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1. Introduction 
 

Functionally graded plates are widely used in the 

aerospace, aircrafts, automotive industry, marine and other 

structural applications because of advantageous features 

such as to eliminates the interface problems of conventional 

composite materials and thus the stress distribution 

becomes smooth (Li et al. 2008). In company with the 

increase in the application of functionally graded plates in 

engineering structures, a variety of plates theories have 

been developed to predict its behavior. A critical review of 

more recent works on the development of plates theories 

can be found in (Ghugal and Shimpi 2002, Sayad and 

Ghugal 2016). These plate theories can be divided into three 

following categories, classical plate theory (CPT), first-

order shear deformation plate theory (FSDT) and higher-

order plate theory (HSDT). The CPT ignores shear 

deformation effects and provides reasonable results for thin 

plates and gives acceptable results for functionally graded 

(FG) thin structures (plates) only (Abrate 2008, Arefi 2015, 

Pradhan and Chakraverty 2015a, Darilmaz 2015). However, 
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it underestimates deflection and overestimates buckling 

load and frequency of moderately thick or thick plates 

(Ghugal and Shimpi 2002). The FSDT accounts for the 

transverse shear deformation effect by the way of linear 

variation of in-plane displacement through the thickness 

and gives acceptable results for moderately thick and thin 

plates, but needs a shear correction factor which is hard to 

find as it depends on the geometries, material properties and 

boundary conditions of each problem (Ferreira et al. 2009, 

Adda Bedia et al. 2015, Bellifa et al. 2016, Bouderba et al. 

2016). A shear correction factor is required to compensate 

for the difference between actual stress state and assumed 

constant stress state (Castellazzi et al. 2013). Hosseini-

Hashemi et al. (2010) studied the free vibration of 

moderately thick rectangular FG plates resting on elastic 

foundations. Yaghoobi and Yaghoobi (2013) investigated 

the buckling analysis of FG sandwich plates resting on an 

elastic foundation based on the first-order shear 

deformation plate theory and under thermo-mechanical 

loads. Meksi et al. (2015) studied the bending and the free 

vibration of FG plates using a novel simple first-order shear 

deformation plate theory based on neutral surface position 

and supported by either Winkler or Pasternak elastic 

foundations. Chen et al. (2017) studied the thermal buckling 

and vibration of FG sandwich plates, including the effects 

of transverse shear deformation and rotary inertia. The 
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Abstract.  In this paper, a new simple shear deformation theory for bending analysis of functionally graded  plates is 

developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is 

capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and 

higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the 

functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution 

of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements 

and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are 

verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-

to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed 

theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with 

the other higher-order shear deformation theories which contain more number of unknowns. 
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HSDTs account for shear deformation effects by higher-

order variations of in-plane displacements or both in-plane 

and transverse displacements through the thickness, and do 

not required any shear correction factor and satisfy zero 

shear stress conditions at top and bottom surfaces of plates 

(Bourada et al. 2012, Bessaim et al. 2013, Ahouel et al. 

2016, Ait Amar Meziane et al. 2014, Ait Atmane et al. 

2015, Mahi et al. 2015, Ait Yahia et al. 2015, Attia et al. 

2015, Belabed et al. 2014, Larbi Chaht et al. 2015, 

Belkorissat et al. 2015, Bounouara et al. 2016, Bousahla et 

al. 2016, Bennoun et al. 2016, Beldjelili et al. 2016, 

Draiche et al. 2016, Bellifa et al. 2017, Benchohra et al. 

2017, El-Haina et al. 2017, Menasria et al. 2017, Meksi et 

al. 2017, Bouafia et al. 2017, Besseghier et al. 2017, 

Klouche et al. 2017, Zidi et al. 2017, Khetir et al. 2017). 

Zenkour (2006) studied the static behavior of a rectangular 

FG plate under simply supported condition and subjected to 

uniform transverse load based on the sinusoidal shear 

deformation theory. Pradhan and Chakraverty (2015b) 

expressed the trial functions as the linear combinations of 

simple algebraic polynomials to study free vibration of 

thick rectangular plates based on new inverse trigonometric 

shear deformation theories. Ait Atmane et al. (2010) 

analyzed free vibration of simply supported FG plates 

resting on a Winkler-Pasternak elastic foundation by a new 

hyperbolic shear deformation theory. Benyoucef et al. 

(2010) examined the static response of simply supported FG 

plates resting on an elastic foundation using a new 

hyperbolic displacement model. Bouderba et al. (2013) 

studied the thermo-mechanical bending response of FG 

plates resting on elastic foundations using a refined 

trigonometric shear deformation theory. Said et al. (2014) 

studies the bending response of functionally graded plates 

resting on a Winkler-Pasternak elastic foundation by 

employing the physical neutral surface concept. Taibi et al. 

(2015) presented a simple shear deformation theory for 

thermo-mechanical behaviour of functionally graded 

sandwich plates on elastic foundations. In (Li et al. 2016) a 

new refined plate theory for wave propagation analysis of 

simply supported functionally graded plate with only four 

unknown functions was developed. Bending behaviour of 

laminated composite flat panel under hygro-thermo-

mechanical loading was presented by Kar et al. (2015) 

using higher-order plate theory (HSDT).  Mehar and 

Panda (2016) investigated the non-linear bending behavior 

of functionally graded carbon nanotube reinforced 

composite (FG-CNTRC) flat panel under the thermo-

mechanical load based on the higher order shear 

deformation theory. The same membrane analogy was later 

applied to the analyses of functionally graded carbon 

nanotube reinforced composite (FG-CNTRC) plates and 

shells under thermal and mechanical load (Mehar et al. 

2016, Mehar and Panda 2017a, b, Mehar et al. 2017, 

Mahapatra et al. 2017). This work aims to develop a new 

simple shear deformation theory for the bending response of 

FG plates resting on a Winkler-Pasternak elastic foundation. 

The most interesting feature of this theory is that it accounts 

for a parabolic variation of the transverse shear strains 

across the thickness and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate  

 

Fig. 1 Coordinate system and geometry for rectangular FG 

plates on Pasternak elastic foundation 

 

 

without using shear correction factors. The proposed theory 

contains fewer unknowns and equations of motion than the 

first-order shear deformation theory. Indeed, unlike the 

previous mentioned theories, the number of variables in the 

present theory is same as that in the CPT. Equations of 

motion are obtained by utilizing the principle of virtual 

displacements. In this study, analytical of bending solutions 

are obtained for a simply supported isotropic and FG plate 

and accuracy is verified by comparing the obtained results 

with those reported in the literature. 

 
 
2. Theoretical formulation 
 

Consider a solid rectangular plate of length a, width b 

and thickness h made of functionally graded material with 

the coordinate system as shown in Fig. 1. It is assumed to 

be rested on a Winkler-Pasternak type elastic foundation 

with the Winkler stiffness of kw and shear stiffness of ks. 

The material properties of the FGM plate, such as Young’s 

modulus E is assumed to be function of the volume fraction 

of constituent materials. Let the FG plate be subjected to a 

transverse load q(x,y). Unlike the previous mentioned 

theories, the number of unknown functions involved in the 

present theory is only three as in CPT. 

 

2.1 Kinematics of the present plate model 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at a 

point (x, y, ±h/2) on the outer (top) and inner (bottom) 

surfaces of the plate, is given as follows (Houari et al. 2016, 

Mouffoki et al. 2017) 
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(1) 

where u0, v0 and w0 are three unknown displacement 

functions of midplane of the plate and β is a parameter of 

the present displacement model. f(z) is a shape function 

representing the distribution of the transverse shear strains 
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and shear stresses through the thickness of the plate and is 

given as (Nguyen et al. 2014, Nguyen et al. 2015) 
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The nonzero linear strains related to displacement field 

in Eq. (1) are 
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where 
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2.2 Constitutive relations 

 
The plate is graded from aluminium (bottom) to alumina 

(top). The mechanical properties of FGM are determined 

from the volume fraction of the material constituents. 

Young’s modulus, E, is assumed to vary in the thickness 

direction based on the Voigt’s rule over the whole range of 

the volume fraction. The effective material properties of 

FGM with two constituents can be expressed as (Fahsi et al. 

2017, Sekkal et al. 2017, Tounsi et al. 2013, Boukhari et al. 

2016, Bourada et al. 2015, Meradjah et al. 2015, Hamidi et 

al. 2015, Hebali et al. 2014, Zidi et al. 2014, Bousahla et al. 

2014, Fekrar et al. 2014) 
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where (Em) and (Ec) are the corresponding properties of the 

metal and ceramic, respectively, and k is the volume 

fraction exponent which takes values greater than or equal 

to zero. The value of k equals to zero represents a fully 

ceramic plate. The above power-law assumption reflects a 

simple rule of mixtures used to obtain the effective 

properties of the ceramic-metal plate. 

The constitutive relations of a FG plate can be expressed 

as 
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(7) 

where (ζx, ζy, ηyz, ηxz, ηxy) and (εx, εy, γyz, γxz, γxy) are the stress 

and strain components, respectively. The stiffness 

coefficients, Cij, can be expressed as 
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2.3 Governing equations 
 
The governing equations can be obtained using the 

principle of virtual displacements. The principle can be 

stated in the following form 



   0

2

2







 










ddwfqdzd 

     

exzxz

h

h

yzyzxyxyyyxx

 (9) 

Substituting Eqs. (3), (1) and (6) into Eq. (9) and 

integrating through the thickness of the plate, Eq. (9) can be 

rewritten as 
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(10) 

where Ω is the area of top surface and fe is the density of 

reaction force of foundation. For the Pasternak foundation 

model 
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where kw is the modulus of subgrade reaction (elastic 

coefficient of the foundation) and ksx and ksy are the shear 

moduli of the subgrade (shear layer foundation stiffness). If 

foundation is homogeneous and isotropic, we will get ksx= 

ksy=ks. If the shear layer foundation stiffness is neglected, 

Pasternak foundation becomes a Winkler foundation. 

In which the stress resultants N, M, S and Q are defined 

by 

(8b) 
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The governing equations can be obtained from Eq. (10) 

by integrating the displacement gradients by parts and 

setting the coefficients δu0, δv0 and δw0 zero separately. 

Thus one can obtain the equilibrium equations associated 

with the present shear deformation theory 

0

2:

0:

0:

3

3

3

3

4

4

3

4

3

4

4

4

2

22

2

2

0

0

0


































































qf
y

Q
          

x

Q

y

S

xy

S

yx

S
           

x

S

y

M

yx

M

x

M
   w 

y

N

x

N
   v 

y

N

x

N
   u 

e

yz

xzyxyxy

xyxyx

yxy

xyx











 

(13) 

 

2.4 Governing equations in terms of displacements 
 

By substituting Eq. (3) into Eq. (6) and the subsequent 

results into Eq. (12), the stress resultants can be written as 

below 
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where 
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By substituting Eq. (14) into Eq. (13), the governing 

equations can be written in terms of generalized 

displacements (u0, v0 and w0) as 
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(16c) 

 
 
3. Analytical solutions 
 

The above governing equations are analytically solved 
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for bending problems of a simply supported rectangular FG 

plate. Based on Navier solution procedure, the 

displacements are assumed as follows (Reddy 1984, 

Zenkour 2006) 
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 (17) 

where λ=mπ/a, μ=nπ/b, (Umn, Vmn, Wmn) are the unknown 

maximum displacement coefficients. The transverse load q 

is also expanded in the double-Fourier sine series as (Reddy 

1984, Zenkour 2006) 
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The coefficients qmn for the case of uniformly distributed 

load (UDL) are defined as follows 

 

abq
qmn

016
 ,   ,......5,3,1, nm  (19) 

where q0 represents the intensity of the load at the plate 

centre. 

For the case of a sinusoidally distributed load (SDL), we 

have 

1 nm  and 
011 qq   (20) 

Substituting Eqs. (17) and (18) into Eq. (16), the 

analytical solutions can be obtained from 
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(22) 

One can easily obtain the value of the coefficient β in 

the same way as described by Mouffoki et al. (2017).  

 
 
4. Numerical results 

Table 1 Comparison of nondimensional deflection w


 of 

simply supported isotropic thin square plate under 

uniformly distributed load (a/h=100) 

Kw Ks 

w


 

Present 
Benyoucef et 

al. (2010) 

3D Huang et al. 

(2008) 

Lam et al. 

(2000) 

1 

1 3.8000 3.8550 3.8546 3.853 

34 0 .7610 0.7630 0.7630 0.763 

54 0 .1153 0.1153 0.1153 0.115 

34 

1 3.1720 3.2108 3.2105 3.210 

34 0.7300 0.7317 0.7317 0.732 

54 0 .1145 0.1145 0.1145 0.115 

54 

1 1.4688 1.4765 1.4765 1.476 

34 0 .5693 0.5704 0.5704 0.570 

54 0.1094 0.1095 0.1095 0.109 

 

 

In this section, various numerical examples are 

presented and discussed to verify the accuracy of the 

present theory in predicting the bending responses of simply 

supported isotropic and FG plates resting on elastic 

foundation. The FG plate is taken to be made of Titanium 

and Zirconia with the following material properties: 

- Metal (Titanium, Ti-6Al-4V): Em=66.2 GPa; v=1/3  

- Ceramic (Zirconia, ZrO2): Ec=117 GPa; v=1/3. 

The various non-dimensional parameters used are: 
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where D=Eh
3
/12(1−v

2
) is a reference bending rigidity of the 

plate. 

In order to validate the present formulations, numerical 

results for bending of a isotropic thin plate (k=1, a/h=100, 

v=0.3) are compared to that obtained by Lam et al. (2000) 

using Green’s functions, the three-dimensional solutions 

given by Huang et al. (2008) and the hyperbolic shear 

deformation plate theory with five variable given by 

Benyoucef et al. (2010). The plate is assumed subjected to 

uniform load on the top surface and the results for the 

central deflection of the plate are given in Table 1.  

For all values of foundation parameters Kw; Ks it can be 

seen that the results are in close agreement. 

Table 2 shows the comparison of nondimensional 

deflections and stresses of simply supported 

Ti−6Al−4V/Zr02 
rectangular plate on elastic foundation 

subjected to mechanical sinusoidal distributed load (a=10 h, 

b=2a, q0=100). It can be seen that the results of present 

theory are in excellent agreement with those of (RSDPT) 

refined sinusoidal shear deformation plates theory with four 

variable only given by Bouderba et al. (2013) for all values 

of the volume fraction exponent ratio k and elastic 

foundation parameters Kw; Ks. 

It can be observed that the non-dimensional deflection  
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Table 2 Effect of the volume fraction exponent and elastic 

foundation parameters on the dimensionless and stresses of 

an FGM rectangular plate under sinusoidal load. (a=10 h, 

b=2a, q0=100)  

k K0 K1 theory w  x
 xy

 xz
 

0 

0 0 
Present 0.65311 0.42224 0.87508 0.40152 

RSDPTa 0.68131 0.42424 0.86240 0.39400 

100 0 
Present 0.39508 0.25542 0.52936 0.24289 

RSDPTa 0.40523 0.25233 0.51296 0.23435 

0 100 
Present 0.083211 0.053797 0.11149 0.051157 

RSDPTa 0.083654 0.052093 0.10589 0.048377 

100 100 
Present 0.076819 0.049665 0.102928 0.047227 

RSDPTa 0.077197 0.048071 0.097724 0.044643 

0.5 100 100 
Present 0.078404 0.047337 0.086092 0.040310 

RSDPTa 0.078729 0.045788 0.081728 0.038066 

1 100 100 
Present 0.079017 0.046427 0.076996 0.037089 

RSDPTa 0.079321 0.044892 0.073054 0.035023 

2 100 100 
Present 0.079467 0.046129 0.070882 0.034086 

RSDPTa 0.079758 0.044595 0.067185 0.032215 

5 100 100 
Present 0.079872 0.047319 0.067740 0.031644 

RSDPTa 0.080150 0.045736 0.064125 0.029922 

∞ 100 100 
Present 0.080953 0.029613 0.061372 0.028160 

RSDPTa 0.081190 0.050559 0.058148 0.026565 

a
Taken from Bouderba et al. (2013) 

 

 
Fig. 2 Effect of Winkler modulus parameter Kw on the 

dimensionless center deflection ( w ) of a square FG plate 

(k=2) for different side-to-thickness ratio a/h=10with Ks=10 

 

 

and stresses are decreasing with the existence of the elastic 

foundations Kw; Ks. The inclusion of the Winkler foundation 

Kw parameter gives results more than those with the 

inclusion of Pasternak foundation parameters Ks. The 

deflection will increase as the volume fraction exponent k 

increases. The stresses are also influenced to the variation 

of the volume fraction exponent k, which means that the 

plate can be optimally design according to given working 

conditions by tailoring the graded material properties. 

Figs. 2-9 show the effect of foundation stiffness on the 

dimensionless deflection, normal, shear and longitudinal 

tangential stress (k=2) in a square FG plate under a 

sinusoidally distributed load. They depict the variation of 

 
Fig. 3 Effect of Pasternak shear modulus parameter Ks on 

the dimensionless center deflection ( w ) of a square FG 

plate (k=2) for different side-to-thickness ratio a/h=10 with 

Kw=100 

 

 
Fig. 4 Variation of dimensionless axial stress (

x ) through-

the-thickness of a square FG plate (k=2) for different values 

of Winkler modulus parameter Kw with Ks=10 and a/h=10 

 

 

the center deflection w with the side-to-thickness a/h and 

shows across the-thickness distributions of the shear stress

xz , the in-plane longitudinal normal stress 
x , and the 

longitudinal tangential stress
xy . 

Figs. 2 and 3 show the effect of foundation stiffness and 

side-to-thickness ratio a/h on the dimensionless deflection 

of FG square plate (k=2).The deflection decreases with the 

increase of a/h ratios. It is maximum for the metallic plate 

and minimum for the ceramic plate. The deflections 

decrease gradually as either Kw or Ks increases. Decreases 

of deflection indicate that increasing the foundation 

stiffness will certainly enhance the deformation rigidity of 

the plate.  

As plotted in Figs. 4 and 5, the in-plane longitudinal 

normal stress 
x  is compressive in the plate up to z

=0.051, and then it becomes tensile. The maximum 

compressive stress occurs at a point on the bottom surface 

of FG plate, but the maximum tensile one at a point on the 

top surface. In addition, it can be seen that the elastic 

foundation has a significant effect on the maximum values 
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Fig. 5 Variation of dimensionless axial stress (

x ) through-

the-thickness of a square FG plate (k=2) for different values 

of Pasternak shear modulus parameter Ks with Kw=100 and 

a/h=10 

 

 
Fig. 6 Variation of dimensionless longitudinal tangential 

stress (
xy ) through-the-thickness of a square FG plate 

(k=2) for different values of Winkler modulus parameter Kw 

with Ks=10 and a/h=10 

 

 

of the axial stress, 
x . 

Also, it is observed that the effect of Pasternak shears 

modulus parameter is more significant than Winkler 

modulus parameter and the axial stress 
x increases 

gradually with decreasing Kw or Ks. 

Figs. 6 and 7 depict the through-the-thickness 

distributions of the longitudinal tangential stress 
xy  in the 

FG square. In this case, the tensile and compressive values 

of the longitudinal tangential stress, 
xy , is maximum at a 

point on the bottom and top surfaces of the FG plate, 

respectively. 

It is clear that the minimum value of zero for the axial 

stress x and the longitudinal tangential stress 
xy  occurs 

at z =0.051. 

Figs. 8 and 9 show the distributions of the shear stresses 

in the square FG plate under sinusoidal distributed load. It 

is seen that the transverse shear stress xz  are not parabolic 

in the FG plate and the stresses increases gradually as either 

 
Fig. 7 Variation of dimensionless longitudinal tangential 

stress (
xy ) through-the-thickness of a square FG plate 

(k=2) for different values of Pasternak shear modulus 

parameter Ks with Kw=100 and a/h=10 

 

 
Fig. 8 Variation of dimensionless shear stress (

xz ) through-

the-thickness of a square FG plate (k=2) for different values 

of Winkler modulus parameter Kw with Ks=10 and a/h=10 

 

 
Fig. 9 Variation of dimensionless shear stress (

xz ) through-

the-thickness of a square FG plate (k=2) for different values 

of Pasternak shear modulus parameter Ks with Kw=100 and 

a/h=10 
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Kw or Ks decreases, which indicates that increased moduli of 

the elastic foundation can enhance the bending rigidity of 

the plate. 

It is to be noted that the maximum value the transverse 

shear stress xz  of occurs at z =0.1, not at the center of 

plate as in the homogeneous case. 
 

 

5. Conclusions 
 

The bending response of FG plates resting on a elastic 

foundation is developed using a new 3-unknowns shear 

deformation plates theory. The present theory has only three 

unknown and three governing equation as in the classical 

plate theory, but it is capable of accurately capturing shear 

deformation effects, instead of five as in the well-known 

higher-order shear deformation theory (HSDT).The theory 

gives parabolic distribution of transverse shear strains, and 

satisfies the zero traction boundary conditions on the 

surfaces of the plate without using shear correction factors. 

The gradation of properties through the thickness is 

assumed to be of the power law distribution of the volume 

fraction of the constituents. Results show that the proposed 

theory is not only accurate and simple in solving the 

bending behaviour of FG plates, but also comparable with 

the other higher-order shear deformation theories which 

contain more number of unknowns and so deserve special 

attention and offer potential for future research.  
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