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Abstract.    This work presents a bending, buckling, and vibration analysis of functionally graded plates by 
employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is 
even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike 
the conventional HSDT, the present one has a new displacement field which introduces undetermined integral 
variables. Equations of motion are obtained by utilizing the Hamilton’s principles and solved via Navier’s procedure. 
The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the 
efficacy of the model. 
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1. Introduction 
 

In 1984, the concept of functionally graded materials (FGMs) was first proposed. FGM is a 
class of composite material in which material characteristics continuously change between two 
surfaces, thus eliminating the stress concentration phenomenon, which is a characteristic 
phenomenon found in laminated composite materials. FGMs are widely used in many engineering 
applications such as spacecraft industry, mechanics, civil engineering, aerospace, nuclear, 
automotive and so on (Lu et al. 2009, Liang et al. 2014, 2015, Bouguenina et al. 2015, Pradhan 
and Chakraverty 2015, Sofiyev and Kuruoglu 2015, Kar and Panda 2015, Kirkland and Uy 2015, 
Ebrahimi and Dashti 2015, Ebrahimi and Habibi 2016, Cunedioglu 2015, Meradjah et al. 2015, 
Bouguenina et al. 2015, Darılmaz 2015, Bellifa et al. 2016). Presenting new characteristics, FGMs 
have also attracted intensive research interests, which were mainly focused on their bending, 
buckling and vibration characteristics of functionally graded (FG) structures (Neves et al. 2013, 
Eltaher et al. 2013a, b, 2014a, b, Swaminathan and Naveenkumar 2014, Bousahla et al. 2014, 
Akbaş 2015, Tung 2015, Ait Yahia et al. 2015, Bourada et al. 2015, Ait Amar Meziane et al. 2014, 
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Al-Basyouni et al. 2015, Arefi 2015, Belabed et al. 2014, Larbi Chaht et al. 2015). Indeed, many 
computational theories have been proposed for investigating the behavior of FG structures. In 
general, these mathematical models can be defined into three main categories: classical plate 
theory (CPT); first-order shear deformation theory (FSDT); and higher-order shear deformation 
theory (HSDT). 

The CPT, which ignores the transverse shear deformation influences, produces reasonable 
results for thin plates. The CPT has been employed for the bending, buckling, and vibration 
investigations of plates via analytical formulation (Leissa 1973, Leissa and Kang 2002, Kang and 
Leissa 2005) and numerical formulation (Eisenberger and Alexandrov 2003, Wang et al. 2006, Liu 
and Li 2010). For moderately thick plates, the CPT under-predicts deflections and over-predicts 
buckling loads as well as natural frequencies. The FSDT considers the transverse shear 
deformation influence, but introduces a shear correction parameter to respect the free transverse 
shear stress conditions on the external surfaces of the plate (Della Croce and Venini 2004, 
Ganapathi et al. 2006, Zhao and Liew 2009, Zhao et al. 2009, Lee et al. 2010, Hosseini-Hashemi 
et al. 2010, 2011a). Although the FSDT predicts a reasonable description of behavior for thin to 
moderately thick plates, it is not practical to employ due to difficulty in assessing of correct value 
of the shear correction parameter. To overcome the employ of shear correction parameter, many 
HSDTs were proposed with the pretention of nonlinear distributions of in-plane displacements 
within the plate thickness, notable among them are Reddy (2000), Karama et al. (2003), Xiao et al. 
(2007), Matsunaga (2008), Pradyumna and Bandyopadhyay (2008), Fares et al. (2009), Talha and 
Singh (2010, 2011), Bouderba et al. (2013), Hebali et al. (2014), Mahi et al. (2015), Bennai et al. 
(2015), Xiang et al. (2011), Tounsi et al. (2013), Zidi et al. (2014), Bounouara et al. (2016), 
Bousahla et al. (2016), Boukhari et al. (2016) and Bouderba et al. (2016). Carrera et al. (2010) 
presented refined and advanced models for multilayered plates and shells embedding functionally 
graded material layers. Cinefra and Soave (2011) proposed an accurate vibration analysis of 
multilayered plates made of functionally graded materials. Ait Atmane et al. (2015) presented a 
computational shear displacement model for vibrational analysis of FG beams with porosities. 
Akavci (2015) presented an efficient shear deformation theory for free vibration of FG thick 
rectangular plates on elastic foundation. Using various four variable refined plate theories, Attia et 
al. (2015) studied the free vibration analysis of FG plates with temperature-dependent properties. 
Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick FG 
plates resting on elastic foundations. Beldjelili et al. (2016) analyzed the hygro-thermo-mechanical 
bending response of S-FGM plates resting on variable elastic foundations using a four-variable 
trigonometric plate theory. Belkorissat et al. (2015) discussed the vibration properties of FG nano-
plate using a new nonlocal refined four variable model. Hamidi et al. (2015) developed a 
sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of 
FG sandwich plates. Bennoun et al. (2016) presented a novel five variable refined plate theory for 
dynamic analysis of FG sandwich plates. Recently, Tounsi et al. (2016) proposed a new 3-
unknowns non-polynomial plate theory for buckling and vibration of FG sandwich plate. In the 
same way, Houari et al. (2016) proposed also a novel simple three -unknown sinusoidal shear 
deformation theory for FG plates. 

In the present work, a new displacement field is proposed by considering higher-order 
variations of in-plane displacements through the plate thickness and the novel constructed 
displacement field is applied to investigate the bending, buckling, and vibration response of FG 
plates. The incorporation of the integral term in the plate kinematics led to a reduction in the 
number of variables and equations of motion. Numerical results are considered to check the 
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accuracy of the developed theory in predicting the bending, buckling, and vibration behaviors of 
FG plates. 
 
 
2. Theory and formulation 
 

The FG plate is composed by a mixture of ceramic and metal components whose material 
characteristics change across the plate thickness with a power law distribution of the volume 
fractions of the constituents of the two materials as 

 

 
p

mcm h

z
PPPzP 






 

2

1
)(  (1)

 
where P denotes the effective material characteristic such as Young’s modulus E and mass density 
ρ subscripts m and c denote the metallic and ceramic components, respectively; and p is the power 
law exponent. The value of p equal to zero indicates a fully ceramic plate, whereas infinite p 
represents a fully metallic plate. Since the influences of the variation of Poisson’s ratio v on the 
behavior of FG plates are very small (Yang et al. 2005, Kitipornchai et al. 2006), it is supposed to 
be constant for convenience. 

 
2.1 Kinematics and strains 
 

In this article, further simplifying supposition are made to the conventional HSDT so that the 
number of unknowns is reduced. The displacement field of the conventional HSDT is given by 
(Bouchafa et al. 2015) 
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where u0; v0; w0, φx, φy are five unknown displacements of the mid-plane of the plate, f(z) denotes 
shape function representing the variation of the transverse shear strains and stresses within the 

thickness. By considering that  dxyxx ),(  and ,),( dyyxy  the displacement field of 

the present model can be expressed in a simpler form as (Bourada et al. 2016) 
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In this work, the present higher-order shear deformation plate theory is obtained by setting 
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It can be seen that the displacement field in Eq. (3) introduces only four unknowns (u0, v0, w0 
and θ). The nonzero strains associated with the displacement field in Eq. (3) are 
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where 
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The integrals defined in the above equations shall be resolved by a Navier type method and can 
be written as follows 
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where the coefficients A′ and B′ are expressed according to the type of solution used, in this case 
via Navier. Therefore, A′, B′, k1 and k2 are expressed as follows 
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where α and β are defined in expression (24). 
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For elastic and isotropic FGMs, the constitutive relations can be expressed as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (1), stiffness coefficients, Cij, can be given as 
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2.2 Equations of motion 
 

Hamilton’s principle is herein utilized to determine the equations of motion 
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where δU is the variation of strain energy; δV is the variation of the external work done by external 
load applied to the plate; and δK is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants N, M, and S are defined by 
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The variation of the external work can be expressed as 
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where q and ),,( 000
xyyx NNN  are transverse and in-plane applied loads, respectively. 

The variation of kinetic energy of the plate can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density given by Eq. (1); and (Ii, Ji, Ki) are mass inertias expressed by 
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By substituting Eqs. (12), (14) and (15) into Eq. (11), the following can be derived 
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Substituting Eq. (5) into Eq. (9) and the subsequent results into Eqs. (13), the stress resultants 
are obtained in terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (18) into Eq. (17), the equations of motion can be expressed in terms of 
displacements (u0, v0, w0, θ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential operators 
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2.3 Analytical solution for simply-supported FG plates 
 
The Navier solution method is employed to determine the analytical solutions for which the 

displacement variables are written as product of arbitrary parameters and known trigonometric 
functions to respect the equations of motion and boundary conditions 
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where ω is the frequency of free vibration of the plate, 1i  the imaginary unit. 
with 

am /   and bn /   (24)
 
The transverse load q is also expanded in the double-Fourier sine series as 
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where 
 







   load ddistributeuniformly for  
16

load ddistributelly sinusolidafor  
 ) sin() sin(),(

4

2
0

0

0 0 


mn

q
q

dxdyyxyxq
ab

Q
a b

mn  (26)
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3. Numerical examples and discussions 
 

In this section, various numerical examples are presented and discussed to check the accuracy 
of present HSDT in investigating the bending, buckling, and vibration behaviors of simply 
supported FG plates. For proposed examples, an Al/Al2O3 plate fabricated of aluminum (as metal) 
and alumina (as ceramic) is examined. The Young’s modulus and density of aluminum are Em = 70 
GPa and ρm = 2702 kg/m3, respectively, and those of alumina are Ec = 380 GPa and ρc = 3800 
kg/m3, respectively. For validation purpose, the computed quantities are compared with those 
reported utilizing various existing plate models. The description of various plate theories is 
illustrated in Table 1. In all examples, a shear correction coefficient of 5/6 is employed for FSDT 

481



 
 
 
 
 
 

Habib Hebali, Ahmed Bakora, Abdelouahed Tounsi and Abdelhakim Kaci 

Table 1 Displacement models 

Model Theory Unknowns 

CPT Classical plate theory 3 

FSDT First-order shear deformation theory 5 

TSDT Third-order shear deformation theory 5 

HySDT Hyperbolic shear deformation theory 5 

SSDT Sinusoidal shear deformation theory 5 

Present New higher shear deformation theory 4 

 
 

and the rotary inertias are incorporated in all models. The Poisson’s ratio of the plate is considered 
to be constant across the thickness and equal to 0.3. For convenience, the following dimensionless 
quantities are employed in illustrating the numerical results in graphical and tabular form 
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3.1 Bending problem 
 
Example 1: Table 2 presents the comparison of non-dimensional transverse displacements and 

stresses of square FG plate subjected to uniformly distributed load (a / h = 10). The computed 
results are compared with those reported by Zenkour (2006) based on sinusoidal shear deformation 
theory (SSDT). It can be observed that a good agreement is demonstrated for all values of power 
law exponent p. It should be signaled that the developed novel HSDT involves four variables as 
against five in case of SSDT (Zenkour 2006). 

 
Example 2: The second example is performed for square FG plate subjected to sinusoidally 

distributed load (a / h = 10). In Table 3 the comparison of non-dimensional deflections and stresses 
determined by present model with those provided by Benyoucef et al. (2010) based on the 
hyperbolic shear deformation theory (HySDT) is carried out. It can be confirmed that an excellent 
agreement is proved for all values of power law exponent p. It is remarked that the stresses for a 
fully ceramic plate are identical to those for a fully metal plate. This is due to the fact that the 
structure for these two cases is fully homogenous and the non-dimensional stresses are not related 
to the value of the elastic modulus. 

To demonstrate the validity of the present model for large range of power law exponent and 
thickness ratio a / h, the variations of non-dimensional transverse displacement w  as a function of 
the power law index p and thickness ratio a / h are shown in Figs. 1 and 2 respectively, for square 
FG plate under sinusoidally distributed load. The curves determined from the proposed model are 
compared with the curves determined of the CPT and the TSDT developed by Reddy (2000). 
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Table 2 Comparison of non-dimensional deflection and stresses of square plate 
under uniformly distributed load (m, n = 100 term series, a = 10 h) 

p Method w  x  y  xy  yz  xz  

Ceramic 
SSDT (a) 0.4665 2.8932 1.9103 1.2850 0.4429 0.5114 

Present 0.4666 2.8917 1.9107 1.2850 0.4422 0.4975 

1 
SSDT (a) 0.9287 4.4745 2.1962 1.1143 0.5446 0.5114 

Present 0.9288 4.4720 2.1697 1.1143 0.5437 0.4975 

2 
SSDT (a) 1.1940 5.2296 2.0338 0.9907 0.5734 0.4700 

Present 1.1940 5.2262 2.0345 0.9909 0.5700 0.4552 

3 
SSDT (a) 1.3200 5.6108 1.8593 1.0047 0.5629 0.4367 

Present 1.3197 5.6066 1.8603 1.0050 0.5570 0.4211 

4 
SSDT (a) 1.3890 5.8915 1.7197 1.0298 0.5346 0.4204 

Present 1.3884 5.8868 1.7209 1.0302 0.5276 0.4042 

5 
SSDT (a) 1.4356 6.1504 1.6104 1.0451 0.5031 0.4177 

Present 1.4349 6.1454 1.6117 1.0456 0.4959 0.4011 

6 
SSDT (a) 1.4727 6.4043 1.5214 1.0536 0.4755 0.4227 

Present 1.4719 6.3991 1.5227 1.0541 0.4688 0.4060 

7 
SSDT (a) 1.5049 6.6547 1.4467 1.0589 0.4543 0.4310 

Present 1.5042 6.6494 1.4479 1.0593 0.4483 0.4143 

8 
SSDT (a) 1.5343 6.8999 1.3829 1.0628 0.4392 0.4399 

Present 1.5337 6.8946 1.3841 1.0632 0.4339 0.4234 

9 
SSDT (a) 1.5617 7.1883 1.3283 1.0620 0.4291 0.4481 

Present 1.5612 7.1332 1.3295 1.0666 0.4245 0.4319 

10 
SSDT (a) 1.5876 7.3689 1.2820 1.0694 0.4227 0.4542 

Present 1.5872 7.3638 1.2831 1.0698 0.4187 0.4393 

Metal 
SSDT (a) 2.5327 2.8932 1.9103 1.2850 0.4429 0.5114 

Present 2.5329 2.8917 1.9106 1.2850 0.4422 0.4975 
(a) Taken from Zenkour (2006) 

 
 
 

Table 3 Comparison of non-dimensional deflection and stresses of square plate 
under sinusoidally distributed load (a = 10 h) 

p Method w  x  y  xy  yz  xz  

Ceramic 
HySDT (a) 0.2960 1.9955 1.3121 0.7065 0.2132 0.2462 

Present 0.2960 1.9943 1.3124 0.7067 0.2121 0.2386 

1 
HySDT (a) 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462 

Present 0.5889 3.0850 1.4898 0.6111 0.2608 0.2386 

2 
HySDT (a) 0.7573 3.6094 1.3954 0.5441 0.2763 0.2265 

Present 0.7573 3.6067 1.3960 0.5442 0.2737 0.2186 
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Table 3 Continued 

p Method w  x  y  xy  yz  xz  

3 
HySDT (a) 0.8377 3.8742 1.2748 0.5525 0.2715 0.2107 

Present 0.8375 3.8709 1.2756 0.5526 0.2677 0.2024 

4 
HySDT (a) 0.8819 4.0693 1.1783 0.5667 0.2580 0.2029 

Present 0.8815 4.0655 1.1794 0.5669 0.2537 0.1944 

5 
HySDT (a) 0.9118 4.2488 1.1029 0.5755 0.2429 0.2017 

Present 0.9114 4.2447 1.1041 0.5758 0.2385 0.1930 

6 
HySDT (a) 0.9356 4.4244 1.0417 0.5803 0.2296 0.2041 

Present 0.9351 4.4201 1.0428 0.5806 0.2256 0.1954 

7 
HySDT (a) 0.9562 4.5971 0.9903 0.5834 0.2194 0.2081 

Present 0.9558 4.5928 0.9915 0.5836 0.2157 0.1994 

8 
HySDT (a) 0.9750 4.7661 0.9466 0.5856 0.2121 0.2124 

Present 0.9746 4.7619 0.9477 0.5858 0.2088 0.2037 

9 
HySDT (a) 0.9925 4.9303 0.9092 0.5875 0.2072 0.2164 

Present 0.9921 4.9261 0.9103 0.5878 0.2042 0.2078 

10 
HySDT (a) 1.0089 5.0890 0.8775 0.5894 0.2041 0.2198 

Present 1.0087 5.0849 0.8785 0.5896 0.2014 0.2114 

Metal 
HySDT (a) 1.6070 1.9955 1.3121 0.7065 0.2132 0.2462 

Present 1.6072 1.9943 1.3124 0.7067 0.2121 0.2386 
(a) Taken from Benyoucef et al. (2010) 
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Fig. 1 Comparison of the variation of non-dimensional deflection w  of square FG plate 

under sinusoidally distributed load versus power law index p (a / h = 5 h) 
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Fig. 2 Comparison of the variation of non-dimensional deflection w

 
of square FG 

plate under sinusoidally distributed load versus thickness ratio a / h 
 
 

It can be observed that the curves of present model and TSDT are almost identical, and the CPT 
underestimates the transverse displacement of plate. Since the transverse shear deformation 
influences are not included in CPT, the values of non-dimensional transverse displacement w  
computed by CPT are not affected by the variation of thickness ratio a / h (see Fig. 2). Thus, in 
general, the present model is successfully checked. 

 
3.2 Buckling problem 

 
Example 3: Table 4 presents the values of the non-dimensional buckling loads N̂  of isotropic 

plate (p = 0) under various loading cases for various values of aspect ratio a / b and thickness ratio 
h / b. The computed values are compared with the results reported by Shufrin and Eisenberger 
(2005) based on FSDT and TSDT. An excellent agreement is proved for all types ranging from 
moderately thick to very thick plates. 

 
 

Table 4 Comparison of non-dimensional critical buckling load N̂  of isotropic plate 
under different loading types (p = 0) 

a / b h / b Method 
Loading type (γ1, γ2) 

(1,0) (0,1) (1,1) 

1 

0.1 

FSDT (a) 3.7865 3.7865 1.8932 

TSDT (a) 3.7866 3.7865 1.8933 

Present 3.7866 3.7865 1.8933 

0.2 

FSDT (a) 3.2638 3.2637 1.6319 

TSDT (a) 3.2653 3.2653 1.6327 

Present 3.2653 3.2653 1.6327 

485



 
 
 
 
 
 

Habib Hebali, Ahmed Bakora, Abdelouahed Tounsi and Abdelhakim Kaci 

Table 4 Continued 

a / b h / b Method 
Loading type (γ1, γ2) 

(1,0) (0,1) (1,1) 

1 

0.3 

FSDT (a) 2.6533 2.6533 1.3266 

TSDT (a) 2.6586 2.6586 1.3293 

Present 2.6586 2.6586 1.3293 

0.4 

FSDT (a) 1.9196 1.9196 1.0513 

TSDT (a) 1.9550 1.9550 1.0567 

Present 1.9550 1.9550 1.0567 

1.5 

0.1 

FSDT (a) 4.0250 2.0048 1.3879 

TSDT (a) 4.0253 2.0048 1.3879 

Present 4.0253 2.0048 1.3879 

0.2 

FSDT (a) 3.3048 1.7941 1.2421 

TSDT (a) 3.3077 1.7946 1.2424 

Present 3.3077 1.7946 1.2424 

0.3 

FSDT (a) 2.5457 1.5267 1.0570 

TSDT (a) 2.5545 1.5285 1.0582 

Present 2.5545 1.5285 1.0582 

0.4 

FSDT (a) 1.9196 1.2632 0.8745 

TSDT (a) 1.9421 1.2670 0.8772 

Present 1.9421 1.2670 0.8772 

2 

0.1 

FSDT (a) 3.7865 1.5093 1.2074 

TSDT (a) 3.7866 1.5093 1.2075 

Present 3.7866 1.5093 1.2074 

0.2 

FSDT (a) 3.2637 1.3694 1.0955 

TSDT (a) 3.2654 1.3697 1.0958 

Present 3.2654 1.3697 1.0958 

0.3 

FSDT (a) 2.5726 1.1862 0.9490 

TSDT (a) 2.5839 1.1873 0.9498 

Present 2.6539c 1.1873 0.9498 

0.4 

FSDT (a) 1.9034 0.9991 0.7992 

TSDT (a) 1.9230 1.0015 0.8012 

Present 1.9230c 1.0015 0.8012 
(a) Taken from Shufrin and Eisenberger (2005) 

 
 
Figs. 3 and 4 present the variations of non-dimensional critical buckling load N  as a function 

of the power law exponent p and thickness ratio a / h, respectively, for square FG plate under 
biaxial compression. It is demonstrated that the present novel four variable refined plate theory and 
TSDT predict almost the same values, and CPT over-estimates the buckling loads of plate due to 
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Fig. 3 Comparison of the variation of non-dimensional critical buckling load N  of square 

FG plate under biaxial compression versus power law exponent p (a / h = 5) 
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Fig. 4 Comparison of the variation of non-dimensional critical buckling load N  of square 

plate under biaxial compression versus thickness ratio a / h 
 
 

neglecting transverse shear deformation influences. The difference between CPT and shear 
deformation models diminishes when the side-to-thickness ratio a / h increases (see Fig. 4). 

 

3.3 Free vibration problem 
 

Example 4: Table 5 presents the results of non-dimensional fundamental frequencies ̂  of 
square FG plate for various values of thickness ratio h / a and power law exponent p. The 
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computed data are compared with those calculated by and Hosseini-Hashemi et al. (2011a) based 
on FSDT and and Hosseini-Hashemi et al. (2011b) based on TSDT. It is concluded from Table 5 
that there is an excellent agreement between the results determined by present model, FSDT 
(Hosseini-Hashemi et al. 2011a), and TSDT (Hosseini-Hashemi et al. 2011b). 

 
Example 5: The comparison presented in Table 6 is performed to check the higher order modes 

of vibration. For this end, the first four non-dimensional frequencies   are given in Table 6 for 
rectangular FG plate (b = 2a) with different values of thickness ratio and power law exponent. The 
non-dimensional frequencies determined by employing the developed model and TSDT (2000) are 
compared with those reported by Hosseini-Hashemi et al. (2011a) based on FSDT. It is remarked 
that there is a good agreement between the values computed by the present model, FSDT 
(Hosseini-Hashemi et al. 2011a), and TSDT for all modes of vibration of thin to thick plates. 

 
 

Table 5 Comparison of non-dimensional fundamental frequency ̂  of FG plate 

a / h Method 
Power law exponent (p) 

0 0.5 1 4 10 

5 

FSDT (a) 0.2112 0.1805 0.1631 0.1397 0.1324 

HSDT (b) 0.2113 0.1807 0.1631 0.1378 0.1301 

Present 0.2113 0.1807 0.1631 0.1378 0.1301 

10 

FSDT (a) 0.0577 0.0490 0.0442 0.0382 0.0366 

HSDT (b) 0.0577 0.0490 0.0442 0.0381 0.0364 

Present 0.0577 0.0490 0.0442 0.0381 0.0364 

20 

FSDT (a) 0.0148 0.0125 0.0113 0.0098 0.0094 

HSDT (b) 0.0148 0.0125 0.0113 0.0098 0.0094 

Present 0.0148 0.0125 0.0113 0.0098 0.0094 
(a) Taken from Hosseini-Hashemi et al. (2011a) 
(b) Taken from Hosseini-Hashemi et al. (2011b) 

 
 

Table 6 Comparison of the first four non-dimensional fundamental frequencies   of 
rectangular FG plate (b = 2a) 

a / h Mode 
(m, n) 

Method 
Power law exponent ( p ) 

0 0.5 1 2 5 8 10 

5 

1 (1,1) 

FSDT (a) 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

TSDT 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407 

Present 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407 

2 (1,2) 

FSDT (a) 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

TSDT 5.2813 4.5180 4.0781 3.6805 3.3938 3.2964 3.2514 

Present 5.2813 4.5180 4.0781 3.6805 3.3938 3.2964 3.2514 

3 (1,3) 

FSDT (a) 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

TSDT 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055 

Present 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055 
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Table 6 Continued 

a / h Mode 
(m, n) 

Method 
Power law exponent ( p ) 

0 0.5 1 2 5 8 10 

5 4 (2,1) 

FSDT (a) 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518 

TSDT 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954 

Present 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954 

10 

1 (1,1) 

FSDT (a) 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

TSDT 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110 

Present 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110 

2 (1,2) 

FSDT (a) 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

TSDT 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368 

Present 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368 

3 (1,3) 

FSDT (a) 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

TSDT 9.1887 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575 

Present 9.1887 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575 

4 (2,1) 

FSDT (a) 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639 

TSDT 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821 

Present 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821 

20 

1 (1,1) 

FSDT (a) 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

TSDT 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619 

Present 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619 

2 (1,2) 

FSDT (a) 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

TSDT 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622 

Present 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622 

3 (1,3) 

FSDT (a) 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

TSDT 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690 

Present 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690 

4 (2,1) 

FSDT (a) 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166 

TSDT 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909 

Present 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909 
(a) Taken from Hosseini-Hashemi et al. (2011a) 

 
 
The variations of non-dimensional fundamental frequency   of square FG plate as a function 

of the power law exponent p and thickness ratio a / h are presented in Figs. 5 and 6, respectively. 
The curves plotted by using the present theory are compared with the curves plotted by employing 
the CPT and the TSDT (Reddy 2000). From this investigation can be observed that the resulting 
curves are very close to the curves plotted by employing a TSDT (Reddy 2000) and the CPT 
overestimates the results of thick plate. Thus, in general, the present model is successfully 
validated. 
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Fig. 5 Comparison of the variation of non-dimensional fundamental frequency   

of square FG plate versus power law index p (a / h = 5) 
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Fig. 6 Comparison of the variation of non-dimensional fundamental frequency 

of square FG plate versus thickness ratio a / h 
 
 
4. Conclusions 
 

A novel higher-order shear deformation theory is developed for bending, buckling, and 
vibration of FG plates. By considering further simplifying suppositions to the existing HSDT, with 
the incorporation of an undetermined integral term, the number of variables and equations of 
motion of the present HSDT are diminished by one, and hence, make this model simple and 
efficient to employ. The equations of motion are determined by utilizing the Hamilton’s principle 
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and then are solved using Navier’s procedure. The exactitude of the developed model has been 
checked for the bending, buckling, and free vibration responses of FG plates. All comparison 
investigations demonstrate that the deflection, stress, buckling load, and natural frequency 
determined by the developed model with four variables are almost close to those obtained by other 
shear deformation theories containing five variables. In conclusion, it can be deduced from this 
work that the developed theory is accurate and efficient in investigating the bending, buckling, and 
vibration behaviors of FG plates. 
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