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Abstract. The paper begins by presenting a unified variational approach to the lateral-torsional buckling
(LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which
accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical
assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general
coordinates and (iii) adopts Trefftz’s criterion to perform the bifurcation analysis. The proposed formulation is
then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and
web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical
result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are
presented, discussed and, when possible, also compared with values reported in the literature. These
numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative
differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate
how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely (ii1) the
minor-to-major inertia ratio, (ii2) the beam length, (ii3) the location of the load point of application and (ii4) the
bending moment diagram shape.

Key words: lateral-torsional buckling; thin-walled beams; prismatic and web-tapered I-beams;
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1. Introduction

It is a well-known fact that prismatic or tapered beams bent in their stiffer principal plane (i.e., each

cross-section is subjected to major axis bending) are prone to lateral-torsional buckling (LTB), a

bifurcation-type of instability involving a combination of out-of-plane deflection and twisting. Due to

their low minor axis bending and torsional stiffness values, most thin-walled beams with open cross-
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sections are highly susceptible to this buckling phenomenon, which often governs their structural

behaviour and load-carrying capacity. When analysing the elastic LTB behaviour of a given beam, it is

common practice to neglect the pre-buckling in-plane flexural deflections, i.e., to assume that the beam

remains straight up until the onset of buckling. This “classical” approach, which is equivalent to

performing a stability analysis of a beam with a linear pre-buckling behaviour, (i) leads to sufficiently

accurate results when the ratio between the cross-section major and minor axis inertias is very high and

(ii) has been extensively adopted to investigate the LTB behaviour of both prismatic beams (e.g., Timoshenko

& Gere 1961, Vlassov 1961 or Trahair 1993) and tapered beams (e.g., Andrade & Camotim 2003,

which also includes a fairly substantial literature review on this topic). However, when the cross-section

major and minor inertia values are not too far apart, the effect of the (in-plane) pre-buckling deflections

on the beam LTB behaviour becomes relevant and neglecting it may lead to a non-negligible

underestimation of the corresponding critical load parameter.

The effect of pre-buckling deflections on the LTB behaviour of prismatic beams has been

investigated by a number of researchers and it is worth mentioning that most of the earlier studies

addressed beams with narrow rectangular cross-sections (e.g., Michell 1899, Pettersson 1952, and

Clark & Knoll 1958). Concerning I-section beams, Davidson (1952) derived a transcendental equation,

the solution of which provides the elastic critical moment of simply supported doubly symmetric beams

under uniform bending. A few years later, Baker et al. (1956) published a closed-form solution for this

problem, which is based on Davidson’s transcendental equation. The investigation concerning the

effect of pre-buckling deflections on the stability of equal-flanged prismatic I-beams was extended to a

wide range of loading and support conditions by Trahair & Woolcock (1973) and Vacharajittiphan et al.

(1974), who used the finite integral method to solve the governing differential equilibrium equations.

About one decade ago, Pi & Trahair (1992a,b) (i) developed a finite element formulation to analyse the

LTB behaviour of singly symmetric I-beams, which takes into account the pre-buckling deflection

effects, and (ii) reported numerical applications of this finite element approach. Roberts (1981) derived

non-linear strain-displacement expressions for prismatic thin-walled members with arbitrary open

cross-sections subjected to bending and torsion, which were subsequently incorporated into a variational

formulation intended to analyse the LTB behaviour of beam-columns. Later, this formulation was

numerically implemented by means of the Rayleigh-Ritz method and employed to assess the influence

of the pre-buckling displacements on the elastic stability of beams (Roberts & Azizian 1983, Roberts &

Burt 1985)1. Non-linear theories to describe the combined flexural-torsional behaviour of prismatic

thin-walled members with arbitrary open cross-sections were developed, independently, by Attard

(1986a), Mollmann (1986), Van Erp et al. (1988) and Ville de Goyet (1989). All these theories are

capable of incorporating the pre-buckling deflections in the LTB analysis of beams. Moreover, Attard

(1986b) developed a finite element formulation specifically intended to analyse the beams LTB

behaviour, taking into account the influence of the pre-buckling flexural deflections. The beam finite

element formulated by Ronagh & Bradford (1999), for the geometrically non-linear analysis of thin-

walled prismatic members with open cross-sections, is based on expressions for the first and second

variations of the total potential energy identical to the ones derived by Attard (1986a).

The available research work concerning the influence of the pre-buckling deflections on the LTB

behaviour of tapered beams is rather scarce and quite recent. Indeed, Ronagh et al. (2000a) appear to

have been the first to take this influence into account, while deriving an expression for the second

1It should be mentioned that Achour & Roberts (2000) presented new strain-displacement relations, which are
slightly different from the ones originally proposed by Roberts (1981).
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variation of the total potential energy of tapered thin-walled open beams with an arbitrary geometry.

However, in spite of the inherent generality of this theory, it was specialised and numerically

implemented for doubly symmetric beams only: in a companion paper (Ronagh et al. 2000b), a (doubly

symmetric) tapered beam finite element was formulated and applied to determine the elastic critical

moments of web-tapered simply supported I-beams acted by point loads. It is still worth pointing out

that Boissonnade & Muzeau (2001) developed a geometrically non-linear beam finite element, which

appears to be capable of including the effect of pre-buckling deflections in the LTB analysis of singly

symmetric tapered I-section beams. However, this possibility has not yet been illustrated.

This paper presents a unified variational approach to the LTB analysis of prismatic and tapered thin-

walled beams with open cross-sections, which takes into account the influence of the pre-buckling

deflections. The proposed formulation extends previous work by the authors on the linear stability

behaviour of this type of members (Andrade & Camotim 2003) and its development (i) is based on

shell membrane theory in general coordinates, (ii) generalises the kinematical assumptions commonly

used for prismatic beams (Vlassov 1961) and (iii) adopts Trefftz’s criterion to perform the bifurcation

analysis. Moreover, due to space limitations, only doubly symmetric beams are dealt with2.

The above formulation is then applied to prismatic and web-tapered simply supported I-section beams

and cantilevers acted by conservative loads. Aside from validation purposes, this work aims at (i)

assessing the influence of the pre-buckling deflections on the LTB behaviour of prismatic and tapered

beams and (ii) identifying the role played by the main parameters involved, namely the (ii1) major-to-

minor inertia ratio, (ii2) beam length, (ii3) load point of application and (ii4) bending moment diagram

shape. After the demonstration of an analytical result, concerning prismatic beams under shear centre

loading, several numerical results are presented and discussed. They consist of elastic critical moments/

loads and have been obtained through the Rayleigh-Ritz method. When possible, these results are also

compared with values reported in the literature.

2. LTB of doubly symmetric tapered beams: formulation

In this section, one presents a general analytical formulation to analyse the elastic lateral-torsional

buckling behaviour of doubly symmetric tapered thin-walled beams with open cross-sections. This

formulation both specialises and extends the one recently developed by the authors (Andrade & Camotim

2003), in the sense that it (i) no longer can be applied to singly symmetric beams but (ii) includes the effect

of pre-buckling deflections (i.e., it abandons the “classical” linear pre-buckling behaviour assumption).

2.1. Beam and loading description

Fig. 1 shows the undeformed configuration of a typical doubly symmetric thin-walled beam with an

open cross-section and length l. A fixed rectangular right-handed Cartesian reference system x, y, z is

also shown in Fig. 1, where (i) the x-axis coincides with the undeformed beam centroidal (and shear

centre) axis and (ii) the y and z-axes are the cross-section major and minor central axes, respectively.

The unit vectors along the Cartesian axes are denoted by e1, e2 and e3. Furthermore, let S and L (x),

2Note that the authors already developed and numerically implemented a more general version of the formula-
tion presented here, which is valid for singly symmetric beams loaded in their symmetry plane (Andrade &
Camotim 2002, Andrade 2003).



284 A. Andrade and D. Camotim
with 0 ≤ x ≤ l, be the mid-surface and cross-section mid-lines of the undeformed beam.

A material point on the beam mid-surface is identified by its Cartesian coordinates (x, , ) in the

undeformed configuration: x specifies the cross-section, whereas  and  define the location of this

point on L (x). The bar is used to identify a quantity associated with the mid-surface.

Alternatively, the above material point location in the undeformed configuration can be specified by

means of curvilinear (Gaussian) coordinates θα, defined on S as follows3: θ1 = x and θ 2 measures the

arc length along the cross-section mid-lines (i.e., along each θ 2-curve), with θ 2 = 0 on the x-axis.

According to this alternative description, both  and  are functions of θ 1 and θ 2. Then, the position

vector (relative to the origin of the fixed Cartesian frame) of a generic mid-surface point in the

undeformed configuration may be written in the form .

In this paragraph, one briefly recalls basic concepts and results from the differential geometry of

surfaces (e.g., Green & Zerna 1968). The vectors aα, defined on S by

(1)

are tangent to the coordinate curves and form the covariant basis of S (note that a2 is a unit vector,

a direct consequence of the way in which the θ 2 coordinate is defined). The contravariant basis (or

dual basis)   is defined by the relation

(2)

where  is the Kronecker symbol. The symmetric second-order tensor with covariant components

given by

(3)

is the metric tensor of S, also known as the first fundamental form of S. The contravariant

components of this surface tensor are
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3Unless otherwise stated, Greek indices belong to {1, 2} and Einstein’s summation convention is adopted.

Fig. 1 Tapered thin-walled beam with open cross-section: undeformed configuration, fixed Cartesian axes and
external transverse forces and end moments
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(4)

Expressions (3) and (4) yield

(5)

     (6)

where a = det (aαβ) = 1+( )2. The area element dA on S reads

(7)

Finally, one notes that the vector

(8)

has Euclidean norm  and is normal to S. A word of caution is in order at this point: in

tapered beams, the base vectors aα (or a
α) are not orthogonal (in other words, the Gaussian

coordinate system θα is not orthogonal, an issue apparently overlooked by Ronagh et al. 2002a). It

is therefore convenient to introduce orthonormal vectors AI and AII, spanning the tangent plane to S

and exhibiting the following properties: (i) AII = a2 and (ii) AII × AI = a3 (Wilde 1968). From these

conditions, one obtains

(9)

Concerning the end support and loading conditions, only the following two cases are addressed in this

work: (i) simply supported beams subjected to transverse loads and/or end moments and (ii) cantilevers

acted by transverse loads. The end sections of a simply supported beam are prevented from deflecting

along y and z, but are free to rotate about both these axes. In addition, they are restrained against torsion

and may warp freely. The cantilevers are assumed to be fully built-in at the support (i.e., all

displacements are prevented at this end section) and completely free at the other end. The external

loads, generically shown in Fig. 1, are deemed conservative and proportional to a single parameter λ.

The conservative character of these loads is ensured by the fact that (i) the transverse forces follow the

beam deformation, always retaining their original direction, and (ii) the end moments My0 and Myl

follow the corresponding end section rotation about the x-axis, thus remaining normal to this axis.

2.2. Kinematics

The one-dimensional theory characterising LTB is derived by regarding thin-walled open beams as

kinematically constrained membrane shells. These kinematical constraints extend the classical

Vlassov’s assumptions (Vlassov 1961), adopted in the context of prismatic beams, and may be stated as

follows (Andrade & Camotim 2003):
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(ii) The mid-surface shear strains (involving fibres originally along the orthonormal vectors AI and

AII) are negligible.

It is important to stress that the first constraint precludes the occurrence of any local or distortional

instability phenomena. Furthermore, it is assumed throughout the derivations that the strains and the

displacements along the x-axis are small (i.e., the strain components and the derivatives of this

displacement component are negligible when compared with 1).

According to the above kinematical constraints, the deformed configuration of any given cross-

section mid-line can be regarded as the result of (i) an in-plane rigid-body motion, followed by (ii)

displacements in the x-axis direction, due to bending and warping. The rigid-body motion can still be

decomposed into the successive application of (i) a rotation Φ about the (fixed) x-axis and (ii) a

translation with components along y (V) and z (W). Therefore, the transverse displacement field

Ve2 +We3 of the beam mid-surface is defined by

(10)

(11)

The covariant components of the Green-St. Venant membrane strain tensor in the curvilinear

coordinate system θ α  (i.e., half of the change of metric tensor, associated with the mid-surface

displacement field) are given by (e.g., Green & Zerna 1968).

(12)

where U = Ue1 + Ve2 +We3 is the mid-surface displacement field. The shear strain involving fibres
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and C (θ 1, θ 2) is the segment of L (θ 1) comprised between the centroid (θ 2 = 0) and the point under

consideration, defined by the Gaussian coordinates θ 1, θ 2. Note that the restriction of ω to L (θ 1)

represents the sectorial coordinate having both its origin and pole at the centroid.

Incorporating the previous results in Eq. (12) and neglecting U,1 (in face of 1) yields

(19)

  (20)

where the function

(21)

appearing in Eq. (19), stems from the cross-section variation and is responsible for the qualitative

differences exhibited by the LTB behaviours of tapered and prismatic beams. This last statement

means that, in tapered beams with , piecewise prismatic models will not converge to the

correct LTB solution (Andrade & Camotim 2003). It is worth noting that Eq. (19) agrees with the

one derived by Ronagh et al. (2000a), but differs substantially from the one obtained by

Rajasekaran (1994), on the basis of inconsistent approximations - the author neglects some non-

linear terms having the same order of magnitude as others that are retained.

2.3. Total potential energy of the beam - load system

One assumes that the material constituting the beam is a St. Venant - Kirchhoff material (which, by

definition, is homogeneous, isotropic and hyperelastic; the fact that the undeformed configuration is a

natural state is also implied - e.g., Ciarlet 1988), with Young modulus E and Poisson ratio ν.

The membrane strain energy is given by
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where the  are the contravariant components of the tensor of membrane forces, work-conjugate

to the Green-St. Venant strains , and dA is given by Eq. (7). One has, under plane stress

conditions (Green & Zerna 1968).
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where t is the wall thickness and the approximation  was adopted4.
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4If one does not wish to adopt this approximation, often used in the context of beam theories, it suffices to
replace E by E/(1−ν 2) in the relevant equations.
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where  is the shear modulus (i.e., one uses the expression valid for prismatic

beams, though taking into account the variation of the cross-sectional property J along the beam

length).

Finally, the potential energy of the external loads (see Fig. 1) is defined by

(26)

2.4. Fundamental equilibrium path

In a fundamental equilibrium state, associated with a given load parameter value λ, the beam is

subjected solely to major axis bending and its deformed configuration is thus characterized by U = Uf,

V = V f = 0, W =W f and Φ = Φ f = 0.

In order to account for the effect of pre-buckling deflections on LTB, one has to put aside the

hypothesis of a linear pre-buckling behaviour. Nevertheless, it is assumed that there exists a linear

relationship between (i) the membrane forces and stress resultants in a fundamental equilibrium state

and (ii) the displacement derivatives. Therefore, one has
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(31)

and, according to Trefftz’s criterion (e.g., Bazant & Cedolin 1991 or Reis & Camotim 2001), the

bifurcation points on the fundamental path are identified by the stationarity condition

(32)

with respect to all u, v, w and φ, where δ 2Π is the second-order term of the Taylor series expansion,

about a fundamental state, of the beam total potential energy (i.e., the second variation of Π).

Functional δ 2Π may be expressed in the form (Andrade & Camotim 2003)
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where the variations of the membrane strains and external load potential energy are given by
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(39)

where the functions

A*(θ1) = Iy
* (θ1) = Iz

* (θ1) =

Iω
*(θ1) = Iψ

* (θ1) = Iωψ
* (θ1) = (40)

are geometrical properties of the beam. Notice also that the orthogonality conditions

(41)

which hold for doubly symmetric beams, were used in derivations.

From a mathematical viewpoint, Eq. (32) is the variational (weak) statement of a non-linear

eigenvalue problem. By applying standard Calculus of Variations techniques (e.g., Courant & Hilbert

1953), one is led to the strong form of this problem, defined by the differential equations in ]0, l [

(Euler-Lagrange equations of δ 2Π )

(42)

(43)

(44)

(45)

and the corresponding (essential and natural) boundary conditions. For simply supported beams and

cantilevers, the latter take the form:

(i) Simply supported beams5 acted by transverse loads and/or end moments

u(0) = 0  (46)

v(0) = v(l) = 0 (47)

(48)
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5Without loss of generality, one assumes that the longitudinal displacement is prevented at the end section
defined by θ1 = 0.
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(49)

(50)

   (51)

(ii) Cantilevers6 acted by transverse loads

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

The non-linear character of the above eigenvalue problem stems from the presence of terms

containing derivatives of the pre-buckling deflections W f. Indeed, neglecting these terms, which means

disregarding the influence of the pre-buckling deflections on the bifurcation load parameters and

buckling modes, amounts to linearising the eigenvalue problem and leads to the “classical” (linear) beam

stability analysis, based on the linear pre-buckling behaviour assumption (Andrade & Camotim 2003).

Before closing this sub-section, one shows that the eigenvalue problem just defined can be recast in

terms of (i) the load parameter λ and (ii) a single unknown function - the torsional rotation φ. Indeed,

one readily sees that the integration of Eqs. (42) and (44), together with the boundary conditions (46)

and (49) (simply supported beams) or (52), (55) and (56) (cantilevers), yields u = w = 0, a result that

constitutes the beam counterpart of the inextensional flexural buckling of columns. Then, by

considering (i) Eq. (43), together with the boundary conditions (48) and (50) (simply supported beams)

or (532) and (542) (cantilevers), and (ii) Eq. (30)
7, it is possible to conclude that ν,11 and φ are not

independent, since they are related by the equation

(60)

w 0( ) w l( ) 0= = EIy
* 0( )w,11 0( ) EIy

* l( )w,11 l( ) 0= =

φ 0( ) φ l( ) 0= =

E Iω
* 0( )φ ,11 0( ) Iωψ
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 
 
 

φ=

6Again without sacrificing generality, we assume that the built-in section corresponds to θ1 = 0.
7In cantilevers acted by transverse loads, one also uses the fact that My

f (l, λ) = 0, ∀λ.
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Consequently, one reaches the desired result: functional (39) can be rewritten as

(61)

and Eqs. (42)-(59) are replaced by the differential equation

(62)

subjected to the following boundary conditions:

(i) Simply supported beams acted by transverse loads and/or end moments

(63)

(64)

(ii) Cantilevers acted by transverse loads

(65)

(66)

(67)

2.6. Prismatic beams

In the particular case of prismatic beams, the general formulation just presented can be considerably

simplified. In fact, functions ,  and   cease to depend on θ1, which implies that (i) ψ is identically

null and (ii) the fictitious thickness t* coincides with the actual thickness t, which is also a function of

θ 2 alone. Then, (i) A* = A is the cross-section area, (ii) Iy
* = Iy and  Iz

* = Iz are the major and minor

moments of inertia, (iii) Iω
* = Iw is the warping constant and (iv)  Iψ

*
 and  Iωψ

* are null. Note that this

specialised version of the general formulation agrees with the one derived by Attard (1986a).

3. Influence of pre-buckling deflections (I-section beams and cantilevers)

The general mathematical formulation outlined above is now used to investigate the influence of pre-

buckling deflections on the LTB behaviour of prismatic and web-tapered doubly symmetric I-section

simply supported beams or cantilevers.
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3.1. Prismatic beams

First, one considers the cases of (i) simply supported beams acted by end moments and/or transverse

forces applied at the shear centre (cross-section mid-height) and (ii) cantilevers acted by transverse forces

applied at the shear centre. The corresponding governing equations, accounting or not for the effects of

pre-buckling deflections, may be derived directly from Eqs. (62)-(67) and are summarised in Table 1.

Comparing the above two sets of equations and always bearing in mind that the bending moment

distribution in a fundamental equilibrium state can be expressed in the form My
f (θ1, λ) = λ f (θ1), where

f defines the shape of the bending moment diagram, one is able to draw the following conclusion:

whenever the transverse forces are applied at the shear centre (i.e., zq = zQl = 0), the ratio Mcr /Mcr
lin ,

which relates the non-linear and linear critical moments (with and without the influence of pre-buckling

deflections), is always given by

(68)

This analytical result shows that (i) the consideration of the beam in-plane pre-buckling deflections

invariably leads to a higher elastic critical moment than the one yielded by a “classical” linear

stability analysis and that (ii) this increase is only relevant when the value of the ratio Iz / Iy is not

too small. Moreover, since the ratio defined by Eq. (68) tends to infinity as Iz approaches Iy , one

clearly confirms the well-known fact that a beam with Iz = Iy experiences no LTB. It is worth

noticing that Ville de Goyet (1989) reached this same conclusion for simply supported beams under

uniform bending or acted by a mid-span point load. However, he used a numerical approach, based

on the application of Galerkin’s method (with one or two sinusoidal shape functions, thus

discretising the beam into a one or two d.o.f. system), and failed to fully grasp the generality of the

analytical result just presented. Furthermore, Eq. (68) also agrees very well with the closed-form

solutions derived by Baker et al. (1956), Trahair & Woolcock (1973), Vacharajittiphan et al. (1974),

Roberts & Azizian (1983) and Pi & Trahair (1992b), all dealing with simply supported beams under

uniform bending. The slight differences that can be detected stem from the fact that the above

authors included non-linear terms related to the twist, the so-called “geometric torsion”. In the present

formulation, the first kinematical assumption stated in 2.2 precludes the emergence of such terms.

Mcr Mcr

lin⁄ 1 Iz Iy⁄–( ) 1 2⁄–
=

Table 1 Governing equations for prismatic simply supported beams and cantilevers (transverse forces applied at the
shear centre)

Field equilibrium equation

Including pre-buckling deflections Disregarding pre-buckling deflections

Boundary conditions

(i) Simply supported beams

(ii) Cantilevers

EIwφ,1111 GJφ,11–
M y

f 2

EIz
-------- 1

Iz
Iy
---– 

 φ– 0= EIwφ,1111 GJφ,11–
M y

f 2

EIz
--------φ– 0=

φ 0( ) φ l( ) 0= = EIwφ,11 0( ) EIwφ,11 l( ) 0= =

φ 0( ) 0= φ ,1 0( ) 0= GJφ,1 l( ) E– Iwφ,111 l( ) 0= EIwφ,11 l( ) 0=



294 A. Andrade and D. Camotim
When the transverse forces are not applied at the shear centre, the influence of the pre-buckling

deflections on the critical moment value does not depend only on the ratio Iz / Iy, but also on (i) the

location of the load point of application with respect to the shear centre (zq or  zQl  value), (ii) the beam

length and, to a much lesser extent, (iii) the My
f diagram shape. A better grasp of this assertion can be

acquired by considering a set of numerical results, concerning the illustrative examples depicted in

Fig. 2. These results were obtained through the application of the Rayleigh-Ritz method, using shape

(or coordinate) functions of the form

(simply supported beams)8 (69)

(cantilevers) (70)

to approximate φ (further details about the numerical analysis procedure can be found in Andrade

2003 and Andrade & Camotim 2003). Two different cross-section shapes were dealt with, namely

the ones investigated by Trahair & Woolcock (1973):

(i) an 8UC31 section, exhibiting the following geometrical properties:

Iy = 4566 cm
4, Iz = 1540 cm

4 (Iz / Iy = 0.337), J = 22.23 cm
4, Iw = 142.2×10

3 cm6, h = 192.2 mm, and

(ii) a 10UB29 section, for which the relevant geometrical data are

 Iy = 6560 cm4, Iz = 678.5 cm4 (Iz / Iy = 0.103), J = 25.72 cm4, Iw = 103.4×103 cm6, h = 246.9 mm.

The loads were applied at the top and bottom flanges (zq, zQ = ±h/2). For the simply supported

beams, it was found that accurate estimates of the critical moments Mcr
lin and Mcr could be achieved

with only five shape functions. The cantilevers, however, required the use of up to nine shape

functions and, moreover, it was observed that convergence is somewhat slower for the longer

cantilevers with bottom flange loading.

Figs. 3-4 show the variation of the critical moment percentage increase due to the pre-buckling

deflections, (Mcr−Mcr
lin) / Mcr

lin , with the beam/cantilever length, for 4.0 m ≤ l ≤ 12.0 m (simply supported

ϕk θ
1( ) sin

kπ

l
------θ

1

 
  k, 1 2 …, ,= =

ϕk θ
1( ) 1 cos–

2k 1–( )π
2l

-----------------------θ
1

k, 1 2 …, ,= =

8It is worth pointing out that, due to symmetry, only the odd-number shape functions were considered in the
analysis of the simply supported beams shown in Fig. 2.

Fig. 2 Doubly symmetric prismatic I-section simply supported beams & cantilevers
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beams) or 2.0 m ≤ l ≤ 8.0 m (cantilevers). The observation of these curves prompts the following remarks:

(i) Concerning the simply supported beams (Fig. 3), the largest increase occurs for the shortest and

stockiest beam subjected to a bottom flange mid-span point load. The curves associated with

bottom (top) flange loading always lie above (below) the horizontal lines yielded by Eq. (68) and

valid for shear centre loading. As the beam length grows, these horizontal lines are approached in

an almost symmetrical way.

Fig. 3 Effect of pre-buckling deflections on the Mcr values of simply supported beams acted by (a) mid-span
point loads and (b) uniformly distributed loads

Fig. 4 Effect of pre-buckling deflections on the Mcr values of cantilevers acted by (a) tip loads and (b)
uniformly distributed loads
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(ii) As far as the cantilevers are concerned (Fig. 4), one notices that the critical moment increase is

invariably larger (smaller) for bottom (top) flange loading than for shear centre loading. Moreover,

while (ii1) the critical moment increase for bottom flange loading is only slightly dependent on

the beam length, (ii2) the influence of the beam length is much more pronounced for top flange loading.

(iii) Some of the above LTB problems were also solved by Trahair & Woolcock (1973),

Vacharajittiphan et al. (1974), Attard (1986b) and Ronagh et al. (2000b). In all cases, the results

presented here fully agree with the values reported by these authors.

The influence of pre-buckling deflections on LTB is closely related to , as can

be seen from Eq. (39) or Eq. (61). For a given beam and loading profile (defining the shape of the W,11
f

diagram), the critical moment increase associated with the pre-buckling deflections grows with λcr
(defining the magnitude of the W,11

f
 diagram at buckling). This explains why the ratio (Mcr − Mcr

lin)/

Mcr
lin grows monotonically with zq(Q) (all other factors being equal).

For the simply supported beams analysed, accurate Mcr
 lin predictions can be obtained by using the

Eurocode 3 formula (CEN 1992)

(71)

with C1 = 1.363 and C2 = 0.553 (mid-span point loads) or C1 = 1.132 and C2 = 0.459 (uniformly

distributed loads). Following a suggestion made by Mohri et al. (2002), it was found that this

formula also yields accurate Mcr predictions when the pre-buckling deflections are accounted for,

provided that the above C1 and C2 values are replaced by the modified coefficients

(72)

3.2. Tapered beams

In this sub-section, several numerical results concerning the LTB behaviour of doubly symmetric

web-tapered I-section simply supported beams and cantilevers are presented and discussed. They make

it possible to assess how the critical moment increase due to the pre-buckling deflections is affected by

a number a factors, namely (i) the web height tapering ratio, (ii) the location of the load point of

application, (iii) the beam length, (iv) the My
f diagram shape and (v) the support conditions. These

results were obtained by means of the Rayleigh-Ritz method, using the shape functions given in Eqs.

(69) and (70), and concern the beams and cantilevers shown in Fig. 5, which exhibit the following two

sets of geometrical and material properties:

(i) E = 200 GPa, G = 77.2 GPa, b = 152.4 mm, hmax = 609.6 mm, tf = 12.7 mm, tw = 9.5 mm, l = 6096mm

and variable tapering ratio α = hmin / hmax - Data I.

(ii) E = 206.85 GPa, G = 82.74 GPa, b = 150 mm, hmax = 300 mm, tf = 10 mm, tw = 6 mm, α = 0.5

and variable length l - Data II.

The curve displayed in Fig. 6(a) concerns Beam A + Data I and corresponds to a point load applied at

the mid-section centroid (i.e., zQ = 0). It provides the variation of Qcr
lin (pre-buckling deflections

neglected) with the tapering ratio α = hmin / hmax, which is comprised between α = 0.2 and α = 1.0

W,11

f
θ
1
λ,( ) My

f
EIy( )⁄–=

Mcr

lin
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l
2
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(prismatic beam). The number of shape functions required to achieve convergence varied from two (for

α = 1.0) to twelve (for α = 0.2) - recall that, due to symmetry, only the odd-number shape functions

need to be considered in Eq. (69). These Qcr
lin values are in close agreement with the results reported

earlier by Yang & Yau (1987) and, more recently, by Boissonnade & Muzeau (2001). Fig. 6(b), on the

other hand, provides the variation, with α, of the critical load increase (Qcr − Qcr
lin ) /Qcr

lin due to the pre-

buckling deflections (the same number of shape functions was used to evaluate both Qcr
lin and Qcr). One

observes that this increase (i) is always quite small (it never exceeds 1.25%) and (ii) progressively

decreases as α increases, most likely because the average Iz
*/Iy

* value also decreases. Indeed, while Iz
*

does not vary (the flanges are uniform), the average Iy
* value increases with a. For example, when

α = 0.2, the ratio Iz
*/Iy

* varies between 0.014 (mid-span) and 0.473 (end sections), while the associated

prismatic beam (α = 1) exhibits a constant ratio of 0.014. Note, however, that the maximum bending

moment and buckling mode curvature occur at mid-span, where the Iz
*/Iy

* ratio remains constant.

In order to assess how the relevance of the pre-buckling deflections varies with the (i) point of load

application and (ii) beam length, one analyses Beam A + Data II. The beam lengths considered range

from 5 m to 12 m and the point load is applied at three different locations, namely at the mid-span

Fig. 5 Doubly symmetric web-tapered I-section simply supported beams & cantilevers

Fig. 6 Beam A + Data I: (a) variation of Qcr
lin with a and (b) effect of pre-buckling deflections
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cross-section (i) mid-height (shear centre), (ii) top flange and (iii) bottom flange. The inertia ratio Iz
*/Iy

*

varies between 0.069 (mid-span) and 0.303 (end sections). The computation of  Qcr
lin and  Qcr required

the use of up to ten (odd-number) shape functions given by Eq. (69) - a larger number of shape

functions was necessary for the smaller lengths, which are associated with steeper flange slopes.

The curves displayed in Fig. 7 provide the critical load percentage increase due to the pre-buckling

deflections. These curves show that, as the beam length increases, both the (Qcr − Qcr
lin ) /Qcr

lin ratios

concerning top and bottom flange loading approach the (almost constant) value associated with

shear centre loading (≈5%). Furthermore, the critical load increase (i) is virtually independent of

the beam length, for shear centre loading, and (ii) mildly depends on l, for bottom or top flange

loading. One should still point out that the results given in Fig. 7 are in excellent agreement with

the values reported by Ronagh et al. (2000b) - to the authors’ best knowledge, these are the only

currently available results dealing with the influence of the pre-buckling deflections on the LTB

behaviour of tapered beams.

Next, one analyses Beam B + Data II, in order to assess the influence of the bending moment diagram

shape. Three linear diagrams are dealt with (ζ = 1.0, 0.5, 0 - see Fig. 5) and a maximum of eight shape

functions given by Eq. (69) were used to compute both Mcr
lin and Mcr. The ensuing (Mcr − Mcr

lin ) /Mcr
lin

vs. l. curves are almost parallel, as shown in Fig. 8. The influence of the pre-buckling deflections

increases with ζ (at a decreasing rate, though), most likely because larger bending moments are acting

on the beam segment with the highest Iz
*/Iy

* ratio, i.e., in the vicinity of the tapered end (note that the

variation of the Iz
*/Iy

* value is the same as the one occurring in half of the simply supported beam

analysed in the previous problem).

Finally, one considers the web-tapered cantilever shown in Fig. 5 (Beam C), together with Data II.

The length l ranges from 3 m to 8 m and, as before, the point load Q is applied at the free end section (i)

mid-height (shear centre), (ii) top flange and (iii) bottom flange. The numerical results obtained

(considering nine shape functions given by Eq. (70)) are displayed in Fig. 9 and indicate that the critical

load percentage increase due to the pre-buckling effects is almost independent of l, for both shear centre

and bottom flange loading (a higher value is observed in the latter case). For top flange loading, on the

other hand, the ratio (Qcr − Qcr
lin ) /Qcr

lin increases significantly with l, progressively approaching the

curve related to shear centre loading.

Fig. 7 Beam A + Data II: variation of critical load increase with beam length and point of load application
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4. Conclusions

A unified variational approach to analyse the lateral-torsional buckling (LTB) behaviour of doubly

symmetric prismatic and tapered beams, taking into account the influence of the pre-buckling

deflections, was presented. It extends previous work developed by the authors, concerning the linear

stability behaviour of this type of beams (Andrade & Camotim 2003). This formulation was then

applied to simply supported beams and cantilevers, and, in this more restricted context, it was

demonstrated that both the weak and strong statements of the LTB problem can be expressed in terms

of a single unknown function, namely the torsional rotation φ.

The remainder of the paper was devoted to investigating the influence of the pre-buckling deflections

on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers.

First, an analytical result was established, concerning prismatic members acted by end moments and

transverse loads applied at the shear centre. Then, several elastic critical moments or loads, obtained by

Fig. 8 Beam B+Data II: variation of critical moment increase with the beam length and bending moment
diagram shape

Fig. 9 Beam C+Data II: variation of (Qcr−Qcrlin ) / Qcrlin with cantilever length and load point of application
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means of the Rayleigh-Ritz method (with trigonometric shape functions), were presented, discussed

and, when possible, also compared with values reported in the literature. These numerical results made

it possible to illustrate and somewhat quantify (i) the influence of the pre-buckling deflections on the

LTB behaviour of prismatic and tapered beams, (ii) the qualitative differences existing between the

LTB behaviours of simply supported beams and cantilevers and also (iii) how such behaviour is

affected by several factors, namely the (iii1) minor-to-major inertia ratio, (iii2) beam length, (iii3)

position of the load point of application and (iii4) bending moment diagram shape.

Finally, one last word to mention, once more, that this paper only dealt with doubly symmetric

beams, a restriction exclusively due to space limitations. Indeed, the authors have already developed

and numerically implemented a more general version of the formulation presented here, which is valid

for singly symmetric beams loaded in their symmetry plane (Andrade & Camotim 2002, Andrade

2003). Hopefully, applications of this more general formulation will be reported in the near future.
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