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1. Introduction 
 

Recently, the composite laminated plates are widely 

applied in various engineering structures such as aircraft, 

high-speed trains, automobiles and biological equipments. 

In reality, the plates are often processed into various shapes 

according to the practical application requirements, and 

they are usually used in thermal environments. So it has 

important practical significance to study the vibration 

characteristics of the irregular composite laminated plates in 

the thermal environments. In the previous works, thermal 

effects on the static and nonlinear dynamic behaviors of 

plates have been received much attention.  

Some researchers have studied the rectangular plates 

considering the thermal effects. Chen and Chen (1989) 

applied the finite element method (FEM) to analyze the 

thermal postbuckling of the laminated composite plates. 

Bhimaraddi (1993) analyzed the thermal effects on the 

buckling, postbuckling and nonlinear vibrations of the 

laminated plates. Liu and Huang (1996) studied the free 

vibration of the composite laminated plates subjected to 

temperature changes. Huang and Shen (2004) analyzed the 

nonlinear vibration and dynamic responses of functionally 

graded plates in thermal environments. Chen and Lawrence 

(2006) developed a FEM to investigate the thermal 
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postbuckling of plates. Moradi (2012) and Mansouri used 

the differential quadrature (DQ) method to investigate the 

thermal buckling of rectangular composite laminated plates 

and assumed the composite plate is subjected to a uniform 

temperature distribution. Chen et al. (2013b) used first-

order shear deformation plate theory to study the dynamic 

instability of laminated composite plates under thermal and 

arbitrary in-plane periodic loads. 

Pandey et al. (2009) used an analytical approach to 

analyze the thermoelastic stability of laminated composite 

plates. Shiau et al. (2010) investigated the thermal buckling 

behavior of composite laminated plates. Zhou et al. (2011) 

performed the three-dimensional analyses for transient 

coupled thermoelastic responses of a functionally graded 

rectangular plate. Jeyaray (2013) analyzed the buckling and 

free vibration behaviors of an isotropic plate under non-

uniform thermal load. Chen et al. (2013a)
 
considered the 

temperature-dependent properties to investigate the 

vibration and stability of the laminated composite plates. 

Geng et al. (2014)
 

developed the experimental and 

numerical simulation methods to study the dynamic and 

acoustic responses of a clamped rectangular plate in thermal 

environments. Pandey and Pradyumna (2015) analyzed the 

free vibration of the functionally graded sandwich plates in 

thermal environments using a layer-wise theory. Attia et al. 

(2015) applied the various four variable refined plate 

theories to analyze the vibration of functionally graded (FG) 

plates considering the temperature-dependent properties. 

Moreover, the irregular  plates under thermal 

environments are also of considerable interest to many  
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Fig. 1 The composite laminated trapezoidal plate 

 

 

researchers. Heuer et al. (1993) studied the nonlinear 

random vibrations and thermal buckling of skew plates. 

Sundararajan et al. (2005) investigated the nonlinear free 

flexural vibrations of the functionally graded rectangular 

and skew plates in thermal environments. Matsunaga (2005) 

applied a global higher-order deformation theory to study 

the thermal buckling of cross-ply laminated composite and 

sandwich plates. Singha et al. (2006) analyzed the thermal 

effects on the vibration behavior of composite skew plates. 

Kundu and Sinha (2007) investigated the postbuckling of 

the laminated composite shells. Malekzadeh et al. (2010) 

studied the
 

three-dimensional free vibration of thick 

functionally graded annular plates in thermal environments. 

Vosoughi et al. (2011) analyzed the thermal postbuckling of 

laminated composite skew plates with temperature-

dependent properties.  

Jaberzadeh et al. (2013) used the element-free Galerkin 

method to analyze the thermal buckling of functionally 

graded skew and trapezoidal plates with different boundary 

conditions. Taj et al. (2014) investigated the vibration 

characteristics of the functionally graded skew plate in 

thermal environments. Gupta and Sharma (2010, 2014) 

studied the thermal effects on the vibration of the 

orthotropic trapezoidal plate with linearly varying thickness 

and the free transverse vibration of the orthotropic thin 

trapezoidal plate with parabolically varying thickness 

subjected to a linear temperature distribution. 

From the above analyses, it can be observed although 

there are some previous works devoted to the plate 

problems with thermal effects, most of them are focused on 

the rectangular plates, very few works have studied the 

composite laminated trapezoidal plates, and most of them 

assumed that the temperature is constant along the thickness 

of the plate. Moreover, the thermal effects on the nonlinear 

vibration behaviors have been seldom considered. In our 

previous works, we have studied the nonlinear vibration 

characteristics of composite laminated trapezoidal plates 

(Jiang et al. 2016). In this paper, analyses of the thermal 

effects on the postbuckling and nonlinear vibration 

behaviors of the composite laminated trapezoidal plates are 

further conducted. Based on the thermal diffusion equation 

and the FEM, the heat conduction equation of the composite 

laminated trapezoidal plate is obtained using the Galerkin 

method. The geometrical nonlinearity of the plate is 

considered by means of the von Karman large deflection 

theory. The thermoelastic equation of motion of the 

composite laminated trapezoidal plate is established by the 

FEM and Hamilton’s principle. The effects of the ply-angle 

and the temperature change on the thermal buckling and 

postbuckling characteristics of the composite laminated 

trapezoidal plates are studied, the thermal effects on the 

nonlinear vibration behaviors of the composite laminated 

trapezoidal plates are discussed, and the frequency-response 

curves are also presented for the different temperatures and 

ply-angles. 

 

 

2. Thermoelastic equation of motion 
 

The composite laminated trapezoidal plate as shown in 

Fig. 1 is considered. The lengths of the top and bottom 

edges are ua and da, the lengths of the left and right sides are 

lb and rb, and the thickness of each lamina of the composite 

laminated plate is hk. 

The displacements of the plate in the x-, y- and z-

directions are denoted by u, v and w. And the temperature 

filed in the trapezoidal plate is in the steady state. In what 

follows, the variables with the subscripts x, y and z 

represent the variables in the global coordinate system, and 

those with the subscripts 1, 2 and 12 represent the variables 

in the local coordinate system. 

 

2.1 Thermoelastic equation of motion of the 
composite laminated trapezoidal plate 

 

According to the classical laminate plate theory (CLPT), 

the displacement components of the composite laminated 

plate are expressed as 

0 0
0 0 0, ,

w w
u u z v v z w w

x y

 
    

 
,       (1) 

where u0, v0 and w0 denote the in-plane and transverse 

displacements of the mid-plane in the x-, y- and z-

directions, and z is the transverse coordinate of the global 

coordinate system. 

According to the von Karman large deformation theory, 

the nonlinear strain-displacement relations are given by 
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where {ε0} and {εi} represent the membrane strains, and 

{k} represents the bending curvature. 

Considering the problem of plane-stress, the strains 

induced by the thermal effect are given by 
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Fig. 2 The form of the mid-plane of the trapezoidal plate 

divided by displacement elements 

 

 

where α1 and α2 represent the coefficients of the linear 

expansion, ΔT=Tt-T0 in which ΔT, T0 and Tt represent the 

temperature change, and the initial and the terminal 

temperatures at an arbitrary point of the plate. 

According to the orthotropic property of the composite 

laminated material and by means of Eq. (3), the constitutive 

equations of the kth lamina in the global coordinate system 

are given by  
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where [D] is the coordinate transformation matrix, and [Q] 

is the elasticity matrix. 

In order to match the complex boundary shapes of the 

trapezoidal plate, the triangular plate elements are used to 

discretize the mid-plane of the trapezoidal plate, and the 

discrete schematic is shown in Fig. 2. 

Thus, the displacements of the element-nodes can be 

divided into the bending components (w, φx, φy) and the 

axial components (u, v). So the displacements at an 

arbitrary point of the elements can be obtained as follows: 
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, ,i j m m j i j m i m ja x y x y b y y c x x      , 

i = 1-2-3, j = 2-3-1, m = 3-1-2, 

in which L1, L2, L3 are the area coordinates of the triangular 

plate elements. 

Since Eq. (5) is expressed in the natural coordinate 

system and all other formulas are in the physical coordinate 

system, they should be transformed into the natural 

coordinate system. The transformation relationship is 

expressed as 
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,          (6) 

where J is the Jacobian matrix, and A is the surface area of 

the plate. 

Hamilton’s principle is used to formulate the equation of 

motion of the plate, which can be stated as 
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where T, U and W are the kinetic energy, the strain energy 

and the work done by the external loads, and they are given 

by  

 2 2 21

2
V

T u v w dV            (8a) 

   
1

2

T

V

U dV              (8b) 

   
( , )

1
i i

N
T

b w ix y
i

W w H F


         (8c) 

where V is the volume of the plate, ρ is the mass density of 

the material, and Fi is the concentrated force at the point (xi, 

yi). 

Substituting Eqs. (1)-(5) into Eq. (8) and then into Eq. 

(7), the thermoelastic equation of motion of the element is 

obtained. By assembling the element mass and stiffness 

matrices into the global ones, the thermoelastic equation of 

motion of the composite laminated trapezoidal plates can be 

obtained as follows: 
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                  l nl t tM W C W K W K W K W F F      ,            (9) 

where {w}=[u1, v1, w1, φx1, φy1…un, vn, wn, φxn, φyn]
T
 is the 

nodal displacement vector in which n is the number of the 

node of the trapezoidal plate, [M] is the mass matrix, [C] is 

the structural damping matrix, [Kl] and [Knl] are the linear 

and nonlinear stiffness matrices, [Kt] is the thermal stiffness 

matrix, {Ft} is the temperature-induced force vector, and 

{F} is the external excitation vector. The elements of the 

matrices and the vectors in Eq. (9) are listed in Appendix A. 

 

2.2 The temperature equation of the trapezoidal plate 
 

We assume that only the top and the bottom surfaces of 

the trapezoidal plate have heat convection, and after heat 

exchange, the temperature at an arbitrary point of the plate 

is constant. In order to facilitate the element assembly, the 

triple prism element is adopted as the temperature element. 

Fig. 3 shows the combined form of the temperature element 

and the displacement element. The indices i, j, k and 1-6 

represent the triangular element and the triple prism 

element, respectively. 

2 2 2 2 ,i i i j i m i j i mN L L L L L L L L L    
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Fig. 3 Combined form of the temperature element 

and the displacement element in the composite 

laminated trapezoidal plate 

 

 

Fig. 4 The form of the trapezoidal plate divided by the 

temperature elements 

 

 

In order to facilitate the element assembly for the whole 

composite laminated trapezoidal plate, the forms of the 

temperature elements for the trapezoidal plate are divided as 

those presented in Fig. 4. It is advantageous to divide the 

meshes in this way for the present analysis. 

Next, the triple prism element is applied to discretize the 

trapezoidal plate. So the temperature at an arbitrary point of 

the element can be written as follows 
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in which Ti (i=1-6) are the temperature values at the nodes 

of the triple prism element. 

For the steady state temperature field, the heat 

conduction equation can be written as follows 

2 2 2
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,        (11) 

where λx, λy, and λz represent the thermal conductivity 

coefficients in the x-, y- and z-directions. 

In order to solve Eq. (11), according to the Galerkin 

method and by means of Eq. (10), the six residual equations 

can be obtained as follows 
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According to the thermal boundary condition, the 

following relationship can be obtained 

( )t
z t f

T
T T

z
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
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
,           (13) 

where β is the surface heat-transfer coefficient, and Tf is the 

temperature of the environment. 

By virtue of Eq. (13), the temperature equation of the 

element can be obtained by solving Eq. (12), and then by 

assembling the element mass and stiffness matrices of the 

temperature element into the global ones, the temperature 

equation of the composite laminated trapezoidal plates can 

be obtained as 

            1 2 1 1 2 2t tb t tb t t f t fK T K T K T F T F T    , (14) 

where {Tt} is the nodal temperature vector, [K] is the heat 

transfer matrix, [Ktb1] and [Ktb2] are the heat transfer 

matrices which are caused by the convection boundary, 

{Ft1} and {Ft2} are the thermal load vectors, and Tf1 and Tf2 

are the initial and terminal temperatures of the environment. 

The elements of the matrices and the vectors in Eq. (14) are 

listed in Appendix B. 

In the same way, these formulas established should be 

transformed into the natural coordinate system and the 

transformation relationships are expressed as 
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     (15) 

1 2 1 2dxdydz J dL dL d hdL dL d   ,      (16) 

where J is the Jacobian matrix, and A is the surface area of 

the plate, h is the thickness of the element, and zi is the 

height of the bottom surface of the triple prism element. 

Through Eq. (14), the temperature distributions in the 

trapezoidal plate can be obtained. Then by substituting the 

computed temperature field into Eq. (9), the thermal effects 

on the postbuckling and nonlinear vibration behaviors of the 

composite laminated trapezoidal plates can be analyzed. It 

should be noted here that the thermal force vector in Eq. (9) 

is related to the boundary conditions. If the boundary of the 

plate is clamped, it is unnecessary to consider the thermal 

force vector. But for the simply supported boundary 

conditions, the temperature induced forces may have great 

influences on the mechanical properties of the composite 

laminated trapezoidal plates. 

By solving Eq. (9), the nonlinear frequency and 

nonlinear frequency ratio can be obtained using an iterative 

solution procedure. The main steps of the procedure are as 

follows: 
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Fig. 5 The thermal postbuckling of the simply supported 

composite laminated plates 

 

 

a) Given the initial and terminal temperatures of the 

environment, the thermal stiffness matrix [Kt] can be 

known. 

b) Then, at the first step of the iteration, the nonlinear 

stiffness matrix is neglected and the linear eigenvector {} 

is calculated. 

c) For specifying a value for the maximum deflection 

parameter wmax/h, the eigenvector {} is normalized so that 

the maximum nodal displacement becomes wmax/h. 

d) Using the eigenvector {} obtained in step (c), the 

nonlinear stiffness matrix [Knl] is evaluated. At this 

moment, the nonlinear stiffness is assumed to be known, 

and also Eq. (9) can be treated linear. Then new eigenvector 

{}NL is obtained. 

e) Steps c)-d) are repeated until a convergence of the 

eigenvalue is achieved. And this eigenvalue is the nonlinear 

frequency corresponding to the given initial and terminal 

temperatures of the environment. 

f) Steps a)-e) are repeated for the different required 

maximum deflection parameters wmax/h corresponding to 

the given initial and terminal temperatures of the 

environment. 

g) Steps a)-f) are repeated for the different initial and 

terminal temperatures. 

 

 

3. Numerical results and discussions 
 

3.1 Validations of the formulations and the computer 
codes 
 

In order to verify the validity and the correctness of the 

equation of motion and the developed MATLAB programs, 

the thermal buckling results of an isotropic rectangular plate 

are compared with those of Amabili and Carra (2009) and 

Liew et al. (2003) as shown in Table 1. The material 

properties and the geometrical parameters of the rectangular 

plate used in the calculation are: E1=E2=198×10
9 

Pa, 

μ12=0.3, ρ=7850 kg/m
3
, the length and width a=b=0. 1 m, 

and the thickness h=0.001 m.  

The boundary conditions considered here are: 

(a) Immovable simply supported condition 

u0=v0=w0=0, at x=0, a and y=0, b. 

(b) Clamped condition 

Table 1 Thermal buckling results of a clamped isotropic 

rectangular plate. 

Number of 

elements 
32 72 162 

Amabili and 

Carra (2009) 

Liew 

(2003) 

Buckling 

temperatures 
0.299 0.314 0.326 0.34 0.337 

 

 

u0=v0=w0=φx=φy=0, at x=0, a and y=0, b. 

Furthermore, the thermal postbuckling results of the 

immovable simply supported composite laminated plate are 

compared with those of Meyers and Hyer (1991) and shown 

in Fig. 5, in which Tcr represents the critical buckling 

temperature and Tf is the terminal temperature of the 

environment. The transverse deflection amplitude Wmax is 

evaluated for a simply supported composite laminated 

square plate. The material properties and the geometrical 

sizes of the eight-layer composite laminated square plate 

used in the calculation are: E1=155×10
9 
Pa, E2=8.07×10

9
 Pa, 

G12=4.55×10
9
 Pa, ρ=7850 kg/m

3
, μ12=0.22, the length and 

width a=b=0.1524 m, the single lamina thickness 

h=1.27×10
-4

m, and the ply-angle is [45°/−45°/0°/90°]s. 

It can be seen from Table 1 and Fig. 5 that the present 

results match quite well with those of the references, which 

verifies that the thermoelastic equation of motion obtained 

in this paper and the developed MATLAB programs are 

correct. 

 

3.2 Selection of the model parameters 
 

In this paper, the material (graphite/epoxy) properties of 

the considered composite laminated trapezoidal plate are: 

E1=181×10
9 

Pa, E2=10.3×10
9 

Pa, G12=7.17×10
9 

Pa, 

ρ=1389.23 kg/m
3
, and μ12=0.28. The coefficients of the 

linear thermal expansion are α1=0.02×10
6
/°C and 

α2=22.5×10
6
/°C, the thermal conductivity coefficients are 

λx=0.1W/(m∙°C), λy=0.15 W/(m∙°C) and λz=0.2 W/(m∙°C), 

and the surface heat-transfer coefficient is β=20 W/(m
2
∙°C). 

Assume that the initial temperature of the environment is 

30°C. The geometrical sizes of the trapezoidal plate are: 

da=0.3 m, ua=0.135 m, lb=0.21 m, rb=0.26 m, and the 

thickness of the laminated trapezoidal plate with four 

laminas is h=0.0025 m. The height of the trapezoidal plate 

is denoted by L. The boundary conditions are as follows: 

u0=v0=w0=φx=φy=0, at y=0 and L, and at lb and rb edges. 

 

3.3 Thermal buckling and postbuckling analysis 
 

In this section, the thermal buckling and postbuckling of 

the composite laminated trapezoidal plate are investigated. 

Table 2 shows the non-dimensional maximum buckling 

displacements with respect to the terminal temperature 

values of the environment for the different ply-angles. In 

the table, the symbol “--” means that the plate has not yet 

been buckled at this temperature. 

According to Table 2, the relationship curves of the 

maximum buckling displacement and the terminal 

temperature of the environment of the trapezoidal plate with 

the different ply-angles are displayed in Fig. 6. In the 

figure, the point A is the critical buckling temperature. It is  
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Fig. 6 Thermal postbuckling displacements of the 

trapezoidal plate under the different ply-angles 

 

 

observed from the figure that when the environment 

temperature exceeds the critical buckling temperature, the 

plate will have the buckling displacement, which means that 

the equilibrium position of the plate has been changed to 

this buckling displacement. For the given ply-angle and 

with the environmental temperature increasing, the growth 

rate of the buckling displacement is gradually smaller. And 

with the ply-angle increasing from [0
°
/0

°
]s to [90

°
/-90

°
]s, the 

critical buckling temperature reduces gradually. The 

buckling displacement is small for a small ply-angle. Thus, 

for a small ply-angle the effect of the environmental 

temperature on the buckling properties of the composite 

laminated trapezoidal plate is weak. 

The contours of the non-dimensional displacement 

amplitude of the composite laminated trapezoidal plate 

under the thermal postbuckling at the ply-angles [0
°
/0

°
]s and 

[10
°
/-10

°
]s for the different temperatures are shown in Figs. 

7 and 8. With the temperature increasing, it can be seen 

from the figures that the areas where the contours appear 

are smaller and they have a tendency to move to the top 

edge, and it also can be found that the maximum 

displacement amplitudes of the plate are higher. This is 

because that the energy is localized on the point of the 

maximum displacement amplitude, and the amplitude ratio 

between the maximum displacement amplitude and that at 

 

 
(a) 

 
(b) 

Fig. 7 The contours of the non-dimensional displacement 

amplitude (w/h) of the trapezoidal plate under the thermal 

postbuckling at the ply-angle [0°/0°]s for the different 

temperatures, (a) 260°C, and (b) 300°C 

 

 

the edge of the plate increases. 

Next, for a fixed temperature, the displacement 

amplitude of the thermal postbuckling for different ply-

angles of the trapezoidal plate is studied. Fig. 9 shows the 

contours of the non-dimensional displacement amplitude at 

the temperature 300
°
C for the different ply-angles. It can be 

observed from the figure that with the ply-angle increasing, 

the maximum displacement amplitude of the plate becomes 

higher, the position of the maximum displacement 

amplitude moves towards the top plate edge, the area where 

the amplitude is relatively large on the plate becomes long 

and narrow, and the displacement amplitude at the sharp  

Table 2 The maximum buckling displacement (wmax/h) of the composite laminated trapezoidal plates 

Ply angle 

Tf 
[0°/0°]s [10°/-10°]s [20°/-20°]s [30°/-30°]s [45°/-45°]s [60°/-60°]s [75°/-75°]s [90°/-90°]s 

80 -- -- -- -- -- -- 0.3770 0.5276 

90 -- -- -- -- -- 0.2882 0.6436 0.7528 

100 -- -- -- -- -- 0.5536 0.8304 0.9192 

120 -- -- -- -- 0.3123 0.8800 1.1124 1.1760 

140 -- -- -- -- 0.6536 1.1228 1.3316 1.3808 

160 -- -- -- -- 0.8792 1.3252 1.5168 1.5572 

180 -- -- -- 0.1929 1.0628 1.5020 1.6808 1.7136 

200 -- -- -- 0.4624 1.2220 1.6604 1.8296 1.8560 

220 -- -- -- 0.6296 1.3644 1.8044 1.9672 1.9868 

240 -- -- 0.1940 0.7648 1.4944 1.9364 2.0960 2.1084 

260 0.1706 0.1279 0.2956 0.8820 1.6144 2.0592 2.2176 2.2228 

280 0.2695 0.2456 0.3609 0.9880 1.7268 2.1744 2.3320 2.3300 

300 0.3406 0.3231 0.4198 1.0844 1.8324 2.2832 2.4412 2.4412 
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(a) 

 
(b) 

 
(c) 

Fig. 8 The contours of the non-dimensional displacement 

amplitude (w/h) of the trapezoidal plate under the thermal 

postbuckling at the ply-angle [10°/-10°]s for the different 

temperatures, (a) 260°C, (b) 280°C, and (c) 300°C 

 

 
(a) 

 
(b) 

Fig. 9 The contours of the non-dimensional displacement 

amplitude (w/h) of the trapezoidal plate under the thermal 

postbuckling at the temperature 300°C for the different ply-

angles, (a) [20°/-20°]s, (b) [30°/-30°]s, (c) [45°/-45°]s, (d) 

[60°/-60°]s, (e) [75°/-75°]s, and (f) [90°/-90°]s 
 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 9 Continued 

 

 

corner is larger. Through the figure it can also be concluded 

that the contour area where the contour appears decreases 

with the ply-angle increasing from [0
°
/0

°
]s to [45

°
/-45

°
]s, and 

then it increases with the ply-angle increasing from [45
°
/-

45
°
]s

 
to [90

°
/-90

°
]s. It means that the energy at the point of 

the maximum displacement amplitude becomes most 

focused for the ply-angle [45
°
/-45

°
]s. It can be found from 

Figs. 7-9 that when the ply-angle is lower than [30
°
/-30

°
]s, 

the amplitude distribution has two peaks, the part of the 

contours near the top plate side is concave, and near the 

bottom plate side is gibbous, and when the ply-angle is 

larger than [30
°
/-30

°
]s, the amplitude distribution only has 

one peak. 

 

3.4 Thermal effects on the nonlinear vibration 
behaviors 
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In this section, the thermal effects on the nonlinear 

vibration behaviors of the composite laminated trapezoidal 

plates are investigated. Table 3 shows the natural 

frequencies corresponding to the linear system with respect 

to the terminal environmental temperature for the different 

ply-angles. In the table, L denotes the natural frequency of 

the linear composite trapezoidal plate, the symbol “--” 

signifies that the plate has not yet been buckled at this 

temperature, and the equilibrium position of the vibration is 

changeable. It can be seen from the table that the natural 

frequency of the linear composite plate is higher with the 

ply-angle increasing from [0
°
/0

°
]

 
to [90

°
/-90

°
]s for a fixed 

temperature, and only when the ply-angles are [0
°
/0

°
]s and 

[10
°
/-10

°
]s, the frequency can be obtained at the temperature 

240
°
C. It can be concluded that if the trapezoidal plate is 

applied in the low temperature environment, the ply-angle 

of the plate should be designed near to [90
°
/-90

°
]s, and if the 

trapezoidal plate is applied in the high temperature 

 

 

 
environment, the ply-angle of the plate should be designed 
near to [0

°
/0

°
]s. 

Next, considering the nonlinear effects, the frequency 

ratios (NL/L) of the nonlinear and linear composite 

trapezoidal plates with respect to the terminal temperature 

of the environment at the ply-angle [10
°
/-10

°
]s for the 

different maximum displacement amplitudes are shown in 

Table 4. In the table, NL denotes the frequency 

corresponding to the nonlinear composite trapezoidal plate, 

and the symbol “--” means that the frequency of the 

nonlinear system can not be obtained. This is because of the 

fact that for a fixed temperature, when the maximum 

displacement amplitude of the trapezoidal plate exceeds a 

critical value, the vibration behaviors of the plate may be 

affected by the strong nonlinearity and this can lead to the 

uncertain vibration behaviors of the plate, which means that 

the values of the frequency ratios and other parameters 

relating with the vibration behaviors are randomly  

Table 3 The natural frequency (L /103) of the linear composite laminated trapezoidal plates 

Ply angle 

Tf 
[0°/0°]s [10°/-10°]s [20°/-20°]s [30°/-30°]s [45°/-45°]s [60°/-60°]s [75°/-75°]s [90°/-90°]s 

30(ΔT=0) 3.7365 3.9739 4.2442 4.4589 4.5722 4.4611 4.2843 4.1582 

40 3.6779 3.9078 4.1496 4.3106 4.3063 4.0655 3.7949 3.6313 

50 3.6170 3.8396 4.0521 4.1562 4.0200 3.6198 3.2218 3.0015 

60 3.5534 3.7689 3.9515 3.9951 3.7079 3.1004 2.5040 2.1755 

70 3.4869 3.6954 3.8476 3.8263 3.3622 2.4570 1.4269 0.5640 

80 3.4171 3.6190 3.7398 3.6486 2.9701 1.5328 -- -- 

90 3.3435 3.5391 3.6279 3.4605 2.5083 -- -- -- 

100 3.2655 3.4554 3.5111 3.2603 1.9243 -- -- -- 

120 3.0940 3.2740 3.2603 2.8117 -- -- -- -- 

140 2.8963 3.0695 2.9795 2.2652 -- -- -- -- 

160 2.6634 2.8338 2.6556 1.5136 -- -- -- -- 

180 2.3820 2.5551 2.2632 -- -- -- -- -- 

200 2.0302 2.2141 1.7446 -- -- -- -- -- 

220 1.5612 1.7728 0.8734 -- -- -- -- -- 

240 0.7927 1.1183 -- -- -- -- -- -- 

Table 4 The frequency ratios (NL /L) of the nonlinear and linear composite laminated trapezoidal plates at the 

ply-angle [10
°
/-10

°
]s under different environmental temperatures 

wmax/h 

Tf 
0.1 0.3 0.5 0.7 0.9 1 1.1 1.2 1.3 

30(ΔT=0) 1.00295 1.02622 1.07103 1.13453 1.21335 1.25750 1.30433 1.35353 1.40473 

40 1.00307 1.02725 1.07375 1.13951 1.22095 1.26647 1.31469 1.36535 1.41794 

50 1.00320 1.02839 1.07677 1.14501 1.22930 1.27634 1.32612 1.37819 1.43233 

60 1.00335 1.02967 1.08013 1.15112 1.23851 1.28721 1.33865 1.39238 1.44815 

70 1.00351 1.03111 1.08391 1.15792 1.24881 1.29930 1.35248 1.40810 1.46563 

80 1.00370 1.03275 1.08818 1.16563 1.26036 1.31281 1.36804 1.42559 1.48504 

90 1.00392 1.03463 1.09306 1.17440 1.27344 1.32808 1.38547 1.44520 1.51000 

100 1.00417 1.03679 1.09867 1.18440 1.28826 1.34539 1.40523 1.46727 -- 

120 1.00481 1.04231 1.11285 1.20945 1.32513 1.38808 1.45374 1.52155 -- 

140 1.00573 1.05023 1.13292 1.24443 1.37578 1.44652 1.51972 -- -- 

160 1.00716 1.06227 1.16285 1.29560 1.44873 1.53024 -- -- -- 

180 1.00944 1.08142 1.21019 1.37569 1.56072 1.65743 -- -- -- 

200 1.01320 1.11361 1.28982 1.50649 1.74392 1.88230 -- -- -- 

220 1.01956 1.16488 1.41417 1.72678 2.07961 -- -- -- -- 

240 1.04698 1.36698 1.85235 2.41160 3.01123 -- -- -- -- 
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Fig. 10 The relationship curves of the maximum 

displacement amplitudes and the frequency ratios (NL/L) 

of the nonlinear and linear composite laminated trapezoidal 

plates at the ply-angle [10°/-10°]s under the different 

terminal environmental temperatures 

 

 

changeable with the time. With the temperature increasing, 

the stiffness of the plate is weakened, and the effect of 

nonlinearity is enhanced. Thus, it can be seen from the table 

that the critical value of the maximum displacement 

amplitude is decreased. 

According to Table 4, the relationship curves of the 

maximum displacement amplitudes and the the frequency 

ratios (NL/L) of the nonlinear system and linear system 

under the different terminal environmental temperatures are 

displayed in Fig. 10. It is observed from the figure that with 

the displacement amplitude increasing, the frequency ratios 

increase gradually. For a given displacement amplitude, the 

effect of the nonlinearity on the frequency becomes severe 

with the environmental temperature increasing. 

Next, the effect of the ply-angle on the frequency ratios 

of the nonlinear and linear systems at a fixed temperature is 

studied. Table 5 shows the variations of the frequency ratios 

(NL/L) of the nonlinear and linear composite laminated 

trapezoidal plates with the different ply-angles. It can be 

observed that for any environmental temperature and for 

any fixed displacement amplitude, the frequency ratios 

decreases with the ply-angle increasing from [0
°
/0

°
]s to 

[30
°
/-30

°
]s, and then increases with the ply-angle increasing 

from [30
°
/-30

°
]s

 
to [90

°
/-90

°
]s. Especially, when the ply- 

 

 

Fig. 11 The frequency-response curves of the laminated 

trapezoidal plate at the ply-angle [10°/-10°]s subjected to 

the external force 19N and different temperatures 

 

 

angle is [30
°
/-30

°
]s, the influence of the nonlinearity 

becomes weaker. 

The thermal effects on the nonlinear forced vibration 

properties of the composite laminated trapezoidal plates are 

also studied. The positions of the harmonic force and the 

observation point of the frequency-response curves on the 

trapezoidal plate are all at x=0.09513 and y=0.09532. 

Assuming that the structural damping is c=0.00225. In the 

following figures, 1 denotes the first natural frequency of 

the linear composite laminated trapezoidal plate. 

Fig. 11 shows the frequency-response curves of the 

composite laminated trapezoidal plates at the ply-angle 

[10
°
/-10

°
]s subjected to an external force of 19N and 

different temperatures. It can be seen from the figure that 

the displacement amplitude of the first nonlinear resonance 

becomes smaller with the temperature increasing, and the 

first nonlinear resonance frequency is higher. Especially, it 

can be observed that the thermal effect on the nonlinear 

vibration properties becomes more and more severe with 

the temperature increasing. Next, the frequency-response 

curves of the trapezoidal plate at the temperature 100°C and 

the external force 19N for the different ply-angles are 

shown in Fig. 12. It can be noted that both the displacement 

amplitude and the nonlinear resonance frequency increase 

with the ply-angle increasing. It should be pointed out that  

Table 5 The frequency ratios (NL /L) of the nonlinear and linear composite laminated trapezoidal plates with the 

different ply-angles 

Tf 
wmax/h 

Ply angle 
0.1 0.3 0.5 0.7 0.9 1.0 1.2 

50°C 

[0°/0°]s 1.00362 1.03205 1.08636 1.16237 1.25555 1.30724 1.41864 

[10°/-10°]s 1.00320 1.02839 1.07677 1.14501 1.22930 1.27634 1.37819 

[30°/-30°]s 1.00272 1.02417 1.06554 1.12426 1.19736 1.23842 1.32798 

[45°/−45°]s 1.00293 1.02603 1.07044 1.13319 1.21094 1.25445 1.34903 

[75°/−75°]s 1.00502 1.04423 1.11808 1.21973 1.34248 1.41004 -- 

[90°/−90°]s 1.00600 1.05271 1.14009 1.25937 -- -- -- 

70°C 

[0°/0°]s 1.00396 1.03500 1.09406 1.17630 1.27649 1.33182 1.45046 

[10°/-10°]s 1.00351 1.03111 1.08391 1.15792 1.24881 1.29930 1.40810 

[30°/-30°]s 1.00324 1.02870 1.07751 1.14620 1.23089 1.27811 1.38041 

[45°/−45°]s 1.00429 1.03782 1.10124 1.18888 1.29497 1.35336 1.47842 

[75°/−75°]s 1.02657 1.21752 1.52600 1.89157 2.28441 2.48675 -- 

[90°/−90°]s 1.16506 2.05138 3.14048 4.27274 -- -- -- 
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Fig. 12 The frequency-response curves of the trapezoidal 

plate at the temperature 100°C and the external force 19N 

for different ply-angles 

 

 

the composite laminated trapezoidal plate will be buckled 

with the ply-angle increasing more than [45
°
/-45

°
]s at the 

temperature 100°C. This property is presented in Table 3. 

Fig. 13 shows the frequency-response curves of the 

composite laminated trapezoidal plate at the temperature 

70°C and with different ply-angles for different external 

forces. It can be found that with the external force 

increasing, for the relatively large ply-angles the frequency-

response curves can not be obtained. For example, in Fig. 

13(a), the frequency-response curve does not exist for the 

ply-angle [90
°
/-90

°
]s. This phenomenon is due to the 

properties of the composite laminated trapezoidal plate 

affected by the strong nonlinearity, which is identical with 

the results in Table 5. 

 

 

4. Conclusions 
 

Thermal effects on the buckling, postbuckling and 

nonlinear vibration behaviors of the composite laminated 

trapezoidal plates are analyzed. The heat conduction 

equation of the trapezoidal plate is derived, and the 

temperature distribution of the plate is obtained. The 

thermoelastic equation of motion of the composite 

laminated trapezoidal plate is established by the FEM and 

Hamilton’s principle. The effect of the temperature with the 

ply-angle on the thermal buckling and postbuckling of the 

composite laminated trapezoidal plates are studied, and the 

effects of the temperature on the nonlinear vibration 

behaviors of the trapezoidal plates are also investigated. 

From the numerical results, the following conclusions can 

be drawn: 

(1) For the given ply-angle and with the environmental 

temperature increasing, the growth rate of the maximum 

displacement amplitudes is gradually smaller. The 

displacement contour area where the contour of the 

buckling displacement amplitude appears becomes 

smaller and it has a tendency to move to the top edge of 

the trapezoidal plate. 

(2) For a fixed temperature and with the ply-angle 

increasing, the critical buckling temperature reduces 

gradually. And the buckling displacement is smaller 

when the ply-angle is close to [0
°
/0

°
]s, it means at this 

ply-angle the thermal effect on the trapezoidal plate is 

 
(a) 10 N 

 
(b) 16 N 

Fig. 13 The frequency-response curves of the trapezoidal 

plate at the temperature 70°C and with different ply-angles 

for different external forces. (a) 10 N and (b) 16 N 

 

 

weakest. Moreover, the position of the maximum 

displacement amplitude moves towards the short side of 

the trapezoidal plate, and the growth rate of the 

displacement amplitude at the sharp corner is higher 

compared with the rest part of the plate. The energy at 

the point of the maximum displacement amplitude 

becomes most focused for the ply-angle [45
°
/-45

°
]s. 

(3) The ply-angle in the range of [0
°
/0

°
]s to [10

°
/-10

°
]s 

can withstand the highest temperature, and with the 

environmental temperature increasing the effect of 

nonlinearity is enhanced. With the ply-angle increasing, 

the nonlinear frequency may decrease at the beginning 

and increase later. Especially, when the ply-angle is 

[30
°
/-30

°
]s, the influence of the nonlinearity is very 

weak.  

(4) With the temperature increasing, the displacement 

amplitude of the first nonlinear resonance becomes 

smaller and the first nonlinear resonance frequency is 

higher. Especially, the thermal effect on the nonlinear 

vibration properties becomes more and more severe with 

the temperature increasing. With the increase of the ply-

angle, both the displacement amplitude and the 

nonlinear resonance frequency of the composite 

laminated trapezoidal plates increase. 
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Appendix A 
 

The mass matrix, the stiffness matrices and the 

temperature induced force vector in Eq. (9) are assembled 

by the corresponding element matrices and element vectors. 

The mass matrix, the stiffness matrices and the temperature 

induced force vector for an element are presented in the 

following.  

The mass matrix of the element is given by 

0

0

uu ubx

e

vv vby

bxu byv bxbx byby bb

M M

M M M

M M M M M

 
 

     
   

, 

where 

    
T

uu u u

v

M H H dv  , 

   
 

T

w

ubx u

v

H
M H z dv

x



 


, 

 
 

 
Tw

bxu u

v

H
M z H dv

x



 


, 

 
   2

T

w w

bxbx

v

H H
M z dv

x x


 


 
, 

    
T

vv v v

v

M H H dv 
, 

 
 

T

w

vby v

v

H
M H z dv

y



     

, 

 
 

Tw

byv v

v

H
M z H dv

y



     

, 

   2

T

w w

byby

v

H H
M z dv

y y


 
     

, 

    
T

bb w w

v

M H H dv 
. 

The linear stiffness matrix of the element can be written 

as 

00 0

0

be

l

b bb

K K
K

K K

 
     

 

, 

where 

      00 0 0

T

A

K D A D dA 
, 

      0 0

T

b b

A

K D B D dA 
, 

      0 0

T

b b

A

K D B D dA 
, 

      
T

bb b b

A

K D C D dA 
, 

in which  

 0

0

0

T

u

T

v

T T

u v

H

x

H
D

y

H H

y x

 
 
 

 
  

 
  
 
   

, 

 

2

2

2

2

2

2

T

w

T

w
b

T

w

H

x

H
D

y

H

x y

 
 

 
 

  
 

 
 

   

, 

          





n

k

z

z

k

k

dzzzQCBA
1

2

1

1,, , 

where zk and zk-1 are the coordinates of the upper and lower 

surfaces of the kth lamina in the z-direction. 

The nonlinear stiffness matrix of the element is given by 

0

0

0 le

nl

l ll

K
K

K K

 
     

 

, 

where 

       0 0 1 2

1

2

T

l l l

A

K D A D D dA 
, 

        0 2 1 0

T T

l l l

A

K D D A D dA 
, 

 

     

      

       

1 2

2 1

2 1 1 2

1

2

1

2

T

b l l

T T

ll l l b

A
T T

l l l l

D B D D

K D D B D dA

D D A D D

 
 

 
  
 
 
 
 


, 

in which  

 

 

 

   

1

0

0

T

w
b

T

w
l b
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w w
b b

H
w

x

H
D w

y

H H
w w

y x

 
 
 

 
  

 
  
 
   

, 

 2

T

w

l T

w

H

x
D

H

y

 
 
 
 
 
 

. 

The thermal stiffness matrix of the element can be 

expressed as 

   0

0 0

0

e

t

bt bt

K
K K

 
       

, 

where 

        2 11 2

T T

bt l T l t b

v

K D Q D H T dv    , 

      0 2 11 2 0

T

bt l T l

v

K D Q D T dv    , 

in which 

11 31

11

31 21

T T

T

T T

Q Q
Q

Q Q

 
     

 

, 

where 
11TQ , 

21TQ  and 
31TQ  are the row vectors of the 

elasticity matrix ][Q  of the composite laminated plate in 

the global coordinate system as can be seen in Eq. (4). The 
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elasticity matrix ][Q  is given by 

11

21

31 3*3

T

T

T

Q

Q Q

Q

 
 

     
 
 

. 

The temperature induced force vector of the element is 

given by 

   0 0 0

0

0

t te

t b

bt bt

F F
F T T

F F

   
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   

, 

where 

     0 0

T T

t T t

v
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T
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v
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v
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Appendix B 
 

The heat-transfer matrices and the thermal load vectors 

in Eq. (14) are assembled by the corresponding element 

matrices and element vectors. The heat-transfer matrices 

and the thermal load vectors of the element are presented 

below. 

The heat-transfer matrices of the element can be written 

as 

   e

tx ty tzK K K K       
, 

  
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1
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

    
, 
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2
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, 

 
 

  
e

Tt

tx x t

V

H
K H dV

x x
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e
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V

H
K H dV

y y


 
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, 

 
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e

Tt
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V

H
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z z


 


 
, 

where Σ123 and Σ456 represent the areas of the upper and the 

lower surfaces of the triple prism element. 

The thermal load vectors of the element are given by 

   
123

1

e

t tF H dxdy


  , 

   
456

2

e

t tF H dxdy


  . 
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