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Abstract.   The postbuckling behavior of laminated composite plates and shells, subjected to various shear loadings, 
is presented, using a modified 8-ANS method. The finite element, based on a modified first-order shear deformation 
theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the 
shell element with the various location and number of enhanced membrane and shear interpolation. Using the 
assumed natural strain method with proper interpolation functions, the present shell element generates neither 
membrane nor shear locking behavior even when full integration is used in the formulation. The effects of various 
types of lay-ups, materials and number of layers on initial buckling and postbuckling response of the laminated 
composite plates and shells for various shear loading have been discussed. In addition, the effect of direction of shear 
load on the postbuckling behavior is studied. Numerical results and comparisons of the present results with those 
found in the literature for typical benchmark problems involving symmetric cross-ply laminated composites are 
found to be excellent and show the validity of the developed finite element model. The study is relevant to the 
simulation of barrels, pipes, wing surfaces, aircrafts, rockets and missile structures subjected to intense complex 
loading. 
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1. Introduction 
 

Laminated composite plates and shells are one of the major load bearing elements in aerospace, 
civil, underwater, nuclear reactors and other important high-performance engineering structures 
due to their high specific strength and high specific stiffness. These elements are subjected to 
severe and varying loading directions during their service life leading to failure due to large 
amounts of deflection or excessive stresses. They are now used for many primary load carrying 
structures such as aircrafts, rockets, wing surfaces, barrels, cylinders and missile skins. Plates and 
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shells made of laminated composite of fiber reinforced plastics are probably the most important 
structural members. Draiche et al. (2014) studied a vibration analysis of laminated composite 
plates using the refined plate theory. To exploit the efficiency of these materials with high 
performance and high cost, scientists and engineers have made continuous efforts to develop 
analytical, numerical and experimental techniques to reveal and to predict the buckling and 
postbuckling behavior of such plates and shells. 

The effect of transverse shear deformation on buckling behavior of symmetrically laminated 
plates was investigated by Whitney (1969a, b) and Vinson and Chou (1975). They showed that 
transverse shear deformation can be significant, not only in altering the magnitudes of the buckling 
loads, but also in changing their mode shapes when the ratio of thickness to the other dimensions 
is relatively large. Reddy (1984) proposed a higher order theory. Reddy and his co-researchers 
studied the initial buckling of laminated composite plates using this higher order shear 
deformation theory. Tanov and Tabiei (2000) presented approach for treating the transverse shear 
strains and stresses in homogeneous shells results in parabolic distribution for both strains and 
stresses and, therefore, it eliminates the need of any shear correction factors. Considering that only 
the higher-order terms in the transverse shear strains expressions is presented, Tanov and Tabiei 
(2000) assumption does not preserve the efficiency of first-order shear deformation theory 
perfectly. Recently, in space industries advanced composite materials such as functionally graded 
materials are employed and some advanced four and five higher order theories are developed by 
many researchers (Tounsi et al. 2013, Bachir Bouiadjr et al. 2013, Bouderba et al. 2013, Hebali et 
al. 2014, Belabed et al. 2014, Ait Amar Meziane et al. 2014, Zidi et al. 2014, Bousahla et al. 2014, 
Han et al. 2015, Hamidi et al. 2015, Bourada et al. 2015, Ait Yahia et al. 2015, Mahi et al. 2015, 
Bennoun et al. 2016). 

Buckling and post-buckling characteristics are one of the major design criteria for laminated 
composite plates and shells for their optimal usage. Hence, it is important to study the buckling 
and post-buckling characteristics of laminated composite plates and shells under various loadings 
for accurate and reliable design. The buckling of rectangular laminated composite plates has been 
the subject of study for many investigators during the past. A great deal of initial buckling analyses 
for plates with various lay-ups, different loading, boundary and geometry conditions may be found 
in the literature. Jones (1973) used exact solutions to study the buckling of rectangular plates with 
unsymmetrical cross-ply and angle-ply lay-up. His results show that the effects of unsymmetrical 
laminating can be more severe in reducing the buckling load than exists for the anti-symmetric 
case. However, limited investigations on the postbuckling behavior of laminated composite plates 
and shells under the shear loads are previously conducted. 

Early investigations related to shear buckling and postbuckling response of laminated plates are 
the works of Zhang and Matthews (1983a, b) and Kosteletos (1992). Both analytical and 
experimental studies for cylindrically curved panels of laminated composite materials are far fewer 
that for flat plates. Kudva (1979) presented a finite element analysis for the investigation of the 
postbuckling behavior of symmetrically laminated curved panels. Only a few examples were 
computed and the effects of boundary conditions, loading conditions, geometry conditions and 
stretching-bending coupling on the postbucking behavior were not considered. The research for 
buckling of laminated curved panels under shear loading was performed by Wilkins and Olson 
(1974). 

Balamurugan et al. (1998) studied postbuckling behavior of laminated composite plates under 
in-plane shear loads using a 9-node shear flexible quadrilateral plate element. Kim et al. (2003) 
carried out initial buckling and postbuckling analysis of composite plates under pure shear loading. 
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cKumar and Singh (2010) presented the postbuckling strength of composite laminates with cutouts 
under in-plane shear. In 2014, Gupta et al. (2014) investigated postbuckling response and 
progressive failure of composite laminated plates considering geometric nonlinearity and evolving 
material damage under in-plane shear loadings. It should be noted that they only investigated 
postbuckling behavior of laminated composite plates. Taken as a whole, very few studies were 
conducted on the postbuckling analysis of the laminated composite shells under the in-plane shear 
loading. Thus, needs exist for the development of shell finite element which is simple to use for 
postbuckling analysis of laminated composite shells. 

The work of Huang and Hinton (1986) in which, unfortunately, the 8-node element passed the 
relevant tests described in the paper but gives less accurate results than the 9-node quadrilateral 
element. Lakshminarayana and Kailash (1989) presented an 8-node shell element which is free of 
locking. In order to resolve the locking problem, they used appropriately chosen interpolation 
functions based on Hinton and Huang’s concept. Bucalem and Bathe (1993) have improved 
previous studies on the MITC8 shell elements (1986) and concluded that while it performed quite 
effectively in some cases, in a few analyses the element presented a very stiff behavior, which 
showed it was not useful and desirable to be improved. Kim et al. (2003) presented an 8-node shell 
finite element. In their study, to eliminate both the shear locking and membrane locking, the 
assumed strain method developed by Ma and Kanok-Nukulchai (1989) was applied to the natural 
coordinate. However, the persistence of locking problems was observed throughout the numerical 
experiments for 8-node shell element on standard test problems of MacNeal and Harder (1985). In 
order to improve the 8-node ANS shell element, a new combination of sampling points is adopted 
for postbuckling analysis of laminated composite shells. 

In this paper, we concentrate on the postbuckling analysis of laminated composite shells under 
the in-plane shear loading, using the curved quadrilateral shell finite element, which can be viewed 
as the 8-node element from a practical point of view. For a composite laminate, the shear direction, 
the orientation of fiber angle and layup sequences could play a dominant role in determining the 
nonlinear characteristics. Thus, current study is further extended to take into account the effects of 
shear loading and stacking sequences. This study use the modified first-order shear deformation 
theory and verify the numerical results by comparing the results with the analytical solutions 
obtained by Zhang and Matthews (1985). 
 
 
2. Modified first-order shear deformation theory 
 

In Fig. 1, the geometry of an 8-noded shell element with six degrees of freedom is shown. 
The higher-order shear deformation theory to be adopted in this study is based on the 

assumption for degenerated shell element that the originally straight normal to the mid-surface can 
deform into a cubic-order function with respect to the thickness coordinate. The displacement field 
of the third-order shear deformation theory of shells is given by (For more details, see Jung and 
Han (2014)) 

2
3 3
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3i j j j j j
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Fig. 1 Geometry of 8-node shell element with six degrees of freedom 
 
 

where P denotes the position vector of a generic point in the shell element; P  and V  are the 
position vector of a point in the mid-surface and a normal vector to the mid-surface, respectively; 
u  and e  are the translational displacement vector and the fiber displacement vector of a point in 
the mid-surface, respectively. 

By substituting Eqs. (1) and (2) into the tensor transformation relationship of Green strain 
tensor and the natural strain, the strains and transverse natural shear strains can obtain 
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If the 
2
3  term is excluded, the transverse natural shear strains in Eq. (3) are identical to those 

in the first-order shear deformation theory. Consequently, the combination of the transverse 
natural shear strains in the first-order shear deformation theory and Eq. (3) results in a parabolic 
through-thickness distribution for the transverse natural shear strains and satisfies the zero 
transverse shear stress requirement at the shell surfaces. Thus, it eliminates the need for the shear 
correction factors in the first-order theory. Finally, the ratio, hξ of effective transverse shear energy 
Us to the average transverse shear energy sU  can be determined. In this paper, we present, in 
brief, the more general case of multilayer laminated composite plates where stresses are not 
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continuous across the inter-lamina boundaries (Jung and Han 2014). 
Equating two transverse shear strain energy expressions )( ss UU   and solving for the nominal 

uniform transverse shear strain 3E  give 
 

3 3 3 3 3 3

3 3

3 3 3 3

( ) ( )

( )

s s

e

s

S E d H H d
E E

S d H d

   
 

 

   

  
  
 

 



 (4)

 
where Hτ (ξ3) and Hγ (ξ3) are distribution shape function of transverse shear stress and strain, 
respectively. Therefore, the ratio of transverse shear strain effective magnitude 
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The modified first-order shear deformation theory can then be presented as a function of (1 ‒ x3
2) 

and hξ factorizing the transverse shear strains in the first-order shear deformation theory as follows 
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3. Various enhanced strain interpolation 
 

The 8-node shell elements have been well documented in previous studies (Huang and Hinton 
1986, Lakshinarayanan et al. 1989, MacNeal and Harder 1992, Bucalem and Bathe 1993, Kim and 
Park 2002, Kim et al. 2003). For the new modified 8-node non-linear shell element, the usual 8-
nodes of two-dimensional quadratic serendipity displacement interpolations are employed and the 
various combinations of assumed natural strain interpolation functions are used. Fig. 2 illustrates 

 
 

 
(a) Pattern α (following Bathe et al. (2003)) (b) Pattern β 

Fig. 2 Five possible patterns of sampling points for 8-node ANS shell element 
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(c) Pattern δ  
  

 

(d) Pattern γ (following Hwang (1989) (e) Pattern γ6, γ6 (following Jung and Han (2013)) 

Fig. 2 Continued 
 
 

various patterns of sampling points that can be employed for membrane, in-plane shear and 
transverse shear strain interpolations for the new 8-node shell element. The α pattern is used for 
membrane (αδβ and αδγ) and the β pattern is used for membrane (βδγ) as well as transverse shear 
(αδβ). The δ pattern and γ pattern are used for in-plane and transverse shear, respectively. The 
interpolation functions by Huang (1989) are used in the γ pattern. 

The three cases of the combinations of various sampling points were used in Han et al. (2011) 
and the case (βδγ*

6) were used in Jung and Han (2013). In this paper, based on the case proposed by 
Jung and Han (2013), the 8-nodes of the new combinations of assumed natural strain interpolation 
functions are used. 
 
 
4. Strain energy and stress resultants of laminated shells 
 

The stiffness properties are function of the normal coordinate in the laminated structures. A 
cross-section of laminated shell composed of N layers is presented in Fig. 3. 

We introduce here an explicit transformation scheme between natural co-ordinates and the 
global co-ordinate system, to obtain a natural co-ordinate based constitutive equation, since the 
present formulation is based on the natural co-ordinate reference frame. (Kim and Park 2002, 
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Fig. 3 Cross-section of laminated shell composed of N layers 
 
 

Kim et al. 2003). 
The stress tensor in the natural coordinate can be written as follows 

 

klijklklijkl EDJECS ~~~~~~ TTT0ij  (7)
 

where ijklC
~

 is the fourth order material tensor, 0
~
J  is the determinant of the Jacobian matrix and 

ijklD
~

 is the constitutive matrix for orthotropic materials with the material angle θ. The 

transformation matrix T in Eq. (7) is given by Han et al. (2004). The strain energy U can be 
expressed by 
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After integration, throughout the thickness, the strain energy can be obtained in terms of shell 

quantities: stress resultants and couples and laminated shell stiffness. 
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The shell element displays resultant forces acting on a laminate which are obtained by 
integration of stresses through the laminate thickness. The constitutive relations of the composite 
laminate are as follows 
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5. Equilibrium equation and tangent stiffness 
 

When the static problems are considered, the equilibrium equation can be expressed as 
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where fjβ is the deformation gradient, S
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in which tJ
~

 is |∂xi/∂ξα|, ij is the Cauchy stress, ρ0 is mass density of the undeformed body, and J 
is |∂PI/∂xj|. 

The weak form can be constructed by Galerkin’s weighted residual method as 
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where u and δu are the displacement field and weight field, respectively; Be and δBe are the 
volume and its boundary surface of the parental element; and Tl

(N) is a traction vector. Applying the 
Gauss-Green theorem, the above equation can be rewritten as 
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The weight field of Galerkin’s method can be expressed as 
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where δUb denotes virtual nodal displacements. Substituting Eq. (15) into Eq. (14) yields 
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in which Kb
j is the internal force vector and Rb

j is the generalized force vector, respectively, defined 
as 
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For the arbitrary variation of δUb
j, Eq. (16) can be reduced as 
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(19)

 

In order to solve the nonlinear equation by the Newton-Raphson method, the linearization is 
required in the following form: (Kanok-Nukulchai et al. 1981) 

 
i i i
m m m m   K(U ) U R K(U )  (20)

 

where ∂K is the tangent stiffness with the value of a displacement Ui
m in which the subscript m 

refers to the current mth load step and superscript i refers to the current ith iteration step. The 
drilling degree of freedom will be linked to the in-plane twisting mode of the mid-surface by a 
penalty functional (Kanok-Nukulchai 1979). 
 
 
6. Non-linear solution procedure 
 

It is necessary to use the arc-length control method in order to trace the full path of load 
displacement, since the post-buckling study involves a highly distorted load-displacement path. 
With consideration of the incremental load step, Eq. (18) can be rewritten in the following form 
which has (n + 1) unknowns 

, 0  (U ) K(U) - FG  (21)
 

where K(U) is the internal force vector which is generally a non-linear function of U and F is a 
reference load vector. The non-linear equations are augmented by an additional constraint Eq. (22). 
(For more details, see Chaiomphob et al. 1998, Lee and Kanok-Nukulchai 1998) 
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   2 21 2 1 2 2 2 2
1 1

1 1
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k k

f u u u c          
 

 

        (U )  (22)

 
where α denotes a load coefficient, c is the prescribed arc-length. For arc-length control method, 





n

k
k cu

1

2222  when all χk = 1. 

Linearization of Eq. (21) and the constraint equation f(U, λ) with respect to U and λ about the 
previous solution (Ui,m, λi,m) leads to the linearized equilibrium and constraint equation as follows 

 
, , , , , ,i m i m i m i m i m i m       K U F R F K(U )  (23)

 

   

   

, 1 , 2 , 1 ,
1

1

2 22 , 1 2 , 1
1

1

2 2
n

i m m i m i m m i m
k n

i

n
i m m i m m

k k k n
i

c u u

     

    

 




 



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



U U U

 (24)

 
where superscript i,m denotes the quantity at the ith iteration of the mth solution step, Ri,m is the 
unbalanced force vector and ∂Ki,m is the tangent stiffness matrix. 

Finally, the non-linear equation augmented by a constraint equation can be written in matrix 
form 

, , ,

T , ,
1 2

i m i m i m

i m i mC C r
       

         

K F U R
=  (25)

 
where ∂Ki,m is the tangent stiffness for a known displacement vector Ui,m. If there is only solution 
step m in the superscript, that is Um, this is the final solution of the step m . The incremental 
quantities have the following relationship 

 
1, , , 1, , ,,i m i m i m i m i m i m        U U U  (26)

 
 

7. Numerical examples 
 
The present 8-node assumed strain shell element is implemented in the extended version of the 

FEAP (Zienkiewicz and Taylor 2000). In order to validate this present shell element, several 
numerical examples are solved to test the performance of the shell element in postbuckling 
analysis under shear loads. The results are presented in the non-dimensional form using Eq. (27) 

 
2

3
2

P a
P

E h
  (27)

 
Fig. 4 shows the dimensions and coordinates of a laminated composite plate analyzed by the 

aforementioned theories for the materials whose properties are listed in Table 1. Fig. 5 also shows 
the loading types of a laminated composite plate. Full plate is analyzed with 8×8 mesh sizes. 
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Fig. 4 Geometry of laminated composite plates (a = b = 250 mm, h = 2.5 mm) 
 
 

  
(a) (b) 

Fig. 5 Positive and negative shear loading of a laminated composite plate: (a) Positive; (b) Negative 
 
 

Table 1 Material properties (GPa) 

Material E1 E2 E3 G12 G23 G13 ν12 ν23 ν13 

Boron/Epoxy 206.9 20.7 20.7 5.2 5.2 5.2 0.3 0.3 0.3 

Carbon/Epoxy 206.9 5.2 5.2 2.6 2.6 2.6 0.25 0.25 0.25 

Glass/Epoxy 53.8 17.9 17.9 8.9 8.9 8.9 0.25 0.25 0.25 

 
 
7.1 Validation 
 
Firstly, the formulation with geometric nonlinearity is validated considering cross-ply 

[0°/90°/90°/0°] (E1/E2 = 40; G12 = G13 = 0.6; G23 = 0.5; ν12 = ν23 = ν13 = 0.25) simply-supported 
thin (a/h = 100) square plates under in-plane positive shear loading (Balamurugan et al. 1998, 
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Fig. 6 Comparison of postbuckling response of simply supported laminated composite plate under 
positive shear loading 

 
 

Gupta et al. 2014). The present results are found to be in excellent agreement with those of 
Balamurugan et al. (1998) and Gupta et al. (2014) as shown in Fig. 6. 

Secondly, in order to show the effectivity of arc-length method the nonlinear analysis of cross-
ply (0°/90°/0°) hinged shell is carried out with a 6.3 mm thickness (E1 = 3.3 kN/mm2, E2 = E3 = 
1.1 kN/mm2, G12 = G13 = 0.6 kN/mm2, G23 = 0.44 kN/mm2, v12 = v13 = v23 = 0.25). The geometry of 
shell is shown in Fig. 7 and the quarter model (3×3 meshes) is used. 

To investigate the highly nonlinear behavior, arc-length control method is used. Based on this 
algorithm, the highly nonlinear equilibrium path is illustrated. The Fig. 8 shows the load-
displacements curves for cross-ply hinged shell with a 6.3 mm thickness. Compared to the 
reference the present results are very good. 

 
 

 

Fig. 7 Geometry of laminated composite hinged shell 
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Fig. 8 Displacement of cylindrical laminated composite hinged shell under point load 
 
 
7.2 Postbuckling response 
 
A cylindrical shell with mid-surface radius R and thickness h, having length a and b, is shown 

in Fig. 9. The panel is assumed to consist of composite layer having different thickness, elastic 
properties and arbitrary orientations of orthotropic axes with respect to the generators of the panel. 
The panel is subjected to shear loading denoted by Pxy per unit length. The non-dimensional 
curvature parameter having the form 

Rh

a
KR

2

  (28)

 
 

(a) Geometry of laminated composite shells (b) Negative shear loading of a laminated composite shell

Fig. 9 Geometry and positive shear loading of laminated composite shells 
(a = b = 250 mm, h = 2.5 mm) 
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The calculations refer to cylindrical shells with KR = 50 unless otherwise stated. 
Figs. 10-17 represent the load-central deflection behavior of the curved panels after buckling. 

Fig. 8 shows the influence of lay-up on the postbuckling behavior of curved panels. The curves in 
the figure are obtained for boron/epoxy composites with the curvature parameter KR = 50. It may 
be seen that lay-up has a significant influence on the postbuckling behavior when the lay-up in the 
panel is symmetric. For panels with anti-symmetric lay-up the influence of the shear loadings 
seems more severe. 

In Fig. 10, it is shown that the center deflection of symmetric laminated composite shells 
subjected to the pure shear loading for the different fiber angle. It may be noticed that the load-
deflection curve of composite shells with the fiber angle of [‒30°/30°/30°/‒30°] exhibits the higher 
value than others by 4-15%. 

Fig. 12 is for boron/epoxy laminated composite shells with symmetric and anti-symmetric 
angle-ply arrangements under the pure shear load. The results confirm the importance of the in-
plane shear direction. Therefore it is important for designers to select correctly the fiber direction 
to obtain the higher performance of the laminated composite shells under the pure shear loading 
with prescribed load directions. Also, it can be observed that the alternate shear directions have no 
influence on the panel behavior for anti-symmetic angle-ply [‒45°/45°/45°/‒45°]. This is not 
difficult to understand because alternating shear direction is only equivalent to turning over the 
shell. 

The effect of panel curvature on the load-deflection relations can be seen clearly from Fig. 13. 
Compared to the behavior of a flat plate, this means that a “jump” of the deflection may occur for 
curved panels when the shear load increases towards the bifurcation point. This kind of snap-
through occurs in curved panels because there are more than one equilibrium states of the panels 
corresponding to a certain loading level. Because of without damage analysis it can be observed 
that the load-deflection curve of clamped plate goes beyond the generally possible deflection in 

 
 

Fig. 10 Laminated composite curved panel with 2 lay-ups; Critical shear load, Boron/Epoxy, clamped edges
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Fig. 11 Laminated composite curved panel with symmetric lay-ups; Critical shear load 
with fiber angle, Boron/Epoxy, clamped edges 

 
 

Fig. 12 Laminated composite curved panel with 2 lay-ups; Critical shear load with 
fiber angle, Boron/Epoxy, clamped edges 

 
 

Fig. 13. It is noticed that further research work need to be focused on the damage or failureanalysis 
to improve the large deformation behavior of laminated composite structures. 
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Fig. 13 Laminated composite plate and curved panel; Critical shear load, Boron/Epoxy, clamped edges 
 
 

Fig. 14 Laminated composite curved panel; Critical shear load with material properties, clamped edges 
 
 
Fig. 14 is for curved panels with [m45°]s lay-up and KR = 50. As expected, different materials 

have different postbuckling path. Fig. 13 refers to laminated composite shells having a [m45°]s 
lay-up of carbon/epoxy, boron/epoxy and glass/epoxy composite materials. The curves of 
deflection at the center of the shell versus the shear loading indicate that for the carbon/epoxy 
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Fig. 15 Laminated composite curved panel; Critical shear load with radius, Boron/Epoxy, clamped edges
 
 

Fig. 16 Laminated composite curved panel; Critical shear load with layer numbers, 
Boron/Epoxy, clamped edges 

 
 

shell, which has the higher ratio of E1/E2 for composite, the postbuckling path for negative shear 
direction is higher than for the boron/epoxy and glass/epoxy shells. 

Fig. 15 shows the influence of laminated composite shell curvature. The figure is obtained for 
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Fig. 17 Laminated composite shell with symmetric angle-ply lay-ups : negative shear loading; 
SS: all edges simply supported, SC: straight edge simply supported and curved edge 
clamped, CC: all edges clamped 

 
 

four layer [m45°]s boron/epoxy panels. It is seen that the maximum snap-through load decreases 
when the panel becomes less curved and no snap-through load is found when the panel becomes 
very flat (say, KR = 12.5). 

Fig. 16 is obtained for laminated composite boron/epoxy shells with symmetric angle-ply 
arrangements. The effect of increasing the number of alternate layers on the behavior of the shells 
under pure shear is demonstrated. It is observed that the number of layers have a significant effect 
on the buckling and post-buckling strength. The buckling and post-buckling strength decreases by 
increasing the number of layers. It is also observed that the number of layers beyond 8 does not 
have a significant effect. The load-central deflection curves indicate that for shells with such lay-
ups, bending does not occur immediately in-plane shear loading is applied. 

In Fig. 17, the influence of shear direction of symmetric angle-ply lay-up shells with different 
boundary conditions is presented. It is obtained for different boundary conditions. As expected, it 
is found that the buckling load-center deflection path of the cylindrical shell with all edges 
clamped is the highest for these three kinds of boundary conditions. All edges simply supported 
give the lowest buckling load-deflection path. These behaviors lead us to a conclusion that the 
influence of boundary conditions played a role in increasing or decreasing buckling load-
deflection paths. 

 
 

9. Conclusions 
 
Postbuckling studies, even for laminated composite plates having special lay-ups under pure 

shear loading are few because of their complexity. The post-buckling response of a laminated 
composite plates and shells are obtained explicitly, using the modified 8-node ANS formulation 
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with refined first-order shear deformation theory. Numerical results showing the effect of different 
loading, geometry, boundaries and lay-ups on the post-buckling response of the laminated 
composite plates and shells are obtained. The advanced finite element nonlinear analysis based on 
the modified 8-node ANS formulation shows the significance of stacking sequences and loading 
conditions for laminated composite shells. From the parametric case studies, a number of 
conclusions have been founded in designing laminated composite structures. 

 

(1) The curvature of laminated composite shells has significant influence on the initial 
buckling and postbuckling behavior. For curved panels, the load-deflection become no 
longer monotonic and snap-through may occur when shear load becomes large. This is 
because there exist more than one equilibrium state of the panel corresponding to a certain 
shear loading level. 

(2) The suitable selection of sampling points prevents the locking problem from occurring in 
buckling analysis of either thick panel or very thin panels. 

(3) For initial buckling and postbuckling behavior of laminated composite shells, in-plane 
applied shear direction is a significant factor. For a constant shear loading, selecting the 
lay-up correctly to obtain the higher performance of the laminated composite shells is 
important. 

(4) The lay-up arrangement in a laminated composite panel is also important for its initial 
buckling and postbuckling behavior. In symmetric case, increasing the number of alternate 
layers in the panel, while keeping the other conditions constant, gives lower performance 
of the panel. 

(5) The postbuckling performance of a composite panel is affected by its boundary conditions. 
Clamped edges always produce a higher performance of the panel than simply supported 
edges. 

(6) The postbuckling behavior of composite panels depends on the properties of the layers, in 
which the panel is composed. The properties of the materials do not change the trends of 
postbuckling behavior of the panels, although they do make a difference to the absolute 
values. Additionally, it is found that the effect of shear direction becomes more severe for 
a composite with a higher ratio of E1 to E2 than for one with a lower ratio. 

 

To design the laminated composite shells under the in-plane shear loading, the present 
formulation and results may serve as benchmark for future guidelines and may be extended to 
dynamic instability, delamination, viscoelastic, damage, and failure analysis of various laminated 
composite structures. However, the parametric study proposed in this study is only an example and 
more studies should be carried out to apply the laminated composite shells for individual cases. 
The present study could be extended for finding post-buckling response of laminated composite 
plates and shells under mixed loading conditions. Also, the techniques should provide engineers 
with the capability for the design of composite structures including barrels, pipes, aircrafts, rockets, 
wing surfaces and missile skins. 
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