Numerical examples

In this section, a number of problems are examined. The results obtained are compared with analytic

and some other element solutions from the literature.

3.1 Example 1

In order to check the computer program and computation accuracy, the torsional rigidity of a typical

example of a hollow circular section is calculated by the proposed procedure and compared with the

theoretical result. The theoretical value of the torsion constant of the hollow circular section can be

obtained from the formula (Timoshenko 1968).

(28)

where D1 and D2 are inner and outer diameters of circles of the hollow circular section, respectively.

Fig. 3 shows the geometry and finite element mesh of the hollow circular section. As shown in the

figure, two different mesh configurations are employed. 

The numerical results are listed in Table 1. It can be seen that the results converge to the theoretical

value when the finite element mesh becomes finer.

3.2 Example 2

Rectangular composite sections made of two different materials for different configurations are

analyzed, Fig. 4. These cross sections are extracted from Fatmi and Zenzri (2004) which are solved by using

the numerical implementation of the exact elastic beam theory and three dimensional finite elements.

GJ
πD2

4

32
---------- 1

D1

D2

------⎝ ⎠
⎛ ⎞

4

–⎝ ⎠
⎛ ⎞=

Fig. 3 Finite element meshes of hollow circular section

Table 1 Comparison of results obtained using different finite element mesh

Mesh 1 Mesh 2 Theoretical

Torsional Rigidity GJ (kNm2) 122.7362 124.7196 125.6637

Error (%) 2.3 0.75 ---
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In case of homogeneous material (Material 1), the analytical torsional rigidity for CASE C is available

Muskhelishvili (1963), and its value is J = 16k1a
3 b = 4580 mm4, where a = 5 mm, b = 10 mm, k1 = 0.229.

The obtained result for homogeneous section is J = 4561 mm4, with a % 0.41 error.

Current results are compared with other solutions and given in Table 2.

It can be observed from the Table 2 that the obtained results are in a good agreement with other

solutions. 

The variation of φ function over the surface of cross-section for each case is given in Fig. 5.

3.3 Example 3

In this example a circular cross section composed of two different materials is considered, Fig. 6. The

material properties for the circular section is G1 = 8333 MPa, G2 = 80769 MPa. 

The calculated values of the torsional rigidity for homogenous (having material property of section 1)

and the composite cross-section is given in Table 3. The variation of the stress function on the surface

of the cross-section is plotted in Fig. 7.

For the circular section, the analytical solution is available and it is given by the following

Fig. 4 Rectangular composite sections

Table 2 Comparison of the torsional rigidity ratios for different cases

Case G1 (GPa) G2 (GPa) ν1 ν2
GJ/(GJ)1 

Fatmi and Zenzri (2004)
GJ/(GJ)1 

This study

A 27.51 4.02 0.33 0.33 0.5249 0.5248

B 25.00 0.345 0.00 0.45 0.0307 0.0303

C 0.345 0.500 0.45 0.45 0.8251 0.8250

D 0.455 3.846 0.10 0.30 1.5314 1.5263
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GJ = G1J1 + G2J2  (29)

Based on the Eq. (29), the calculated value of the torsional rigidity is 1.636 × 10 6 MPa.m4 with an error

of 0.71%.

3.4 Example 4: hollow bridge deck

To illustrate the generality of the proposed method, a cross section of a hollow bridge deck composed

of two different materials is analyzed. The dimension and material properties are given in Fig. 8.

Fig. 5 Distribution of φ function over the surface of cross-section

Fig. 6 Circular cross-section 

Table 3 Torsional rigidity values for circular cross-section

(GJ)homogeneous [MPa.m4] GJcomposite [MPa.m4]

Theoretical 1.059×106 1.636×106

This study 1.061×106 1.624×106
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The torsional rigidity of bridge deck is obtained as GJ = 1.05559 108 MPa.m4 and the variation of the

stress function on the surface of the cross-section is plotted in Fig. 9. 

3.5 Example 5: viaduct column

Due to the requirement of finite element modeling for the strengthening project of Mecidiyekoy

viaduct in Istanbul, the proposed procedure has been used to compute the torsional rigidity of the

viaduct column sections, Fig. 10. 

The material constants of the strengthened and existing concrete are taken as E1 = 32500 MPa,

ν1 = 0.2, E2 = 21000 MPa, ν2 = 0.2, respectively. The torsional rigidity of this section is calculated by

the proposed procedure to be GJ = 1.12721×108 MPa.m4.

The variation of the stress function on the surface of the cross-section is plotted in Fig. 11.

Fig. 7 3D variation of the stress function on the cross-section for circular shape

Fig. 8 Hollow bridge deck (G1 = 8333 MPa, G2 = 14583 MPa)

Fig. 9 3D variation of the stress function on the cross-section for bridge deck
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4. Conclusions

The torsional rigidity of the composite sections made of different material properties was analyzed on

the basis of hybrid finite element procedure. In the derivation of the differential equation an analogy

between the torsion problem and deformation of a shear plate problem was used. The obtained partial

differential equation was discritezed by hybrid finite elements to obtain the deformation in the nodal

points. To test the validity of the formulations, some numerical results from the previous studies were

successfully examined. It was concluded that the proposed method is simple and efficient and in a good

agreement with previously published results.

References

Darllmaz, K. (2005), “An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin
plates”, Struct. Eng. Mech., 19(2), 199-215.

Darllmaz, K. (2005), “A hybrid 8-node hexahedral element for static and free vibration analysis”, Struct. Eng.
Mech., 21(5), 571-590.

El Fatmi, R. and Zenzri, H. (2004), “A numerical method for the exact elastic beam theory. Applications to
homogeneous and composite beams”, Int. J. Solids Struct., 41, 2521-2537.

Gendy, A.S., Saleeb, A.F. and Chang, T.Y.P. (1992), “Generalized thin-walled beam models for flexural-torsional
analysis”, Comput. Struct., 42(4), 531-550.

Krenk, S. and Jeppesen, B., (1989), “Finite Elements for beam cross-sections of moderate wall thickness”,
Comput. Struct., 32(5), 1035-1043.

Fig. 10. Section configuration of strengthened Mecidiyekoy viaduct column

Fig. 11 3D variation of the stress function on the cross-section for the viaduct column



Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach 251

Kolodziej, J.A. and Fraska, A. (2005), “Elastic torsion of bars possessing regular polygon in cross-section using
BCM”, Comput. Struct., 84, 78-91.

Ladevèze, P. and Simmonds, J.G., (1998), “New concepts for linear beam theory with arbitrary geometry and
loading”, European J. Mech., A/Solids, 17(3), 377-402.

Lekhnitskii, S.T. (1963), Theory of Elasticity an Anisotropic Elastic Body., Holden day, San Francisco.
Li, Z., Ko, J.M. and Ni, Y.Q. (2000), “Torsional rigidity of reinforced concrete bars with arbitrary sectional

shape”, Finite Elements in Analysis and Design, 35, 349-361.
Muskhelishvili, N.I. (1963), Some Basic Problems of the Mathematical Theory of Elasticity, Noordho

International Publishing, Leyden.
Najera, A., Herrera, J.M. (2005), “Torsional rigidity of non-circular bars in mechanisms and machines”, Mechanism

and Machine Theory, 40, 638-643.
Pian, T.H.H. and Chen, D.P. (1982), “Alternative ways for formulation of hybrid stress elements”, Int. J. Numer.

Meths. Eng., 18, 1679-1684.
Swanson, S.R. (1998), “Torsion of laminated rectangular rods”, Compos. Struct., 42, 23-31.
Savoia, M. and Tullini, N., (1993), “Torsional response of inhomogeneous and multilayered composite beams”,

Compos. Struct., 25, 587-594.
Timoshenko, S.P. (1968), Elements of Strength of Materials, 5th Edition, Princeton NJ, Van Nostrand.
Washizu, K. (1982), Variational Method in Elasticity and Plasticity, Pergamon Press, Oxford, 3rd. Edn.

Notation
E : modulus of elasticity
G : shear modulus of elasticity
GJ : torsional rigidity
Qx,Qy : internal shear force components
ν : Poisson ratio
φ : Saint-Venant’s stress function
θ : angle of twist per unit length
[D] : differential operator matrix
[G] : nodal forces corresponding to assumed stress field
[N] : shape functions
[P] : interpolation matrix for stress
{q} : displacement components 
{w} : displacements
{β} : stress parameters
{σ} : internal forces
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