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1. Introduction 

 
It is clear that in each field of science and technology 

using an element in design of a mechanical system requires 
identification of the accurate mechanical behaviors of that 
element. One of these science and technology fields which 
it attracts attention of a lot of scientists and researchers is 
nanotechnology field. In nanotechnology field there are 
several methods for investigation of mechanical behaviors 
of systems. Between these methods, the use of theoretical 
ones and mathematical modelling are more common 
because they are low cost and available to everyone. Like 
macro domain which mathematical models of plate, shell, 
beam, rod and bar are used for analysis of macro elements, 
in nano domain mathematical models of nanoplate, 
nanoshell, nanobeam, nanorod and nanobar are 
implemented. 

Between the mathematical models of mechanical 
elements, the nanorod model is used for modelling of 
elements that their axial mechanical behavior like free axial 
vibration is desired. These elements can be single- or multi-
walled nanotubes or nanorods made of aluminum or silicon. 
In this regard, Aydogdu (2009) investigated the axial 
vibration of nanorods modeled based on the simplest rod 
theory by using the nonlocal elasticity theory. In another 
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similar work, Kiani (2010) considered the small scale effect 
on free longitudinal vibration of nanowires with linearly 
varied radii. This work also used the simplest rod theory for 
modelling of the tapered nanorods. A similar investigation 
on the longitudinal vibration of double-nanorod-systems 
was also found by Murmu and Adhikari (2010). In a 
different work, the surface energy effects on the 
longitudinal and transverse wave propagation of nanotubes 
embedded in elastic medium are considered (Assadi and 
Farshi 2011). The effect of nonlocality is also considered on 
the longitudinal vibration of nanobeams with crack (Hsu et 
al. 2011). This effect is also studied on the analysis of the 
axial wave propagation of coupled nanorod systems 
(Narendar and Gopalakrishnan 2011). Goushegir and 
Faroughi (2016) studied the small scale effect on the axial 
vibration of non-uniform nanorods using boundary 
characteristic orthogonal polynomials. The simple rod 
model is also used for modelling and analysis of mechanical 
behaviors of nanorods made of functionally graded 
materials. In another work, the free longitudinal vibration of 
axially functionally graded tapered nanorods with variable 
cross-section was studied based on the nonlocal elasticity 
theory (Şimşek 2012). In the work, elasticity modulus and 
mass density of the nanorod vary continuously in the axial 
direction of the nanorod according to a power-law form. By 
using the strain gradient theory, the longitudinal vibration of 
nanorods made of functionally graded materials is analyzed 
(Akgöz and Civalek 2013). The rod model was also utilized 
by Aydogdu (2014) for modelling of axial vibration of 
double-walled carbon nanotubes. In this study, the Van der 
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Waals forces were considered in the axial direction and the 
small scale effect was investigated on natural axial 
frequencies of nanotubes. Karličić et al. (2015) investigated 
the nonlocal longitudinal vibration of viscoelastic coupled 
double-nanorod systems. Besides these studies, there are 
some references (Nguyen et al. 2014, Rahmani et al. 2017, 
Simsek, 2011, Adhikari et al. 2013, 2014, Akgöz and 
Civalek 2011, 2017, Allahkarami et al. 2017, Amar et al. 
2018, Belkorissat, Houari, & Tounsi, Adda, & Mahmoud, 
(2015), Bounouara et al. 2016, Faroughi and Shaat 2017, 
Faroughi et al. 2017, Goushegir and Faroughi 2017) in 
which the bending, buckling, and vibration of nonlocal 
beams and plates are considered. 

The above literature survey shows that the main goal of 
published works is considering the small scale effect on 
axial vibration of homogenous and functionally graded 
nanorods and nanotubes with constant or variable cross 
section. To this end, nanorods and nanotubes are modeled 
based on the simplest rod theory in which the inertia of the 
lateral motions and shear stiffness are neglected. While this 
theory cannot be a good choice for considering axial 
mechanical behavior of thick nanorods. Because the inertia 
of lateral motions and shear stiffness effects become 
noticeable in thick nanorods. There are only two studies 
using the Bishop’s theory for considering the behavior of 
thick nanorods (Güven 2014, Li et al. 2017), “These studies 
have considered a homogeneous material for nanorods. 

Since there is no work to study the influences of the 
shear stiffness and the inertia of the lateral motions on the 
free axial vibration of nanorods with functionally graded 
materials, the present work aims to cover this issue. To this 
end, nanorods with axially functionally graded (AFG) 
material and constant cross section are considered. Then, 
governing equation of motion and boundary conditions are 
derived by using the Hamilton’s principle. In the next step, 
the differential model of the nonlocal elasticity theory is 
implemented to obtain the nonlocal governing equation of 
motion and boundary conditions. To solve the governing 
equation of motion, the harmonic differential quadrature 
method is utilized and the axial natural frequencies are 
obtained for clamped-clamped end condition. Finally, 
effects of various parameters like nonlocal parameter, shear 
stiffness and inertia of lateral motions, nanorod dimensions, 
frequency number, boundary condition type, and gradient 
index number on natural axial frequencies of AFG nanorods 
are investigated in details. 

 
 
 
 

 

 

Fig. 1 Geometry of an AFG nanorod 

2. Problem formulation 
 
Consider an AFG nanorod with length L (0 ≤ x ≤ L) and 

circular cross section A with radius R. The AFG nanorod is 
generally composed of two different materials at the left 
and the right ends (as shown in Fig. 1). 

Poisson’s ratio is assumed to be constant, i.e., ν = 0.3, 
whereas bulk elastic modulus E(x), shear modulus G(x), and 
mass density ρ(x) are assumed to vary in the axial direction 
according to the power law distribution 
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where the subscripts L and R denote the left (x = 0) and 
right (x = L) ends of nanorod, respectively, and a gradient 
index m determines the variation profile of material 
properties across the AFG nanorod length. Upon the Bishop 
rod model, considering the effects of the inertia of the 
lateral motions and the shear stiffness, the displacement 
field at any point of the nanorod can be written as 

 

𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡);       𝑣𝑣 = −ν𝑦𝑦
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

;        𝑤𝑤 = −ν𝑧𝑧
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

; (2) 

 
where u, v and w are the displacement components of the 
nanorod along x, y and z coordinates, respectively. 
According to Eq. (2), the non-zero strain components in the 
cross section can be obtained as 
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The stresses induced in the cross section of the bar can 

be determined, using the three-dimensional Hook’s law, as 
 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝐸𝐸(𝑥𝑥)

(1 + ν)(1 − 2ν) �
(1 − ν)𝜀𝜀𝑥𝑥𝑥𝑥 + ν�𝜀𝜀𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑧𝑧𝑧𝑧 ��

= 𝐸𝐸(𝑥𝑥)
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

 

𝜎𝜎𝑥𝑥𝑦𝑦 =
𝐸𝐸(𝑥𝑥)

(1 + 𝜈𝜈)(1 − 2𝜈𝜈)��
1 − 2𝜈𝜈

2
� 𝜀𝜀𝑥𝑥𝑦𝑦 �

= −𝜈𝜈𝐺𝐺(𝑥𝑥)𝑦𝑦
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 

(4) 

750



 
Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop’s theory 

𝜎𝜎𝑧𝑧𝑥𝑥 =
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(4) 

 
Now, using Hamilton’s principle, the local equation of 

motion of the nanorod as well as the local boundary 
conditions can be derived as 
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where 
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and 𝐼𝐼𝑃𝑃 = ∫(𝑦𝑦2 + 𝑧𝑧2)𝑑𝑑𝐴𝐴. 

Before converting the local governing equation and 
boundary conditions to the nonlocal form, it is worth to 
mention that there are two models of the nonlocal elasticity 
theory: the differential model and the integral model. Since 
for a few cases of boundary conditions, e.g., cantilever 
boundary condition in transverse vibration of nanobeams, 
the differential model gives a paradox solution, the integral 
model is proposed (*****), “However, the differential 
model has still some advantages in comparison with the 
integral model. The differential model makes it possible to 
obtain the exact solution of a problem with a low 
computational volume. Furthermore, the differential model 
is still a prevalent size dependent model for investigation of 
various mechanical behaviors. It is also worth to mention 
that however the paradoxes of the differential model are 
removed by the integral model or other ways, it is not 
reported that the integral model has a higher accuracy than 
the differential one. In other words, we cannot definitely 
express that which one can properly capture the behaviors 
of nanostructures. Therefore, approve or reject of the 
differential model requires more studies and investigations. 
Based on the above descriptions, the authors are used the 
differential nonlocal elasticity model. 

In the nonlocal elasticity theory, the nonlocal parameter 
is μ = (e0a)2, where e0 is the small length scale coefficient 
and a is the internal characteristic length. Based on the 
nonlocal elasticity of Eringen’s theory, the stress tensor on a 
particular point of a body depends on the strain tensor at all 
points on that body. Therefore, the nonlocal stress tensor is 
defined as (1 − 𝜇𝜇∇2)  σnl = σl. Therefore, the nonlocal 
governing equation of motion and the nonlocal boundary 

conditions can be obtained by multiplying Eqs. (5) and (6) 
by (1 − 𝜇𝜇∇2) as follows 
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where 𝜇𝜇  is the nonlocal parameter, ∇2= 𝜕𝜕2 𝜕𝜕𝑥𝑥2⁄  is the 
one-dimensional Laplacian operator, and superscript nl 
denotes nonlocal. In addition 
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Substituting Eq. (10) in Eqs. (8) and (9) results in the 

nonlocal equation of motion and the nonlocal boundary 
conditions in terms of deflection as follows 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝐸𝐸(𝑥𝑥)𝐴𝐴(𝑥𝑥)
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
� −

𝜕𝜕2

𝜕𝜕𝑥𝑥2 �𝜈𝜈
2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2�

− 𝜌𝜌(𝑥𝑥)𝐴𝐴(𝑥𝑥)
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝜇𝜇
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �𝜌𝜌(𝑥𝑥)𝐴𝐴(𝑥𝑥)
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2�

+
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃
𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2�

− 𝜇𝜇
𝜕𝜕3

𝜕𝜕𝑥𝑥3 �𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃
𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2� = 0 

(11) 

 

��𝐸𝐸(𝑥𝑥)𝐴𝐴(𝑥𝑥)
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

−
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜈𝜈2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2�

+ 𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃
𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝜇𝜇
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃
𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2��𝛿𝛿𝑢𝑢

+ �𝜈𝜈2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2�𝛿𝛿 �

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�� �

𝐿𝐿

0
� = 0 

(12) 
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The equation of motion of the conventional Bishop rod 
(Rao 2007) can be obtained from Eq. (11) by setting 𝜇𝜇 = 0. 

 
 

3. Free axial vibration analysis 
 
For free axial vibration analysis of AFG nanorods a 

harmonic relation for the axial displacement is considered 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡  (13) 
 

where ω is the natural axial frequency of AFG nanorod. 
Using Eq. (13), Eqs. (11) and (12) can be expressed as 
 

𝑑𝑑
𝑑𝑑𝑥𝑥

�𝐸𝐸(𝑥𝑥)𝐴𝐴
𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

� −
𝑑𝑑2

𝑑𝑑𝑥𝑥2 �𝜈𝜈
2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃

𝑑𝑑2𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥2 �

+ 𝜌𝜌(𝑥𝑥)𝐴𝐴𝑖𝑖2𝑈𝑈(𝑥𝑥)

− 𝜇𝜇𝑖𝑖2 𝑑𝑑2

𝑑𝑑𝑥𝑥2 �𝜌𝜌(𝑥𝑥)𝐴𝐴𝑈𝑈(𝑥𝑥)�

−
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

�

+ 𝜇𝜇
𝑑𝑑3

𝑑𝑑𝑥𝑥3 �𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

� = 0 

(14) 

 

��𝐸𝐸(𝑥𝑥)𝐴𝐴
𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

−
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝜈𝜈2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃
𝑑𝑑2𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥2 �

− 𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

+ 𝜇𝜇
𝑑𝑑2

𝑑𝑑𝑥𝑥2 �𝜌𝜌(𝑥𝑥)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

��𝛿𝛿𝑈𝑈(𝑥𝑥)

+ �𝜈𝜈2𝐺𝐺(𝑥𝑥)𝐼𝐼𝑃𝑃
𝑑𝑑2𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥2 �𝛿𝛿 �

𝑑𝑑𝑈𝑈(𝑥𝑥)
𝑑𝑑𝑥𝑥

�� �
𝐿𝐿

0
� = 0 

(15) 

 
3.1 Solution by harmonic differential quadrature 

(HDQ) method 
 
To solve the nonlocal governing equation of motion of 

AFG nanorod, Eq. (14), and accordingly to obtain nonlocal 
axial frequencies of AFG nanorods, HDQ method is 
utilized. It is shown that the HDQ method is more efficient 
than the ordinary differential quadrature (DQ) method for 
solving the mechanical problems especially vibrational 
problems (Malekzadeh and Karami 2005, Striz et al. 1995, 
Bert and Malik 1996), “In this method, the partial derivative 
of a function, with respect to a spatial variable at a given 
discrete point, approximated by a linear summation of 
weighted function values at all discrete points chosen in the 
solution domain of the spatial variable. Suppose the domain 
of considered AFG nanorod is (0 < x < L) and being 
discretized by N points along x coordinate. If F(x) 
representing either of deformation function (u) within the 
AFG nanorod domain, then the derivatives of F(x) with 
respect to x at the point xi can be expressed discretely as 

 
𝑑𝑑𝑛𝑛𝐹𝐹(𝑥𝑥𝑖𝑖)
𝑑𝑑𝑥𝑥𝑛𝑛

= �𝐴𝐴𝑖𝑖𝑖𝑖
(𝑛𝑛)𝐹𝐹(𝑥𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

     ;𝑛𝑛 = 1, … ,𝑁𝑁 − 1 (16) 

where 𝐴𝐴𝑖𝑖𝑖𝑖
(𝑛𝑛)is the weighting coefficient in conjunction to the 

n-th order derivative of F(x), at the discrete points xi. The 
description of HDQ method and how to choose the 
positions of the nodal points using Chebyshev polynomials 
were presented by Civalek (2004), “Now, the HDQM can 
be used to discretize the Eq. (14), governing equation, and 
Eq. (15), boundary condition equation. Before do this, 
𝑋𝑋 = 𝑥𝑥 𝐿𝐿⁄  and 𝑈𝑈� = 𝑈𝑈 𝐿𝐿⁄  are used to obtain the non-
dimensional form of Eqs. (14) and (15) as follows 

 
1
𝐿𝐿
𝑑𝑑
𝑑𝑑𝑋𝑋

�𝐸𝐸(𝑋𝑋)𝐴𝐴
𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

� −
1
𝐿𝐿3

𝑑𝑑2

𝑑𝑑𝑋𝑋2 �𝜈𝜈
2𝐺𝐺(𝑋𝑋)𝐼𝐼𝑃𝑃

𝑑𝑑2𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋2 �

+ 𝜌𝜌(𝑋𝑋)𝐴𝐴𝑖𝑖2𝐿𝐿𝑈𝑈�(𝑋𝑋)

−
𝜇𝜇𝑖𝑖2

𝐿𝐿
𝑑𝑑2

𝑑𝑑𝑋𝑋2 �𝜌𝜌(𝑋𝑋)𝐴𝐴𝑈𝑈�(𝑋𝑋)�

−
1
𝐿𝐿
𝑑𝑑
𝑑𝑑𝑋𝑋

�𝜌𝜌(𝑋𝑋)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

�

+
𝜇𝜇
𝐿𝐿3

𝑑𝑑3

𝑑𝑑𝑋𝑋3 �𝜌𝜌(𝑋𝑋)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

� = 0 

(17) 

 

��𝐸𝐸(𝑋𝑋)𝐴𝐴
𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

−
1
𝐿𝐿2

𝑑𝑑
𝑑𝑑𝑋𝑋

�𝜈𝜈2𝐺𝐺(𝑋𝑋)𝐼𝐼𝑃𝑃
𝑑𝑑2𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋2 �

− 𝜌𝜌(𝑋𝑋)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

+
𝜇𝜇
𝐿𝐿2

𝑑𝑑2

𝑑𝑑𝑋𝑋2 �𝜌𝜌(𝑋𝑋)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

��𝛿𝛿𝐿𝐿𝑈𝑈�(𝑋𝑋)

+ �
𝜈𝜈2𝐺𝐺(𝑋𝑋)𝐼𝐼𝑃𝑃

𝐿𝐿
𝑑𝑑2𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋2 �𝛿𝛿 �

𝑑𝑑𝑈𝑈�(𝑋𝑋)
𝑑𝑑𝑋𝑋

�� �
1

0
� = 0 

(18) 

 
Now by implementing HDQM, the discretized forms of 

governing equation and boundary condition equation at Xi = 
= xi/L are obtained as 

 

1
𝐿𝐿
��𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝐸𝐸(𝑋𝑋𝑖𝑖)𝐴𝐴��𝐴𝐴(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

−
1
𝐿𝐿3 ��𝐵𝐵(𝑖𝑖, 𝑖𝑖)𝜈𝜈2𝐺𝐺(𝑋𝑋𝑖𝑖)𝐼𝐼𝑃𝑃��𝐵𝐵(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

+ 𝜌𝜌(𝑋𝑋𝑖𝑖)𝐴𝐴𝑖𝑖2𝐿𝐿𝑈𝑈�(𝑋𝑋𝑖𝑖) −
𝜇𝜇𝑖𝑖2

𝐿𝐿
��𝐵𝐵(𝑖𝑖, 𝑖𝑖)𝜌𝜌(𝑋𝑋𝑖𝑖)𝐴𝐴𝑈𝑈�(𝑋𝑋𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

−
1
𝐿𝐿
��𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝜌𝜌(𝑋𝑋𝑖𝑖)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 ��𝐴𝐴(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

+
𝜇𝜇
𝐿𝐿3 ��𝐶𝐶(𝑖𝑖, 𝑖𝑖)𝜌𝜌(𝑋𝑋𝑖𝑖)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 ��𝐴𝐴(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

= 0 

(19) 

 

��𝐸𝐸(𝑋𝑋𝑖𝑖)𝐴𝐴��𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝑈𝑈�(𝑋𝑋𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

�� 

−
1
𝐿𝐿2 ��𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝜈𝜈2𝐺𝐺(𝑋𝑋𝑖𝑖)𝐼𝐼𝑃𝑃��𝐵𝐵(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

 

(20) 
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−𝜌𝜌(𝑋𝑋𝑖𝑖)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 ��𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝑈𝑈�(𝑋𝑋𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

 

�+
𝜇𝜇
𝐿𝐿2 ��𝐵𝐵(𝑖𝑖, 𝑖𝑖)𝜌𝜌(𝑋𝑋𝑖𝑖)𝜈𝜈2𝐼𝐼𝑃𝑃𝑖𝑖2 ��𝐴𝐴(𝑖𝑖, 𝑗𝑗)𝑈𝑈��𝑋𝑋𝑗𝑗 ��

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

� 

𝛿𝛿𝐿𝐿𝑈𝑈�(𝑋𝑋𝑖𝑖) + �
𝜈𝜈2𝐺𝐺(𝑋𝑋𝑖𝑖)𝐼𝐼𝑃𝑃

𝐿𝐿
��𝐵𝐵(𝑖𝑖, 𝑖𝑖)𝑈𝑈�(𝑋𝑋𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

� 

�𝛿𝛿 ���𝐴𝐴(𝑖𝑖, 𝑖𝑖)𝑈𝑈�(𝑋𝑋𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

�� �
1

0
� = 0 

(20) 

 
Applying the discretized forms of boundary conditions, 

Eq. (20), into the discretized forms of governing equation, 
Eq. (19), and separating domain and boundary degrees of 
freedom (DOF), the following assembled matrix equations 
are obtained 

 

�
[𝐾𝐾𝑏𝑏𝑏𝑏 ] [𝐾𝐾𝑏𝑏𝑑𝑑 ]
[𝐾𝐾𝑑𝑑𝑏𝑏 ] [𝐾𝐾𝑑𝑑𝑑𝑑 ]� �

{𝑈𝑈�𝑏𝑏}
{𝑈𝑈�𝑑𝑑}� = 𝑖𝑖2 �

[0] [0]
[𝑀𝑀𝑑𝑑𝑏𝑏 ] [𝑀𝑀𝑑𝑑𝑑𝑑 ]� �

0
{𝑈𝑈�𝑑𝑑}� (21) 

 
where {𝑈𝑈�𝑏𝑏} and {𝑈𝑈�𝑑𝑑} represent the boundary and domain 
DOF, respectively, as 

 
{𝑈𝑈�𝑏𝑏} = {𝑈𝑈�(𝑋𝑋1)�,𝑈𝑈�(𝑋𝑋2),𝑈𝑈�(𝑋𝑋𝑁𝑁−1), �𝑈𝑈�(𝑋𝑋𝑁𝑁)}; 
{𝑈𝑈�𝑑𝑑} = {𝑈𝑈�(𝑋𝑋2),𝑈𝑈�(𝑋𝑋3), … ,𝑈𝑈�(𝑋𝑋𝑁𝑁−3),𝑈𝑈�(𝑋𝑋𝑁𝑁−2)} (22) 

 
After doing some mathematical simplifications on Eq. 

(21), the natural frequencies of the AFG nanorod can be 
calculated by solving the following relation 

 
�[𝑀𝑀𝑑𝑑𝑑𝑑 ] − [𝑀𝑀𝑑𝑑𝑏𝑏 ][𝐾𝐾𝑏𝑏𝑏𝑏 ]−1[𝐾𝐾𝑏𝑏𝑑𝑑 ]�−1�[𝐾𝐾𝑑𝑑𝑑𝑑 ]

− [𝐾𝐾𝑑𝑑𝑏𝑏 ][𝐾𝐾𝑏𝑏𝑏𝑏 ]−1[𝐾𝐾𝑏𝑏𝑑𝑑 ]�{𝑈𝑈�𝑑𝑑}
= 𝑖𝑖2{𝑈𝑈�𝑑𝑑} 

(23) 

 
Based on the above outlined formulations and by aids of 

the MATHEMATICA program solver a self-developed 
computer program is written by which the natural 
frequencies of the AFG nanorod can be obtained. 

 
 

4. Results and discussion 
 
Eq. (23) gives natural frequencies of AFG nanorods with 

clamped-clamped boundary condition. This section is 
divided into two parts. At first, the results of present study 
are compared with literature for homogeneous nanorods 
modeled based on the Bishop’s theory to show the 
reliability and accuracy of the present formulation and 
results. Next, benchmark results including natural 
frequencies are presented with considering effects of the 
nonlocal parameter, the shear stiffness and inertia of lateral 
motions, the nanorod dimensions, the frequency number, 
and the value of gradient index. In the following, effect of 
the inertia of the lateral motions and the shear stiffness is 
called the theory effect, for the brevity. 

 
4.1 Comparison study 
 
As mentioned in Introduction section, references 

Table 1 Natural frequencies of CC nanorod (E = 70 GPa,  
ρ = 2370 kg.m-3, L = 20 nm, R = 0.5 nm) 

Mode 
number 

μ 
(nm2) 

Present 
(NBT****) 

Rao 
(2007) 

(LBT***) 

Kiani 
 (2010) 
(NST**) 

Şimşek 
(2012) 

(AFG-NST*) 

1 
0 

135.856 135.856 135.868 135.868 
2 271.643 271.642 271.735 271.735 
3 407.292 407.290 407.603 407.603 
1 

1 
134.210 - 134.220 134.220 

2 259.155 - 259.241 259.241 
3 368.432 - 368.710 368.710 
1 

4 
129.610 - 129.618 129.618 

2 230.008 - 230.083 230.083 
3 296.396 - 296.620 296.620 

 

* Axially functionally graded- Nonlocal Simple theory; 
** Nonlocal simple theory; 
*** Local Bishop’s theory; 
**** Nonlocal Bishop’s theory 

 
 

considering the small scale effects on free longitudinal 
vibration of nanorods implemented the simple theory 
(Aydogdu 2009, Goushegir and Faroughi 2016) or the 
Rayleigh theory (Nazemnezhad and Kamali 2016) for 
modeling of nanorods. This causes that in Table 1 the 
nonlocal results of the present work are compared with 
those given by Kiani (2010) and Şimşek (2012). The exact 
solution (Kiani 2010) and Galerkin method (Şimşek 2012) 
are utilized to obtain free vibration frequencies. The local 
natural frequencies presented by Rao (2007) and calculated 
by the exact solution of Bishop’s model are also listed in 
Table 1. Table 1 shows that the results of the present study 
which are obtained by the HDQM are very close to those 
obtained by the exact solution of Bishop’s model. 
Furthermore, Table 1 exhibits that the results of nonlocal 
Bishop’s model are a little smaller than those obtained 
based on the Simple theory. This is due to this fact that the 
Bishop’s theory considers the inertia of the lateral motions 
and the shear stiffness effects while this is not the case in 
the Simple theory. It can be concluded from Table 1 that the 
present formulation and results are reliable and accurate. 

 
4.2 Benchmark results 
 
In this section, to consider the effects of the small scale, 

the inertia of the lateral motions and the shear stiffness on 
the free longitudinal vibration of nanorods, four types of 
frequency ratios are defined as Eq. (24). 

 
 

Table 2 Material properties of AFG nanorod 

Material property Unit Left side of 
nanorod 

Right side of 
nanorod 

Young’s modulus (E) GPa 70 210 
Shear modulus (G) GPa 27 85 

Density (ρ) kg.m-3 2700 2370 
Poisson’s ratio (ν) - 0.3 0.3 
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The numerical values of FR1, FR2, FR3, and FR4 
represent the small scale effect on natural frequencies of 
thin AFG nanorods, the theory effect on natural frequencies 
of thin AFG nanorods, the small scale and the theory effects 
on natural frequencies of thin AFG nanorods, and the small 
scale effect on natural frequencies of thick AFG nanorods, 
respectively. 

 

𝐹𝐹𝑅𝑅1 =
 𝑁𝑁𝐿𝐿𝑁𝑁𝑁𝑁
 𝐿𝐿𝑁𝑁𝑁𝑁

≡ 
Nonlocal frequency based on the simple theory

Local frequency based on the simple theory
 

 

𝐹𝐹𝑅𝑅2 =
 𝐿𝐿𝐵𝐵𝑁𝑁
 𝐿𝐿𝑁𝑁𝑁𝑁

≡ 
Local frequency based on the Bishop′s theory
Local frequency based on the simple theory

 

 

𝐹𝐹𝑅𝑅3 =
 𝑁𝑁𝐿𝐿𝐵𝐵𝑁𝑁
 𝐿𝐿𝑁𝑁𝑁𝑁

≡ 
Nonlocal frequency based on the Bishop′s theory

Local frequency based on the simple theory
 

 

𝐹𝐹𝑅𝑅4 =
 𝑁𝑁𝐿𝐿𝐵𝐵𝑁𝑁
 𝐿𝐿𝐵𝐵𝑁𝑁

≡ 
Nonlocal frequency based on the Bishop′s theory

Local frequency based on the Bishop′s theory
 

(24) 

 
In the following, an AFG nanorod with circular cross-

section and clamped-clamped boundary condition is 
investigated. The material properties of AFG nanorod are 
selected as Table 2. 

At first, effects of the length of the AFG nanorod on the 
frequency ratios are investigated. To this end, variations of 
the first, third and fifth frequency ratios (FR3 and FR4) of 
AFG nanorod are plotted in Fig. 2 for three different values 
of gradient index (m = 0, 1, 10), “The diameter and 
nonlocal parameter of AFG nanorod are assumed to be 3 nm 
and 0.5 nm2, respectively. Fig. 2 displays that for all mode 
numbers and all values of the gradient index, all frequency 
ratio curves are located below the horizontal line 
representing FR = 1. This shows the decreasing effects of 
the small scale and the theory parameters on natural axial 
frequencies of AFG nanorods. In addition, by increasing 

 
 

the length of AFG nanorod frequency ratios increase and 
approach their horizontal asymptotes, FR = 1. 

This implies that increasing the length of the AFG 
nanorod decreases both the small scale and theory effects. 
The other point from Fig. 2 is that for all values of the 
gradient index by increasing the frequency number, values 
of FR3 and FR4 decrease and the difference between FR3 
and FR4 curves increases. Decreasing of values of 
frequency ratios indicates that the decreasing effects of the 
small scale and theory parameters increase at higher 
frequency numbers. Besides, increasing the difference 
between FR3 and FR4 curves means the theory effect on 
axial frequencies of AFG nanorods becomes more at higher 
frequency numbers. The last interesting point from Fig. 2 is 
that the reducing effects of the small scale and theory 
parameters vary with a change in the value of the gradient 
index. Fig. 2 exhibits that increasing the gradient index 
value from zero to one increases the reducing effects of the 
small scale and theory parameters while changing the 
gradient index value from one to ten causes a reduction in 
the reducing effects of the small scale and theory 
parameters. The dependency of frequency ratios on the 
gradient index value concluded from Fig. 2 causes that 
variations of the frequency ratios versus the gradient index 
value to be considered in details in the following. 

Fig. 3 displays variations of frequency ratios versus the 
value of the gradient index for various frequency numbers. 
Fig. 3 confirms the results presented in Fig. 2 regarding 
dependency of frequency ratios on the value of the gradient 
index. It is seen from Fig. 3 that the dependency of the 
frequency ratios on the gradient index becomes more at 
higher frequency numbers. If the frequency ratios do not 
depend on the gradient index, the small scale and theory 
effects on a desired natural frequency is the same for all 
values of the gradient index. This point is interesting 
because in literature (Nazemnezhad and Hosseini-Hashemi 
2014) it is reported that linear frequency ratios of 
functionally graded nanobeams are independent of the 
gradient index in transverse vibration. It is better to state 
that frequency ratios of nanobeams which are functionally 
graded in the thickness direction only in the case of 
nonlinear transverse vibration depend on the gradient index. 

In order to survey about the effects of the second 
geometrical parameter, i.e., the diameter of AFG nanorod, 

 
 

   
(a) m = 0 (b) m = 1 (c) m = 10 

Fig. 2 Variations of FR3 and FR4 versus the length for the first, third and fifth natural frequencies, D = 3 nm, μ = 0.5 nm2 
and (a) m = 0; (b) m = 1; (c) m = 10 
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on natural frequencies, in Fig. 4 variations of FR3 and FR4 
versus the diameter of AFG nanorod are plotted. The first 
interesting point of Fig. 4 is that the effect of the small scale 
parameter on the axial natural frequencies is independent of 

 
 

 
 

 
 

the diameter of the AFG nanorod while it is the other way 
round for the effect of the theory parameter. Fig. 4 shows 
that by increasing the diameter of the AFG nanorod the 
effect of the theory parameter increases and this increase is 
 
 

   
Fig. 3 Variations of frequency ratios versus the value of the gradient index for various frequency numbers, 

L = 20 nm, R = 5 nm, μ = 0.5 nm2 

   
(a) m = 0 (b) m = 1 (c) m = 10 

Fig. 4 Variations of FR3 and FR4 versus the diameter for the first, third and fifth natural frequencies , 
L = 20 nm, μ = 0.5 nm2 and (a) m = 0; (b) m = 1; (c) m = 10 

Table 3 Fundamental nonlocal axial frequencies of AFG nanorod based on the simple and Bishop theories and frequency 
ratios for various values of the length of AFG nanorod (D = 3 nm and μ = 0.5 nm2) 

L 
(nm) 

m = 0 m = 10 

NLST 
(GHz) 

NLBT 
(GHz) FR1 FR2 FR3 FR4 NLST 

(GHz) 
NLBT 
(GHz) FR1 FR2 FR3 FR4 

10 248.529 247.775 0.97620 0.99697 0.97324 0.97620 447.579 447.108 0.97591 0.99630 0.97489 0.97851 
15 167.894 167.666 0.98921 0.99865 0.98787 0.98921 302.412 301.868 0.98908 0.99757 0.98730 0.98970 
20 126.516 126.419 0.99389 0.99924 0.99313 0.99388 227.895 227.471 0.99382 0.99793 0.99197 0.99402 
25 101.435 101.386 0.99608 0.99951 0.99559 0.99608 182.722 182.382 0.99603 0.99806 0.99418 0.99611 
30 84.631 84.602 0.99727 0.99966 0.99693 0.99727 152.453 152.169 0.99724 0.99810 0.99538 0.99727 
35 72.593 72.575 0.99799 0.99975 0.99774 0.99799 130.770 130.525 0.99797 0.99811 0.99610 0.99799 
40 63.549 63.537 0.99846 0.99985 0.99827 0.99842 114.478 114.262 0.99845 0.99812 0.99656 0.99845 
45 56.506 56.498 0.99878 0.99985 0.99863 0.99878 101.791 101.598 0.99876 0.99810 0.99687 0.99877 
50 50.8673 50.8611 0.99901 0.99988 0.99889 0.99901 91.634 91.4588 0.99900 0.99809 0.99710 0.99900 
55 46.2510 46.2463 0.99919 0.99990 0.99909 0.99916 83.318 83.1577 0.99918 0.99808 0.99726 0.99918 
60 42.4022 42.3986 0.99931 0.99991 0.99923 0.99932 76.385 76.237 0.99931 0.99807 0.99738 0.99931 

 

755



 
Reza Nazemnezhad and Kamran Kamali 

 
 
more at higher frequency numbers. It is also seen from Fig. 
4 that at higher frequency numbers the effect of the small 
scale parameter increases. The conclusions of Fig. 4 are 
reliable for all values of the gradient index. 

In order to present numerical data for future researches, 
Tables 3-4 are prepared. In Tables 3-4 the fundamental 
nonlocal axial frequencies based on the simple and bishop 
theories and values of FR1, FR2, FR3, and FR4 are listed for 
various values of the length and the diameter of AFG 
nanorod, respectively. From Tables 3-4 obtaining the value 
of a desired axial natural frequency is possible. It can be 
seen from Tables 3-4 that for m = 0 values of the FR1 and 
FR4 are the same. This means that the effect of the small 
scale parameter on the axial natural frequencies of AFG 
nanorods is independent of the rod theory. This is not the 
case for the effect of the small scale parameter on the axial 
natural frequencies of AFG nanorods when the value of the 
gradient index is greater than zero. 

In the final part of the research, it is tried to find out the 
appropriate values of the small scale parameter in such a 
way that its effect becomes equal to the effect of the theory 
parameter. To this end, values of the FR2 (implying the 
effect of the theory parameter) are compared with those of 
FR4 (implying the effect of the small scale parameter) for 
various values of the small scale parameters. The 
computations for the fundamental frequency ratios are 
shown in Fig. 5. It is seen from Fig. 5 that for certain values 
of the small scale parameter, the FR2 and FR4 curves 
intersect, indicating that for these values reducing influence 
of the small scale parameter on the natural axial frequencies 
of the AFG nanorod becomes equal to the reducing effect of 
the theory parameter. It can also be stated that for the small 
scale parameter with values less than these certain values, 
the reducing influence of the theory parameter is dominant 
and for values of the small scale parameter larger than the 
values of the intersection point, the decreasing effect of the 
small scale parameter becomes dominant. 

In order to provide more comprehensive results for the 
values of the small scale parameter at intersection points of 

 
 

 
Fig. 5 Variations of the fundamental FR2 and FR4 versus the 

small scale parameter (L = 10 nm and D = 3 nm) 
 
 
 

FR2 and FR4 curves, Table 5 is prepared. Table 5 gives some 
interesting points as: 

 
(a) For a certain frequency number, the desired small 

scale parameter increases by increasing the length 
of the AFG nanorod. This implies that by increasing 
the length of the AFG nanorod the effect of the 
small scale parameter on natural axial frequencies 
decreases more than the effect of the theory 
parameter. Therefore a larger small scale parameter 
is required. This is more considerable for AFG 
nanorods with higher gradient index number. 

(b) For a certain length of the AFG nanorod, a smaller 
value for the desired small scale parameter is 
required at higher frequency numbers. This means 
that at higher frequency numbers the effect of the 
small scale parameter on natural axial frequencies 
increases more than the effect of the theory 
parameter. Therefore a smaller nonlocal parameter 

Table 4 Fundamental nonlocal axial frequencies of AFG nanorod based on the simple and Bishop theories and frequency 
ratios for various values of the diameter of AFG nanorod (L = 20 nm and μ = 0.5 nm2) 

D 
(nm) 

m = 0 m = 10 

NST 
(GHz) 

NBT 
(GHz) FR1 FR2 FR3 FR4 NST 

(GHz) 
NBT 

(GHz) FR1 FR2 FR3 FR4 

3.00 126.516 126.419 0.9939 0.99924 0.99313 0.9939 227.895 227.471 0.9938 0.99851 0.99197 0.99345 
3.25 126.516 126.402 0.9939 0.99911 0.99299 0.9939 227.895 227.463 0.9938 0.99786 0.99193 0.99406 
3.50 126.516 126.384 0.9939 0.99897 0.99285 0.9939 227.895 227.452 0.9938 0.99778 0.99188 0.99410 
3.75 126.516 126.365 0.9939 0.99881 0.99270 0.9939 227.895 227.532 0.9938 0.99768 0.99183 0.99413 
4.00 126.516 126.344 0.9939 0.99864 0.99254 0.9939 227.895 227.424 0.9938 0.99758 0.99176 0.99417 
4.25 126.516 126.322 0.9939 0.99847 0.99237 0.9939 227.895 227.493 0.9938 0.99745 0.99169 0.99422 
4.50 126.516 126.299 0.9939 0.99829 0.99219 0.9939 227.895 227.386 0.9938 0.99732 0.99160 0.99426 
4.75 126.516 126.274 0.9939 0.99809 0.99200 0.9939 227.895 227.444 0.9938 0.99718 0.99150 0.99430 
5.00 126.516 126.248 0.9939 0.99789 0.99178 0.9939 227.895 227.339 0.9938 0.99703 0.99139 0.99434 
5.25 126.516 126.221 0.9939 0.99767 0.99157 0.9939 227.895 227.385 0.9938 0.99687 0.99127 0.99439 
5.50 126.516 126.193 0.9939 0.99745 0.99135 0.9939 227.895 227.283 0.9938 0.99669 0.99115 0.99444 
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Table 3 The values of the small scale parameter in which its 
effect becomes equal to the effect of the theory 
parameter, equality of FR2 and FR4 (D = 3 nm) 

Frequency 
number L (nm)  μ (nm2)  

m = 0 m = 1 m = 10 

1 

10 0.061 0.048 0.087 
15 0.065 0.050 0.134 
20 0.069 0.054 0.2108 
25 0.070 0.056 0.301 

2 

10 0.060 0.058 0.0706 
15 0.061 0.059 0.0814 
20 0.0615 0.0595 0.099 
25 0.062 0.06 0.121 

3 

10 0.06 0.058 0.0655 
15 0.061 0.061 0.0706 
20 0.062 0.0615 0.0784 
25 0.063 0.062 0.088 

4 

10 0.0585 0.0571 0.0627 
15 0.0604 0.06 0.0665 
20 0.061 0.061 0.0709 
25 0.062 0.0615 0.0771 

5 

10 0.0566 0.0545 0.0597 
15 0.0596 0.0587 0.0638 
20 0.0606 0.06 0.0673 
25 0.061 0.061 0.071 

 

 
 

is required. This is also more considerable for AFG 
nanorods with higher gradient index number likes 
the conclusion of part a. 

 
It is worth to note here that the importance of the data 

listed in Table 5 is that there is not reported any value for 
the small scale parameter in the free axial vibration of the 
AFG nanorods. Therefore the data of Table 5 can be useful 
for implementing the appropriate theory of rods for 
modelling of the axial vibration of AFG nanorods. This is 
possible when the experiment results of the axial natural 
frequencies of the AFG nanorods are available. 

 
 

5. Conclusions 
 
In this paper, free axial vibration of AFG nanorods is 

studied by focusing on the inertia of lateral motions, shear 
stiffness and nonlocal parameter effects. To this end, 
nonlocal Bishop’s theory is used. The following conclusions 
could be highlighted from this study: 

 
 Influence of the small scale and theory parameters 

depends on the value of the gradient index. 
 The effect of the small scale parameter on the axial 

natural frequencies is independent of the diameter of 
the AFG nanorod while it is the other way round for 
the effect of the theory parameter. 

 The effect of the small scale parameter on the axial 
natural frequencies of homogenous nanorods is 
independent of the rod theory while this is not the 
case for the effect of the small scale parameter on the 
axial natural frequencies of AFG nanorods when the 
value of the gradient index is greater than zero. 

 It is possible to obtain certain values for the small 
scale parameter in such a way that its effect becomes 
equal to the effect of the theory parameter. For a 
certain frequency number these values increase by 
increasing the length of the AFG nanorod, and for a 
certain length of the AFG nanorod a smaller value 
for the small scale parameter is required at higher 
frequency numbers. 

 Each of two factors, the small scale and the theory, 
can have a dominant influence on the axial 
frequencies of the AFG nanorods relative to the 
other. This depends on the value of the small scale 
parameter, dimensions of the AFG nanorod, the 
frequency number, and the value of the gradient 
index. 
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