
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 20, No. 3 (2016) 693-718 
DOI: http://dx.doi.org/10.12989/scs.2016.20.3.693 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Iterative global-local procedure for 
the analysis of thin-walled composite laminates 

 

Ashkan Afnani a and R. Emre Erkmen 
 

School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia 
 

(Received March 17, 2015, Revised October 20, 2015, Accepted December 03, 2015) 

 
Abstract.    This paper presents a finite element procedure based on Bridging multi-scale method (BMM) in order 
to incorporate the effect of local/cross-sectional deformations (e.g., flange local buckling and web crippling) on the 
global behaviour of thin-walled members made of fibre-reinforced polymer composite laminates. This method 
allows the application of local shell elements in critical regions of an existing beam-type model. Therefore, it obviates 
the need for using computationally expensive shell elements in the whole domain of the structure, which is otherwise 
necessary to capture the effect of the localized behaviour. Consequently, highly accurate analysis results can be 
achieved with this method by using significantly smaller finite element model, compared to the existing methods. 
The proposed method can be used for composite polymer laminates with arbitrary fibre orientation directions in 
different layers of the material, and under various loading conditions. Comparison with full shell-type finite element 
analysis results are made in order to illustrate the efficiency and accuracy of the proposed technique. 
 

Keywords:   iterative global-local analysis; bridging multi-scale method; buckling; composite members; 
local deformations 
 
 
1. Introduction 
 

The use of fibre-reinforced polymer composite laminated plates as a construction material has 
increased in recent years. The primary reason for this increase is their non-corrosive nature and 
long term durability, high tensile strength-to-weight ratio, electromagnetic neutrality and resistance 
to chemical attack. Because of their high strength-to-weight ratios, slender structural components 
may be formed by using composite laminates, which can be used in building, bridge, aerospace 
and marine applications. These structural materials are often cast in beam-type shapes (i.e., large 
span in comparison to cross-sectional dimensions), for which they are commonly analysed by 
using beam type elements. A beam formulation was developed by Bauld and Tzeng (1984), which 
can capture flexural and lateral-torsional buckling behaviour of thin-walled composite laminated 
members. Closed form analytical solutions for buckling analysis based on beam-type formulations 
can be found in the studies of Pandey et al. (1995), Kollár (1991), Sapkás amd Kollár (2002), Kim 
et al. (2007), Roberts (2002) and Roberts and Masri (2003), which are limited to certain boundary 
and loading conditions. On the other hand, the finite element method can be used to obtain 
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solutions that are applicable to general boundary conditions and loading cases. For the flexural-
torsional buckling analysis of thin-walled composite beams, finite element formulations were 
developed by Omidvar and Ghorbanpoor (1996), Lee et al. (2002), Lee (2006), Back and Will 
(2008) and Cardoso et al. (2009). These types of elements are formulated based on the assumption 
that cross-sections remain rigid during the deformation, which limits their application to axis-
related deformations only (i.e., flexural, torsional and flexural-torsional buckling), and hence they 
cannot capture local/cross-sectional deformations such as flange local buckling and web crippling. 
If the effect of the local deformations is needed to be considered, shell-type elements have to be 
adopted. 

On the other hand, the focus of the recent research in numerical methods has been on adaptive 
numerical strategies such as meshfree methods, e.g., (Belytschko et al. 1996, Erkmen and 
Bradford 2011, Liu et al. 1997, Oden et al. 2006), generalised finite element methods, e.g., 
(Belytschko et al. 2001, Strouboulis et al. 2001), multi-scale methods, e.g., (Feyel 2003, Fish et al. 
1994, Geers et al. 2010, Hughes et al. 1998, Hughes and Sangalli 2007, Liu et al. 2000) and the 
use partition of unity concept (Babuška et al. 2003, Babuška and Melenk 1997, Li and Liu 2002, 
Schafer 2008). These methods allow accuracy improvements only at desired locations without 
necessitating changes in the global numerical model of the structure, especially; the partition of 
unity concept has been used for overlapping decomposition in the analysis domain in order to 
achieve enrichment in local deformation fields. Similarly, the Bridging Multiscale Method (BMM) 
provides a mathematical basis for the analysis of physical phenomena that are coupled based on 
two different level of physical assumption, e.g., (Kadowaki and Liu 2004) by splitting the 
simple/global analysis domain from the local/sophisticated modelling. Consequently, it can be 
utilized to split the analysis domain based on the level of desired accuracy. 

In thin-walled members, the interaction of local and global deformation modes can give rise to 
multiple scales in the deformation fields (Bradford and Hancock 1984). In order to capture local 
buckling behaviour, specialised finite strip formulations, e.g., (Bradford 1992), generalised beam 
theory, e.g., (Davies et al. 1994), and shell-type elements, e.g., (Ronagh and Bradford 1996) have 
been utilised. Recently, Erkmen (2013) has developed a numerical technique based on the BMM 
that incorporates the effects of local deformations in the overall behaviour of thin-walled structural 
members. This approach allows for the employment of two kinematic models in the numerical 
analysis. While simple beam-type elements are used for the analysis of the overall structure, more 
sophisticated shell-type elements are employed for the local fine-scale analysis in a relatively 
narrow span of the member. In the present, the application of the method is expanded for 
composite thin-walled members. Comparisons with full shell and beam-type models are provided 
in order to illustrate the efficiency of the analysis proposed in the present paper. 

The paper is organised as follows: the kinematics and the weak form of the equilibrium 
equations for both beam-type and shell-type analyses are given briefly. Following this, the 
proposed iterative global-local analysis procedure is introduced in detail. Numerical examples are 
then presented, and conclusions are drawn in the final section. 
 
 
2. Beam-type analysis 
 

2.1 Kinematic assumptions 
 

In order to simplify the global analysis, a thin-walled beam formulation is used, which is based 
on second-order nonlinear thin-walled beam theory (Trahair 2003). For this: (a) each segment of 
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 (a) Thin-walled beam (b) Fibre orientations (c) Laminates across the thickness  

Fig. 1 Thin-walled beam composed of fibre-reinforced laminates 
 
 

the cross-section behaves as a Kirchhoff plate with additional membrane behaviour; (b) the 
contour of the cross-section does not deform in its plane; and (c) normal stresses within the cross-
sectional plane vanish. These assumptions imply that the nonzero strains in the thin-walled beam 
strain vector   result from the axial strains induced by membrane, bending and torsional actions 
(bimoment), as well as from shear strains induced by uniform torsion. The strain components can 
be written in terms of deflections )(  ),( zvzu  and )(zw  which are parallel to yx   ,  and z
directions respectively, and the angle of twist   of the cross-section (Fig. 1(a)) as given in 
Appendix A. The finite element formulation is developed by using linear interpolation for w  and 
cubic interpolations for vu   ,  and .  The displacement of a point on the cross-section u  can 
be written in terms of the vector of nodal displacements d  as .dNu   Explicit expression for ,u
d  and N  are given in Appendix A. The displacement vector u  is nonlinear as a result of the 
appropriate beam theory (Trahair 2003). 

 
2.2 Variational formulation and linearisation 
 
The equilibrium equations can be stated in variational form as 
 

Tδ δ d d δ 0
L A

A z    Tε σ d f  (1)

 

in which A is the cross-sectional area, L is the beam span and f  is the external load vector. In Eq. 
(1), the stress expression can be obtained directly from the strains using the linear elastic stress-
strain relationship, i.e., εEσ  . It should be noted that in order to have free stresses in the contour 
direction under the rigid cross-section assumption, the beam constitutive matrix E  has to be 
modified as in Appendix A. The first variation of the strain vector for the beam element can be 
written as 

δ δε SB d  (2)
 

where explicit expressions for S  and B  for an element are given in Appendix A. The incremental 
equilibrium equations can be obtained by subtracting the virtual work expressions at two 
neighbouring equilibrium states and then linearising the result by omitting the second- and higher-
order terms, i.e. 

 δ δ δ δ δ δ 0   T Td K d d f (3)
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where K  is the stiffness matrix of the global beam model, i.e. 
 

T T d d d
L A L

A z z   K B S ESB M  (4)

 

in which 

T Tδ δ d
A

A  M d B S σ
. 

 
 
3. Shell-type analysis 
 

3.1 Kinematic assumptions 
 

In this study, the buckling behaviour of thin-walled members is of concern, and thus classical 
Kirchhoff plate theory is suitable as the plate components align with the first postulate of the beam 
formulation. In order to conveniently assemble non-coplanar elements to form thin-walled 
members and folded plates, the Discrete Kirchhoff Quadrilateral (Batoz and Tahar 1982) is 
employed as the plate component in which shear deformation effects across the thickness are 
omitted. For the membrane component of the shell-type element, the finite element of 
(Ibrahimbegovic et al. 1990) employing drilling degrees of freedom is adopted. The strains of the 
shell-type element can be expressed in terms of bending rotations x̂  and y̂  about local x̂  and 
ŷ  axes and a drilling rotation z̂  about the ẑ  axis, deflections 0û  and 0v̂  of the mid-surface in 

the local x-y plane, and the out-of-plane deflection 0ŵ  in the local ẑ  direction (Fig. 2(a)). A 
standard linear interpolation function is employed for the out of plane deflection .ŵ  The four-
node membrane element uses Allman-type interpolation functions for the in-plane displacements 

0û and 0v̂ and standard bilinear interpolation for the independent drilling rotation z̂  
(Ibrahimbegovic et al. 1990). The details of the shell element interpolation functions can also be 
found in (Batoz and Tahar 1982, Ibrahimbegovic et al. 1990). 

 
3.2 Variational formulation of the equilibrium equations and linearisation 
 
For the shell analysis, the equilibrium equations can be obtained in variational form as 

 

 (5)

 
 

 (a) Shell local coordinates (b) Laminates across thickness (c) Global vs. local coordinates 

Fig. 2 Deflections and coordinate system of the shell composed of fiber-reinforced laminates 
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in which ε  represents the vector of strain components, and an explicit expression for the strain 
vector for the shell element is given in Appendix B. It should be noted that the strain vector ε  of 
the thin-walled beam formulation can be obtained by substituting the displacement field u  
(which imposes beam kinematics) into the shell strain expressions ε̂  as given in Appendix B. It 
should also be noted that the potential energy functional of the shell element is modified in order 
to avoid numerical stability issues with Allman type interpolations of the membrane component as 
suggested in Ibrahimbegovic et al. (1990), and thus the skew symmetric part of the membrane 
strains and associated drilling rotations are contained in the first term in Eq. (5). The stress field σ̂  

can be obtained using a linear elastic relationship ( σ̂ Eε) in which σ̂  and E are also given 
explicitly in Appendix B. In the last term of Eq. (5), f̂  is the external load vector and d̂  is the 
vector of nodal displacements. For a thin-walled beam model composed of shell elements, the 
local shell displacement directions do not generally match with the global (beam) displacement 
directions; therefore transformation of each degree of freedom to a common global system xyz  is 
performed prior to assemblage (Zienkiewicz and Taylor 2000). 

The first variation of the strain field of the shell element used in Eq. (5) can be expressed as 
 

 (6)
 

where SB ˆ  ,ˆ
 and d̂  are given explicitly in Erkmen (2013). The incremental equilibrium equations 

for the shell formulation can be obtained by subtracting the first variation of the modified potential 
energy in Eq. (5) at two neighbouring equilibrium states and then linearizing the results by 
omitting the second and higher-order terms, i.e. 

 

(7)
 

where K̂  is the stiffness matrix of the shell model, i.e. 
 

(8)

 

where . 
 
 
4. Iterative global-local procedure 
 

4.1 Domain decomposition and coarse-scale projection 
 
The proposed global-local/multi-scale analysis is performed only in a critical region of the 

analysis domain depicted as Ωm in Fig. 3. In the multi-scale analysis domain, the beam and shell 
models overlap. The whole analysis domain including Ωm is represented with Ωc in Fig. 3; a beam 
model being used for the whole analysis domain Ωc. Following the Bridging multiscale method of 
Liu and his co-workers, the shell nodal displacement vector is decomposed into a coarse-scale 
component and a difference term, by using a decomposition matrix N  that projects the beam 
solution onto the nodal points of the shell model, i.e., ,ˆ ddNd   from which the variation of 
the shell nodal displacement vector can be written as 
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Fig. 3 Decomposition of the analysis domain 

 
 

ˆδ δ δ  d N d d , (9)
 
4.2 Coupled coarse- and fine-scale equilibrium equations 
 
Based on the above decomposition of the shell solution, and thus by substituting Eq. (9) into Eq. 

(6), i.e.,  ˆ ˆˆδ δ δ  ε SB N d d , the first variation of the shell strains can be decomposed as 
 

ˆ ˆδ δε SBN d , (10)

and 

ˆ ˆδ δ ε SB d . (11)
 
As the beam kinematics is imposed by using ,N  the variation of the coarse scale strain 

component of the shell solution ε  is equal to that of the beam, i.e., .ˆˆ BSNBS   In Eq. (11), ε  
is due to the difference between the variations of the fine and coarse-scale strain fields. The strain 
field ε̂  can also be decomposed into two components, i.e., .ˆ εεε   Herein, the coarse-scale 
strain field ε  is such that its variation is as in Eq. (10). Thus, it is equal to the strain field of the 
beam solution. The stress field is also decomposed into two components i.e., .ˆ σσσ   and 
considering linear elastic constitutive relations, the stress field components can be obtained from 
the associated strain fields, i.e., σ̂  ε  and σ Eε . By substituting the above equations into Eq. 
(5), the weak form of the shell equilibrium equations can be decomposed as 

 

(12)

and 
T T T T

2
ˆˆ ˆδ δ d d δ 0

L A

A z     d B S σ d f . (13)

 
It should be noted that within the BMM, the coarse- and fine-scale decomposition is applied on 

the discrete nodal values, and thus the relation  can be 

used. By considering a load case where ,ˆT ffN   the first two terms in Eq. (12) can be replaced 
with those of Eq. (1). What separates the beam equations given in Eq. (1) from Eq. (12) is the last 
term, in which F  is a complementary force vector due to fine- and coarse-scale differences in the 
stress field, which can be written explicitly as 
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 T T T T Tˆˆ ˆ d d d d
L A L A

A z A z     F N B S σ σ B S σ . (14)

 

4.3 Linearisation of the equilibrium equations 
 
Linearisation of Eq. (12) produces 

 

 1δ δ δ δ δ δ 0   T Td K d d F , (15)

where 

 (16)

 

and can be replaced with the beam stiffness matrix in Eq. (4), in which M
~

 is defined in 
 

 (17)

 

and sM
~

 is defined in 
 

. (18)

 
In obtaining Eq. (15), the difference between the nodal displacements of fine- and coarse- 

scales was defined as δ δ δ d N c Q q , in which c  can be selected as 
 

   
1

T Tˆδ d d δs s s

L L

z z


  

      
   

 c N K M k N N k k k N d , (19)

 

in which K̂  is as given in Eq. (8) and 
 

; (20a)

 

 (20b)

 

, (20c)

 

The matrix Q  can be selected as 
 

, (21)
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so that there is an orthogonality relation between N  and Q  (Qian et al. 2004), i.e. 
 

 T ˆ + d 0s s

L

z
 

  
 

N K M k Q , (22)

 
On the other hand, linearisation of Eq. (13) produces 

 

. (23)
 

Since d  in Eq. (23) is arbitrary, both Eqs. (7)-(23) admit the same solution, which is the 
solution of the shell model over the entire analysis domain. However, where the beam solution is 
accurate enough, the shell model solution is avoided for computational economy. 

 
4.4 Interface boundary conditions and partitioning of the linearised fine-scale equations 
 
In the original applications of the Bridging Multi-scale Method, e.g., (Kadowaki and Liu 2004) 

the coarse-scale solution within the overlapping domain is used to obtain the difference between 
the fine and coarse-scale displacements. Instead, herein it is more convenient to obtain the shell 
solution within the overlapping domain by imposing the displacements of the beam solution as the 
interface boundary conditions of the shell model. One important issue to be addressed before 
imposing the shell boundary conditions is that even though there are no local buckling 
deformations, the Poisson’s ratio effect causes change in the cross-sectional contour dimensions 
throughout the analysis domain. However, beam analysis does not produce a displacement field 
within the plane of the cross-section that captures the changes in cross-sectional dimensions due to 
Poisson’s ratio effect. On the other hand, as explained in Section 2.2, this effect is considered in 
the stress field by adopting a separate constitutive matrix. Indeed, within the analysis region where 
the beam solution is deemed accurate, a strain field is imposed implicitly which can be considered 
within the current analysis framework as the fine-scale strain component in the beam solution, i.e., 

    T

12 220 0 0k kQ Q ε , in which ε indicates the axial strain in the coarse-scale strain vector, 
and material properties 

)(
12

kQ  and 
)(

22
kQ  are as given in Lee et al. (2002). It is important to note 

that this fine-scale strain field has no influence on the beam equilibrium equations and the coarse-
scale nodal displacement vector, because the associated fine-scale stress field is a null vector. This 
was provided by decomposing the stress field using the stress-strain relations as  and 

σ Eε . Therefore, consideration of the fine-scale strain field 
    T

12 220 0 0k kQ Q ε
 is 

required only at the interface of the multi-scale region (∂Ωs in Fig. 3), in order to consider the 
changes in the cross-sectional contour dimensions before imposing the shell model boundary 
conditions. The reason for not including the strains due to Poisson’s ratio effects in the coarse-
scale strain vector is the convenience of the coarse-scale decomposition matrix N  based on the 
kinematic considerations under a rigid sectional contour assumption. At both ends of the shell 
model, the fine scale displacement vector due to Poisson’s ratio effect @i&jd

~
 is obtained by 

integrating the strains numerically, i.e., ‒vε, over the cross-sectional contour, and then by imposing 
the condition that the summation of these displacements vanishes in order to eliminate the rigid 
body translations due to .

~
@i&jd  Thus, the displacement boundary conditions imposed onto the 

700



 
 
 
 
 
 

Iterative global-local procedure for the analysis of thin-walled composite laminates 

shell model can be written as @i&j@i&j@i&j ddNd
~ˆ   where subscripts “i&j” indicate both ends of 

the local shell model as shown in Fig. 3. From Eq. (23), decomposing the shell displacement 
vector into boundary and internal displacement vectors produces 

 

. 
(24)

 

The stiffness matrix K̂  of the shell model in Eq. (8), is partitioned such that specified 
boundary displacements are multiplied with the sub-matrix .T

bK̂  In Eq. (24), sf̂  is the vector of 
variations in specified external loads that falls into the multi-scale analysis domain and @i&jf̂  is 
the vector of variations in the traction forces at the boundaries of the multi-scale analysis domain. 
Specified displacements and loads in Eq. (24) are placed in the box symbol (�). 

 
4.5 Solution procedure for the nonlinear equilibrium equations 
 
Firstly, the global problem is solved for the coarse-scale displacements d  while keeping the 

fine-scale solution of the local shell model fixed. Then, given the global results imposed on the 
local model as the interface boundary conditions, the local problem is solved for the fine-scale 
values ,d̂

 
while keeping the boundary conditions and the global displacements d  fixed. In order 

to terminate the loading step k, double criteria as suggested in Qian et al. (2004) are used within 
the framework of the BMM. The first criterion is due to geometric nonlinearity, and confirms that 
the nonlinear global equilibrium condition is satisfied at the end of n iterations. An additional 
second criterion is required to confirm that the difference between the stress vectors of the local 
shell model and the beam model is eliminated through the complementary force in Eq. (14); thus 
the local and global solutions are synchronized. A flow chart of the solution procedure is given in 
Fig. 4. 

The global equations are solved using a Newton-Raphson incremental-iterative scheme in a 
step-by-step manner, i.e. 

n n
k k k k   K d f R  (25)

 

where kK  is the tangent stiffness matrix at the beginning of each incremental step, kf  is the 
external load increment in step k, and 

n
kR  is the unbalanced force vector obtained from Eq. (12) 

at the nth iteration of step k, i.e. 
 

T T d dn n n n
k k k k k

L A

A z     R B S σ F f . (26)

 

It should also be noted that on the right hand side of Eq. (25), kf  is used for the first iteration, 
and n

kR  is used after the first iteration until convergence is reached within the step in the usual 
manner. Displacements of the current state are updated using the incremental nodal displacements, 
i.e., 

1+n n n
k k k

 d d d , based on which the internal strain field, i.e., 
n n
k kε Bd  and consequently the 

stress field, i.e., 
n n
k kσ Eε  of the coarse-scale solution can also be updated. Within the global load 
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Fig. 4 Flow-chart of the multi-scale analysis algorithm 
 
 

step k, the local shell model is solved in s steps in which displacement increments of the internal 
nodes are determined for l iterations, i.e., ,ˆ l

sINd  because the unbalanced terms due to the 
geometric nonlinearities, i.e., 

l
sINr̂  are also corrected in the local shell model in an iterative 

manner. Thus, from the second line of Eq. (24), this fine-scale displacement vector of the internal 
nodes at the lth iteration 

l
sINd̂  can be written as 

 

, (27)
 

in which jis &@d̂  indicates the specified displacement increments at the boundaries of the fine-
scale domain. In Eq. (27), 

l
sINr̂  is the unbalanced load vector due to geometric nonlinearities 

involved in the local shell problem, which can be obtained as 
 

. (28)

 

The incremental shell nodal displacements obtained from Eq. (27) are used in updating the 
displacement configuration of the current state, i.e., , based on which the internal 
strain field 

l
sε̂  and consequently the stress field 

l
sσ̂  of the fine-scale solution can be updated. If 

the local convergence criterion is satisfied, i.e., tol
l
s r̂ then  is used for the 

complementary force calculations within the kth step in each nth iteration, i.e. 

1+n n n
k k k

 d d d

kf

ˆ l
s tol r

n
k tol R

n n
k k k k    K d f R

T T d dn n n n
k k k k k

L A

A z     R B S σ F f

T Tˆ ˆˆˆ ˆ d dl l l
s s s s

L A

A z    r B S σ f

@ &@ & @ &

T

ˆˆ ˆ

ˆˆˆ ˆ ˆ

ˆˆ ˆ ˆˆ

l l
s i js i ja b s i j

l
l IN sb c sIN s

ln slk


                                
rK d

fdK K r

rK K fd 

 1 T
@ &

ˆˆ ˆ ˆ ˆˆl l
IN s c s IN s b s i j

      d K f r K d

1ˆ ˆ ˆ+l l l
s s s

 d d d

ˆ ˆ ˆˆ l l l
s s sε SB d ˆˆ ˆl l

s sσ Eε

ˆ ˆn l
k sσ σ

T ˆ
s kN f f

T T T T Tˆˆ ˆ d d d dn n n n n
k k k k k

L A L A

A z A z    F N B S σ B S σ

n
k tol F

n n
k kε Bd

n n
k kσ Eε
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T T T T Tˆˆ ˆ d d d dn n n n n
k k k k k

L A L A

A z A z    F N B S σ B S σ . (29)

 
It should be noted that for a stable global system the global equilibrium should be satisfied for 

any complementary force vector. Therefore, even though the convergence criterion for global 
equations is reached, i.e., ,tol

n
k R  step k is not deemed complete unless tol

n
k F is 

satisfied, so that the local and global solutions are synchronised. If both convergence criteria are 
not satisfied, the analysis should be repeated for a reduced load increment within the same step k. 
It should also be noted that within the multi-scale analysis scheme developed herein, the span of 
the overlapping domain can be adjusted at any load level, because the local shell model is solved 
for the current loading conditions at the beginning of each step, regardless of the results of the 
shell model obtained in the previous steps. 
 
 
5. Numerical examples 
 

As discussed previously, the iterative global-local procedure is most advantageous when a 
limited portion of the member domain is affected by localized/cross-sectional deformations. 
Therefore, the accuracy and efficiency of proposed multi-scale procedure is verified through 
numerical examples in which local deformations cause a softening effect in the global behaviour 
of the structure. In all of the examples, the accuracy of the model is checked by comparing the 
results of the multi-scale model with that of a full shell element. However, the accuracy of the 
developed shell element needs to be confirmed before being used as a benchmark. Consequently, 
the first three examples are presented to compare the buckling load obtained from the present 
model to the results from literature for various materials and loading conditions. It should be noted 
that the critical load values presented herein are obtained from a nonlinear analysis and are defined 
as load level that minimizes the determinant of the tangential stiffness matrix of the structure as 
depicted in Fig. 5. The rest of the examples are designed to express the accuracy and efficiency of 
the proposed global-local model. In the first example, an isotropic material (structural steel) is 
used while orthotropic graphite- and glass-epoxy composite laminates are used in the rest of the 
examples. 

 
 

Fig. 5 Definition of the buckling criteria in the nonlinear analysis 
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(a) Loading and boundary conditions (b) Cross-sectional dimensions 

Fig. 6 Simply-supported beam 
 
 

Table 1 Buckling load for isotropic simply supported beam 

Load case Machado (2010) Present Difference (%) 

Axial (KN) 766.05 771.75 0.74 

Lateral ez = h/2 (MNm) 121.8 122.06 0.21 

Lateral ez = ‒h/2 (MNm) 240.4 244.1 1.52 
 
 
5.1 Verification of the shell element 
 
5.1.1 Example 1: Isotropic simply supported I-beam 
In order to verify the developed shell element, a simply supported I-beam made of isotropic 

material is analysed in example 1. Cross-sectional properties, loading and boundary conditions are 
shown in Fig. 6. Geometrical dimensions of the I-section are bf = 200 mm, h = 195 mm, tf = 10 
mm and tw = 6.5 mm, and the length of the beam is L = 6000 mm. Material properties 
corresponding to construction steel (i.e., E = 200 GPa and ν = 0.3) is used, and the beam is 
subjected to axial load and uniformly distributed lateral load. 

Full nonlinear shell analysis is performed to obtain the buckling load as discussed previously, 
and the results are checked against the buckling results presented by Machado (2010). The 
buckling load is calculated for the simply supported beam subjected to axial and uniformly 
distributed lateral load. Two cases were analysed for the uniformly distributed load: firstly, the 
load was applied at the top flange and in a separate analysis, the load was applied on the bottom 
flange, which are denoted by ez = h/2 and ez = ‒h/2, respectively. The buckling loads are shown in 
Table 1, where for the lateral load, the results are presented in terms of the corresponding 
maximum bending moment. 

The axial buckling load can also be calculated from the Euler formula Pcr = π2E / (L)2, where L 
is the length of the beam and EI is the flexural rigidity of the section about the minor principal axis. 
Using the properties of the member in this example, the Euler buckling load is calculated as 767.9 
kN. It can be observed that the buckling load values obtained from the developed shell formulation 
are in good agreement with the results from the literature. 

 
5.1.2 Example 2: Composite laminate simply-supported I-beam 

subjected to distributed load 
The lateral-torsional buckling behaviour of a laminated simply-supported I-beam is investigated 
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Table 2 Material properties of composite laminates 

Material E1 E2 G12 ν12 ν21 

Graphite-epoxy 144 GPa 9.65 GPa 4.14 GPa 0.3 0.02 

Glass-epoxy 48.3 GPa 19.8 GPa 8.96 GPa 0.27 0.11 

 
 

Table 3 Buckling load for composite simply-supported beam under distributed load 

Graphite/Epoxy Glass/Epoxy 

Load level Machado (2010) Present Machado (2010) Present 

ez = h/2 0.25 0.25 0.12 0.12 

ez = 0 0.42 0.40 0.18 0.18 

ez = ‒h/2 0.67 0.63 0.26 0.24 

 
 

in this example. The beam length and the boundary conditions are the same as the previous 
example, and the geometrical dimensions of the cross-section are: bf = 300 mm, h = 600 mm and tf 
= tw = 30 mm (Fig. 6). The analysis is performed for two types of material; namely, graphite-epoxy 
and glass-epoxy composite laminates, properties of which can be seen in Table 2. 

The plates are made up of four layers of composite material, each of which have a thickness of 
7.5 mm, with a stacking sequence of [0/0/0/0]. The uniformly distributed load is applied at three 
levels: the top flange, the shear centre and the bottom flange, which are depicted by ez = h/2, ez = 0 
and ez = ‒h/2, respectively. Similar to the previous example, the buckling load levels are obtained 
from the nonlinear shell analysis by drawing the lateral deflection versus the load level and 
considering the load level at which the tangential stiffness of the structures is minimum, and the 
results are compared to the buckling loads reported by Machado (2010) for verification purposes. 
The results can be seen in Table 3 in terms of the values of the distributed load (in MN/m) causing 
the buckling behaviour. Like the previous example, a good agreement can be confirmed between 
the results of the adopted shell model and results from the literature. 

 
5.1.3 Example 3: Effect of fibre orientation on buckling behaviour of composite 

laminate columns 
In order to verify the accuracy of the developed shell element in capturing the effects of fibre 

orientation in composite laminates, simply-supported columns with various fibre orientation 
angles are analyzed in this example. The cross-section is a doubly-symmetric I with the following 
dimensions: bf = 80 mm, h = 40mm and tf = tw = 1 mm (Fig. 6). The length of the beam is L = 240 
mm, and the boundary conditions are similar to the previous examples. The column is composed 
of eight layers of graphite-epoxy composite laminates (Table 4) each d = 0.25 mm thick, with 
stacking sequence [θ/‒θ/θ/‒θ]s. ‒θ is the angle between the fibres and the axis of the beam, and is 
selected as 15°, 30°, 45°, 60°, 75° and 90°. 

 
 

Table 4 Material properties for Example 3 

Material E1 E2 G12 ν12 ν21 

Graphite-epoxy 138 GPa 10 GPa 5 GPa 0.27 0.02 
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Table 5 Buckling load for simply-supported column, various fibre angles 

θ 15° 30° 45° 60° 75° 90° 

Present study 14.67 25.00 29.70 24.09 14.19 9.35 

Mittelstedt (2007) 14.75 23.20 27.70 22.75 13.71 9.41 
 
 

Table 6 Values of material properties used in Section 6.2 

Material E1 E2 G12 ν12 ν21 

Glass-epoxy 53.78 GPa 17.93 GPa 8.96 GPa 0.25 0.08 

 
 
In order to obtain the buckling load of the column, a nonlinear shell analysis is performed by 

adopting shell element of 20 mm × 20 mm size. The results of the analysis in comparison with the 
buckling results presented by Mittelstedt (2007) can be observed in Table 5. It can be observed 
from the results that the accuracy of the developed shell element for the analysis of composite 
laminates can be confirmed. 

 
5.2 Verification of the proposed global-local method 
 
In the following, numerical experiments are performed in order to demonstrate the accuracy 

and efficiency of the proposed global-local/multi-scale procedure in capturing the effect of 
localized behaviour. The results of the multi-scale method are compared with the beam and shell 
results for verification purposes. The material is taken as glass-epoxy, for which the material 
properties are provided in Table 6. 

 
5.2.1 Flexural buckling of a C-shaped column 
The multiscale procedure is used to analyze the buckling behaviour of the composite column 

shown in Fig. 7. 
 
 

  

(a) Cross-sectional dimensions (b) Loading and boundary conditions 

Fig. 7 C-section composite column 
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Table 7 Buckling load values for C-section column 

Analysis Beam Constraint shell Shell Closed-from (Euler) 

Buckling load (kN) 52.19 52.12 53.48 51.93 

 
 
The beam is composed of eight composite layers with equal thickness of 2.5 mm with a 

stacking sequence of [0/-45/90/45]S. The analysis is performed using the beam-type element, the 
shell-type element and the multiscale procedure. Apart from that, a constraint shell model is used 
to confirm that the beam-type analysis and the shell model are kinematically equivalent according 
to the kinematic assumptions of the thin-walled beam theory. It is obtained by applying multi-point 
constraints (MPSs) on the nodal displacements of the shell model in each cross-section according 
to the decomposition matrix N. For beam analysis, 4 equal-span elements are used while the 
dimensions of the shell elements are approximately 200 mm × 200 mm. 

The loading set presented in Fig. 7 is applied at two stages; initially, the axial/vertical loads are 
applied (i.e., Ps = 0). The values of the buckling load are calculated using the linearized buckling 
analysis corresponding to beam, constrain-shell and full-shell and are presented in Table 7. The 
close-form solution presented in the same table is the Euler buckling load, which is calculated 
from Ncr = π2E / (2L)2, where L is the length of the column and EI is the flexural rigidity of the 
cross-section around the minor principal axis. Additionally, nonlinear analysis are performed using 
the aforementioned finite element models and the results are depicted in Fig. 8 in terms of 
horizontal deflection and rotation of the tip of the column versus the applied load. It can be 
observed that the results of all of the models match at this stage. 

At a second stage, local/cross-sectional deformations are introduced to the model by assigning 
Ps = 75 kN. It should be noted that the Ps load couple cancel the effect of each other at cross-
sectional level. Consequently, the beam-type finite element, which is formulated based on rigid 
cross-sectional assumption, fails to capture the effect of this load couple on the behaviour of the 
column. However, the softening effect of the local deformations in significant on the global 
response of the column, as shown by the curved obtained from the full shell model (Fig. 8). 

The above problem is also analyzed using the developed multi-scale model that is composed of 
 
 

(a) Tip horizontal deflection (b) Tip rotation 

Fig. 8 Load-displacement curves based on various finite element modelling 
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Fig. 9 Layout of the multi-scale model 
 
 

beam and shell elements. The layout of the multi-scale model is shown in Fig. 9. The model is 
analyzed by considering two values for the length of the overlapping region: initially it was 
considered between z = 0 and z = 1200 mm by using 6×4 shell elements, and then it was expanded 
to cover z = 0 and z = 1600 mm by using 8×4 elements. The results of the multi-scale analysis are 
shown in Fig. 8. It can be seen that the model with larger overlapping region (i.e., 8×4 elements) 
has been able to capture the effect of localized behaviour accurately and is matching well with the 
full shell model. On the other hand, the model with smaller shell span is not able to fully capture 
the effect. It should be noted that even the model with larger shell span has considerably smaller 
number of shell elements and therefore smaller number of degrees of freedom compared to the full 
shell model. Therefore, the accuracy and the efficiency of the proposed model can be verified 
herein. Care should be taken in choosing the overlapping region to ensure that it covers the entire 
region affected by the localized behaviour. 

 
5.2.2 Lateral-torsional buckling of an I-beam 
The effect of a localized load couple on the lateral-torsional buckling resistance of a simply-

supported I-beam is studied in this section. The geometry, boundary conditions and loading of the 
beam are shown in Fig. 10. 

 
 

       
(a) Cross-sectional dimensions (b) Loading and boundary conditions 

Fig. 10 Properties of the simply supported I-beam 
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Fig. 11 Schematic of the multi-scale model 

 
 

Fig. 12 Load-deflection curve based on different modelling types 
 
 
The flanges and the web of the beam is composed of 8 layers of glass-epoxy with angle-ply 

lay-ups of [0/-45/90/45]S. Similar to the previous example, the beam is analysed using beam, shell 
and multi-scale models. 8 equal-span elements are used for the beam model while the shell 
elements have an approximate size of 200 mm × 200 mm. The loading is applied at two stages: 
firstly, only the global concentrated bending moments are applied and secondly the load couple PS 
= 15 kN are introduced to create the localized behaviour. Apart from that, a very small horizontal 
load (PB = 0.1 kN) is applied in order to initiate the lateral buckling behaviour in the first analysis. 
The multi-scale model is created by applying local shell elements in the vicinity of the local load 
couple (i.e., z = 1400 mm to z = 4600 mm) by using 16 × 6 shell elements, as demonstrated in Fig. 
11. 

The buckling behaviour is depicted using the lateral deflections of the beam mid-span (Fig. 12). 
It can be observed that the reduction in the lateral buckling critical load, caused by the softening 
effect of the localized load couple, is captured accurately by the use of multi-scale method. 

 
 

6. Conclusions 
 
In this paper, a global-local analysis method based on the Bridging Multiscale Method (BMM) 

was developed for the analysis of composite thin-walled members. A coarse-scale decomposition 
operator was proposed based on kinematic arguments, which associates the beam solution as the 
coarse-scale component of the shell solution. This decomposition allows for the method to 
incorporate the effects of local deformations on the overall behaviour of the thin-walled member 
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by using a shell model only within the region of local deformations. Thin-walled column and beam 
buckling cases were then analysed to show that the load carrying capacity can be influenced 
significantly by the local deformations, and the results of the global-local analysis procedure 
proposed herein were compared with those produced from full shell and beam-type analyses. In all 
cases, by selecting a sufficiently wide span of the local shell model in the multi-scale analyses, it 
was confirmed that the behaviour according to the full shell-type analysis can be captured very 
accurately by using the global-local analysis technique introduced in the paper. 
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Appendix A 
 
 
Strains, displacements and stresses of the beam element 
 
The beam element strain vector can be written in terms of linear and second order nonlinear terms, 

i.e., .NL εεε   The linear axial and shear strains Lε  and ,L  respectively can be obtained in 
terms of the displacements wvu   ,  ,  and the angle of twist   (Fig. 1(a)) as 

 
T

0 0L L L L  ε Sχ  (A1)

 
which can be decomposed in terms of the matrix of cross-sectional coordinates 
 

2 21 0

0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 0

x y x y

r

    
 
 
 
 
 

S  (A2)

 
and the vector of linear displacement derivatives 
 

T 0     L w u vχ . (A3)

 
In Eq. (A2), x  and y  identifies the coordinates of a point on the cross-section, and r  is the 

normal distance from the mid-surface (Fig. 1(a)). Sectorial area coordinates are used, i.e., 

 shd  in which h is the normal distance to the tangent of the point on the section contour 
from the arbitrarily located pole with x  and y  coordinates (ax, ay), i.e., sin)( xaxh 

cos)( xay   (Fig. 1(a)), where α is the angle between the x  and s  axes. As shown in Fig. 
1(a), s  axis is the tangent to the mid-surface of the cross-section and directed along the contour 
line. In Eq. (A3), primes denote the derivative with respect to the axial coordinate z. The 
nonlinear linear strains can be written as (Trahair 2003) 

 
T

0 0N N N N  ε Sχ , (A4)

 
in which N  is the nonlinear axial strain and N  is taken as zero. Similar to linear strains, the 

nonlinear strain vector in Eq. (A4) can be decomposed using the same matrix of cross-sectional 
coordinates S and a vector of second-order displacement derivatives, i.e. 

 

   T 2 2 2 2 21 1
2 2' ' ' ' ' ' 'N x y x yu v a v a u a aχ         2 2 21

2' ' 0 ' 0x yv a u a          , (A5)

 
The element is developed by using a linear interpolation for w  and cubic interpolations for ,u  

v and ,  i.e., dXu aa   in which 
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T

a w u v u , (A6)

 
T

T

T

T

a

 
 
   
 
  

L 0 0 0

0 H 0 0
X

0 0 H 0

0 0 0 H
,

(A7)

 

where 
 

T

1
z z

L L
 L

,
(A8)

 
T2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 2
1

z z z z z z z z
z

L L L L L L L L
       H

, 
(A9)

 
The nodal displacement vector d  of the beam type finite element can be written as 
 

T

1 2 1 1 2 2 1 1 2 2 1 1 2 2x x y yw w u u v v       d , (A10)

 
in which subscripts 1 and 2 refer to each of the two end nodes, x  and y  refer to the bending 

rotations in xz   and yz   planes (Fig. 1(a)) respectively, and   is associated with the 
warping deformations of the cross-section. The displacement vector of a point α on the cross-
section can be written as ,dNu   where 

 
T

w u u v v      u  (A11)
 

and YZN   in which 
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The matrix B  can be written as 
 

 2 21 0 0 0 0

0 0 1 0 0 2 0

0 0 0 1 0 2 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

y x y x x y

x

y
a

u a v a a u a v a a

a v

a uB X

  

 
 



           
 

  
    
 
  
  

, (A14)

 

in which 
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Constitutive relations for the beam element 
 
It is assumed that perfect interlaminar bond exists between the layers. For a laminate composed of 

n orthotropic layers, the orientation of the local kk zs - plane with respect to the global zs -plane 
is determined by the angle about the r -axis Φ (positive according to the opposite of the right 
hand rule) between z  and kz  (Fig. 1(b)). For the kth layer, the stress-strain relationship can be 
written as (Back and Will 2008, Lee 2006, Lee et al. 2002) 
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in which ,)(
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(Back and Will 2008, Lee et al. 2002). These coefficients can be found in (Back and Will 2008, 
Lee 2006, Lee et al. 2002, Reddy 2004). 
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Appendix B 
 
 
Strains of shell element 
 
The strains of the shell-type element are composed of strains due to plate bending deformations 

,ˆbε  membrane deformations ,ˆmε  and strains due to second order membrane and plate bending 
action ,ˆ Nε  i.e. 

늿 늿b mm N  ε ε ε ε , (B1)

 
where the plate bending strains can be written as 
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(B2)

 
The second term in Eq. (B1) can be written as 
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ε

,

(B3)

 
in which mε̂  is the vector of membrane strains and the last row in Eq. (B3) contains the skew 

symmetric part of the membrane strains introduced to avoid numerical stability issues when 
drilling rotations z̂  are used with Allman-type interpolations (Ibrahimbegovic et al. 1990). 
The non-linear strain component can be written as 
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As the membrane axial strain and shear strain components of the shell can be captured by using 

the rigid cross-section assumption, the rest of the shell strains are the fine-scale strains in the 
current formulation, i.e. 
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Constitutive relations of the shell element 
 
For a laminate composed of n orthotropic layers, the orientation of the fibre attached kk yx -axes 

with respect to the plate’s local xy axes is determined by the angle Φ which is the angle about 
plate’s local z-axis (positive according to the right hand rule) between x and xk (Fig. 2(a)). In 
that case Φ is the same angle used in Appendix A. Assuming that perfect interlaminar bond 
exists between the layers, the stress-strain relationship for the kth layer according to the plate 
local axis directions can be written as (Reddy 2004) 
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where 
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in which the coefficients are as given in (Back and Will 2008, Lee 2006, Lee et al. 2002, Reddy 

2004). It should be noted that the last diagonal term in Eq. (B7) is because of the modification 
introduced into the potential energy functional. 
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