Elasticity solution of multi-layered shallow cylindrical panels subjected to dynamic loading

M. Shakeri \dagger, M. R. Eslami \dagger and A. Alibiglu \ddagger
Department of Mechanical Engineering, Amirkabir University of Technology, Iran

(Received February 14, 2001, Accepted January 30, 2002)

Abstract

Elasticity solutions to the boundary-value problems of dynamic response under transverse asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported along all four sides and has finite length. The highly coupled partial differential equations are reduced to ordinary differential equations with constant coefficients by means of trigonometric function expansion in the circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite element method. Numerical examples are presented for two ($0 / 90$ deg.) and three ($0 / 90 / 0$ deg.) laminations under dynamic loading.

Key words: elastictiy; panel; shallow; dynamic; composite.

1. Introduction

With the development of new manufacturing techniques, more and more advanced materials have been introduced lately. Fiber-reinforced composite is one such material which has been widely used in the aircraft and aerospace industry, since the properties, such as high mechanical strength, high stiffness, and low density, are crucial in the design of aircraft and space structures. Because of their wide usage, the characteristics of these materials under static and dynamic conditions are of considerable importance and interest to designers. Modeling of composite cylindrical panels is usually based on one of the following three types of theories: classic laminated theory (CLT), shear deformation theories, and three-dimensional elasticity theory. Because of the high ratio of in-plane Young's modulus to transverse shear modulus, ignorance of the shell transverse shear deformation in CLT can lead to serious errors even for thin cylindrical panels. Although the shear deformation theories have met with success in many cases, three-dimensional elasticity solutions are still needed for the purpose of assessment of various approximate theories and better understanding of actual distributions of stresses, and displacements in composite panels, especially for thick ones. There are not many solutions for laminated cylindrical panels on three-dimensional elasticity, because of the considerable mathematical difficulties in solving governing differential equations for the general boundary and loading conditions. Some elasticity solutions used for stress and vibration analysis of shallow shells under static and dynamic loads are reviewed here.
\ddagger Ph.D. Student

Free vibration analysis of doubly curved shallow shells on rectangular platform using threedimensional elasticity theory was studied by Bhimaraddi (1991). In this paper the governing partial differential equations are reduced to ordinary differential equatiuons by assuming the solution, in the axial and circumferential directions, to be composed of trigonometric functions and solving the resulting equation. An exact three-dimensional thermo elasticity solution is employed to derived the elastic response of a doubly-curved cross-ply laminated panel under mechanical loading and temperature variation by Huang and Tauchert (1992) using the power series method.
A three-dimensional elasticity solution for the static response of simply supported orthotropic cylindrical shells was presented by Bhimaraddi and Chandrashekhara (1992). In this paper, the solution is obtained assuming the ratio of the panel thickness to its middle surface radius is negligible as compared to unity. It is shown that the two-dimensional shell theories are quite inaccurate when the thickness to length ratio of the panel is more than $1 / 20$. Three-dimensional elasticity solution for static response of orthotropic doubly curved shallow shells on rectangular platform was studied by Bhimaraddi (1993). He obtained displacements and stresses in X, Y and Z directions by assuming the variables in the form of the trigonometric functions expansion. Bending analysis of thick cross-ply laminated doubly-curved shells was presented by Jing and Tzeng (1993). In this paper and approximate approach based on the assumption suggested by Soong (1970) is used instead of using exact threedimensional elasticity. Natural vibration of free, laminated composite triangular and trapezoidal shallow shells was investigated by Qatu (1995). This paper deals with algebraic polynomials in a Ritz analysis to determine the natural frequencies.

Recently the authors have studied the response of orthotropic cylindrical panel under dynamic patch load and anisotropic cylindrical panels under dynamic load (Shakeri et al. 2000, 921-927, Shakeri et al. 2000 1-11). In these papers three-dimensional theory of elasticity with Galerkin finite element method have been used. Review of the published literature shows that elasticity solution to the problem of laminated, cross-ply cylindrical shallow panel of finite length under dynamic load has not yet been investigated.
Thus, the dynamic response of axisymmetric cross-ply laminated shallow panels subjected to asymmetric loading based on three-dimensional elasticity equations are studied.

2. Problem description

Consider a laminated circular cylindrical panel, as shown in Fig. 1, composed of N uniformly thick layers. The layers are so arranged that the panel in general is orthotropic, and the material symmetry axis in radial, circumferential and axial directions are parallel to the Z, Y and X axes, respectively. The panel is simply supported on four edges. The constitutive equations of each layer are stated as;

$$
\left[\begin{array}{c}
\sigma_{X} \tag{1}\\
\sigma_{Y} \\
\sigma_{Z} \\
\tau_{Z Y} \\
\tau_{X Z} \\
\tau_{X Y}
\end{array}\right]=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{X} \\
\varepsilon_{Y} \\
\varepsilon_{Z} \\
\gamma_{Z Y} \\
\gamma_{X Z} \\
\gamma_{X Y}
\end{array}\right]
$$

Fig. 1 Geometry and the coordinate system of laminated panel
where:

$$
\begin{gathered}
\sigma_{i}(i=Z, Y, X) \text { are the normal stresses } \\
\varepsilon_{i}(i=Z, Y, X) \text { are the normal strains } \\
\tau_{Z Y}, \tau_{X Z}, \tau_{X Y} \text {, are the shear stresses } \\
\gamma_{Z Y}, \gamma_{X Z}, \gamma_{X Y}, \text { are the shear strains }
\end{gathered}
$$

and

$$
C_{i j}(i, j=1,2,3,4,5,6) \text { are the elastic constants }
$$

The stratin displacement relations of the 3-D elasticity equations in the cylindrical coordinate system are written as:

$$
\begin{align*}
\varepsilon_{X}=\frac{\partial U_{X}}{\partial X}, \quad \varepsilon_{Y} & =\left[\frac{R}{R+Z}\right]\left[\frac{\partial U_{Y}}{\partial Y}+\frac{U_{Z}}{R}\right], \quad \varepsilon_{Z}=\frac{\partial U_{Z}}{\partial Z}, \quad \gamma_{X Y}=\frac{\partial U_{Y}}{\partial X}+\left[\frac{R}{R+Z}\right] \frac{\partial U_{X}}{\partial Y} \\
\gamma_{X Z} & =\frac{\partial U_{Z}}{\partial X}+\frac{\partial U_{X}}{\partial Z}, \quad \gamma_{Y Z}=\left[\frac{R}{R+Z}\right]\left[\frac{\partial U_{Z}}{\partial Y}-\frac{U_{Y}}{R}\right]+\frac{\partial U_{Y}}{\partial Z} \tag{2}
\end{align*}
$$

In order to reduce the system of equations with variable coefficients to one with constant coefficient, the only assumption we need to make is:

$$
\begin{equation*}
\left[\frac{R}{R+Z}\right] \approx 1 \tag{3}
\end{equation*}
$$

which is a basic assumption of shallow shell theory. Utilizing Eq. (3) in Eqs. (2), we write the strain displacement relations as:

$$
\varepsilon_{X}=\frac{\partial U_{X}}{\partial X}, \quad \varepsilon_{Y}=\frac{\partial U_{Y}}{\partial Y}+\frac{U_{Z}}{R}, \quad \varepsilon_{Z}=\frac{\partial U_{Z}}{\partial Z}, \quad \gamma_{X Y}=\frac{\partial U_{Y}}{\partial X}+\frac{\partial U_{X}}{\partial Y}
$$

$$
\begin{equation*}
\gamma_{X Z}=\frac{\partial U_{Z}}{\partial X}+\frac{\partial U_{X}}{\partial Z}, \quad \gamma_{Y Z}=\left[\frac{\partial U_{Z}}{\partial Y}-\frac{U_{Y}}{R}\right]+\frac{\partial U_{Y}}{\partial Z} \tag{4}
\end{equation*}
$$

Using Eq. (3), 3-D stress equilibrium equations can be written as:

$$
\begin{gather*}
\frac{\partial \sigma_{X}}{\partial X}+\frac{\partial \tau_{X Y}}{\partial Y}+\frac{\partial \tau_{X Z}}{\partial Z}+\frac{\tau_{X Z}}{R}=\rho \frac{\partial^{2} U_{X}}{\partial t^{2}} \\
\frac{\partial \tau_{X Y}}{\partial X}+\frac{\partial \sigma_{Y}}{\partial Y}+\frac{\partial \tau_{Z Y}}{\partial Z}+\frac{2 \tau_{Z Y}}{R}=\rho \frac{\partial^{2} U_{Y}}{\partial t^{2}} \\
\frac{\partial \tau_{X Z}}{\partial X}+\frac{\partial \tau_{Z Y}}{\partial Y}+\frac{\partial \sigma_{Z}}{\partial Z}+\frac{\sigma_{Z}-\sigma_{Y}}{R}=\rho \frac{\partial^{2} U_{Z}}{\partial t^{2}} \tag{5}
\end{gather*}
$$

Substituting the stress-strain relations (1), via strain-displacement relations (4), the above governing equations can be written in terms of three displacements as:

$$
\begin{align*}
& C_{11}^{(k)} \frac{\partial^{2} U_{X}}{\partial X^{2}}+C_{12}^{(k)}\left(\frac{\partial U_{Z}}{R \partial X}+\frac{\partial^{2} U_{Y}}{\partial X \partial Y}\right)+C_{13}^{(k)} \frac{\partial^{2} U_{Z}}{\partial Z \partial X}+C_{66}^{(k)}\left(\frac{\partial^{2} U_{Y}}{\partial X \partial Y}+\frac{\partial^{2} U_{X}}{\partial Y^{2}}\right) \\
& +C_{55}^{(k)}\left(\frac{\partial^{2} U_{X}}{\partial Z^{2}}+\frac{\partial^{2} U_{Z}}{\partial Z \partial X}\right)+\frac{C_{55}^{(k)}}{R}\left(\frac{\partial U_{X}}{\partial Z}+\frac{\partial U_{Z}}{\partial X}\right)=\rho \frac{\partial^{2} U_{X}}{\partial t^{2}} \\
& C_{66}^{(k)}\left(\frac{\partial^{2} U_{Y}}{\partial X^{2}}+\frac{\partial^{2} U_{X}}{\partial X \partial Y}\right)+C_{12}^{(k)} \frac{\partial^{2} U_{X}}{\partial X \partial Y}+C_{22}^{(k)}\left(\frac{\partial U_{Z}}{R \partial Y}+\frac{\partial^{2} U_{Y}}{\partial Y^{2}}\right)+C_{23}^{(k)} \frac{\partial^{2} U_{Z}}{\partial Z \partial Y}+ \\
& C_{44}^{(k)}\left(\frac{-\partial U_{Y}}{R \partial Z}+\frac{\partial^{2} U_{Y}}{\partial Z^{2}}+\frac{\partial^{2} U_{Z}}{\partial Z \partial Y}\right)+\frac{2 C_{44}^{(k)}}{R}\left(\frac{-U_{Y}}{R}+\frac{\partial U_{Y}}{\partial Z}+\frac{\partial U_{Z}}{\partial Y}\right)=\rho \frac{\partial^{2} U_{Y}}{\partial t^{2}} \\
& C_{55}^{(k)}\left(\frac{\partial^{2} U_{X}}{\partial Z \partial X}+\frac{\partial^{2} U_{Z}}{\partial X^{2}}\right)+C_{44}^{(k)}\left(-\frac{\partial U_{Y}}{R \partial Y}+\frac{\partial^{2} U_{Y}}{\partial Z \partial Y}+\frac{\partial^{2} U_{Z}}{\partial Y^{2}}\right)+C_{13}^{(k)} \frac{\partial^{2} U_{X}}{\partial Z \partial X}+ \\
& \frac{1}{R}\left[\left(C_{13}^{(k)}-C_{12}^{(k)}\right) \frac{\partial U_{X}}{\partial X}+\left(C_{23}^{(k)}-C_{22}^{(k)}\right)\left(\frac{U_{Z}}{R}+\frac{\partial U_{Y}}{\partial Y}\right)+\left(C_{33}^{(k)}-C_{23}^{(k)}\right) \frac{\partial U_{Z}}{\partial Z}\right] \\
& +C_{33}^{(k)} \frac{\partial^{2} U_{Z}}{\partial Z^{2}}+C_{33}^{(k)}\left(\frac{\partial U_{Z}}{R \partial Z}+\frac{\partial^{2} U_{Y}}{\partial Z \partial Y}\right)=\rho^{\frac{\partial^{2} U_{Z}}{\partial t^{2}}} \tag{6}
\end{align*}
$$

The simply supported boundary conditions are taken as:

$$
U_{Z}=\sigma_{Y}=\tau_{Y X}=0 \quad \text { at } \quad Y=0, Y_{m}
$$

$$
\begin{equation*}
U_{Z}=\sigma_{X}=\tau_{X Y}=0 \text { at } \quad X=0, L \tag{7}
\end{equation*}
$$

For a laminate consisting of N laminae, the continuity conditions to be enforced at any arbitrary interior (k) th interface can be written as:

$$
\begin{array}{cll}
\left.\left.\sigma_{Z}\right)_{k}=\sigma_{Z}\right)_{k+1} & \left.\left.\tau_{Z Y}\right)_{k}=\tau_{Z Y}\right)_{k+1} & \left.\left.\tau_{Z X}\right)_{k}=\tau_{Z X}\right)_{k+1} \\
\left.\left.U_{Z}\right)_{k}=U_{Z}\right)_{k+1} & \left.\left.U_{Y}\right)_{k}=U_{Y}\right)_{k+1} & \left.\left.U_{X}\right)_{k}=U_{X}\right)_{k+1} \tag{8b}
\end{array}
$$

The boundary conditions on the inner and outer surfaces of the panel are:

$$
\begin{gather*}
\sigma_{Z}=p(Y, t), \quad \tau_{X Z}=\tau_{Z Y}=0 \quad \text { at the outer surface } \tag{9a}\\
\sigma_{Z}=\tau_{X Z}=\tau_{Z Y}=0 \quad \text { at the inner surface } \tag{9b}
\end{gather*}
$$

3. Solution of the governing equations

The solution which satisfies the boundary conditions (7) are:

$$
\begin{align*}
U_{Z} & =u_{Z}(Z, t) \sin \beta_{m} Y \cdot \sin p_{n} X \\
U_{Y} & =u_{Y}(Z, t) \cos \beta_{m} Y \cdot \sin p_{n} X \\
U_{X} & =u_{X}(Z, t) \sin \beta_{m} Y \cdot \cos p_{n} X \tag{10}
\end{align*}
$$

where:

$$
\beta_{m}=\frac{m \pi}{Y m}, \quad p_{n}=\frac{n \pi}{L}
$$

After substituting Eq. (10) into Eqs. (6), the partial differential equations in terms of the variables, Z, Y, X and t are reduces to ordinary differential equations in terms of the variable Z and t as:

$$
\begin{gathered}
-C_{11}^{k} P_{n}^{2} U_{x}+C_{12}^{k}\left(\frac{P_{n}}{R} U_{z}-\beta_{m} P_{n} U_{y}\right)+C_{13}^{k} P_{n} \frac{\partial U_{z}}{\partial z}+C_{66}^{k}\left(-\beta_{m}^{2} U_{x}-\beta_{m} P_{n} U_{y}\right) \\
+C_{55}^{k}\left[\frac{\partial^{2} U_{x}}{\partial z^{2}}+P_{n} \frac{\partial U_{z}}{\partial z}+\frac{1}{R}\left(\frac{\partial U_{x}}{\partial z}+P_{n} U_{z}\right)\right]=\rho^{k} \frac{\partial^{2} U_{x}}{\partial t^{2}} \\
-C_{66}^{k}\left(P_{n}^{2} U_{y}+\beta_{m} P_{n} U_{x}\right)-C_{12}^{k} \beta_{m} P_{n} U_{x}+C_{22}^{k}\left(\frac{\beta_{m}}{R} U_{z}-\beta_{m}^{2} U_{y}\right)+C_{23}^{k} \beta_{m} \frac{\partial U_{z}}{\partial z} \\
+C_{44}^{k}\left[\frac{-1}{R} \frac{\partial U_{y}}{\partial z}+\frac{\partial^{2} U_{y}}{\partial z^{2}}+\beta_{m} \frac{\partial U_{z}}{\partial z}+\frac{2}{R}\left(\frac{-1}{R} U_{y}+\frac{\partial U_{y}}{\partial z}+\beta_{m} U_{z}\right)\right]=\rho^{k} \frac{\partial^{2} U_{y}}{\partial t^{2}} \\
-\left[C_{55}^{k} P_{n}^{2}+\beta_{m}^{2} C_{44}^{k}-\frac{1}{R^{2}}\left(C_{23}^{k}-C_{22}^{k}\right)\right] U_{z}+\frac{\beta_{m}}{R} \times\left(C_{44}^{k}-C_{23}^{k}+C_{22}^{k}\right) U_{y}+\frac{P_{n}}{R}\left(C_{12}^{k}-C_{13}^{k}\right) U_{x}-P_{n}
\end{gathered}
$$

$$
\begin{equation*}
\left(C_{55}^{k}+C_{13}^{k}\right) \frac{\partial U_{x}}{\partial z}-\beta_{m}\left(C_{44}^{k}+C_{23}^{k}\right) \frac{\partial U_{y}}{\partial z}+\frac{C_{33}^{k}}{R} \frac{\partial U_{z}}{\partial z}+C_{33}^{k} \frac{\partial^{2} U_{z}}{\partial z^{2}}=\rho^{k} \frac{\partial^{2} U_{z}}{\partial t^{2}} \tag{11}
\end{equation*}
$$

Eqs. (11) are solved by means of the finite element method. Each layer is devided into an arbitrary number of radial elements. Linear shape functions may be considered for each element (k) as

$$
u_{s}^{(k)}(z, t)=\left\langle N_{i} N_{j}\right\rangle\left\{\begin{array}{l}
U_{s i} \tag{12}\\
U_{s j}
\end{array}\right\} \quad s=z, y, x
$$

Substituting Eqs. (12) into the first of Eqs (11). and applying the formal Galerkin method yields

$$
\begin{gather*}
\int\left[\left(-C_{11}^{k} P_{n}^{2}-C_{66}^{k} \beta_{m}^{2}\right) U_{x}+\frac{1}{R}\left(C_{12}^{k}+C_{55}^{k}\right) P_{n} U_{z}-\left(C_{12}^{k}+C_{66}^{k}\right) P_{n} \beta_{m} U_{y}+\left(C_{13}^{k}+C_{55}^{k}\right) P_{n} \frac{\partial U_{z}}{\partial z}\right. \\
\left.+C_{55}^{k} \frac{\partial^{2} U_{x}}{\partial z^{2}}+\frac{C_{55}^{k}}{R} \frac{\partial U_{x}}{\partial z}-\rho^{k} \frac{\partial^{2} U_{x}}{\partial t^{2}}\right] N_{s} d r=0 \quad s=i, j \tag{13}
\end{gather*}
$$

Similarly, substituting Eqs. (12) into the second and third of Eqs. (11) yield four other equations which combined with Eqs. (13) provide six equations for six unknowns $U_{z i} U_{z j}, U_{y i}, U_{y j} U_{x i}$ and $U_{x j}$. Eq. (13) for $s=i$ reduces to

$$
\begin{equation*}
A_{4} u_{z i}+B_{4} u_{z j}+C_{4} u_{y i}+D_{4} u_{y j}+E_{4} u_{x i}+F_{4} u_{x j}+G_{4} \ddot{u}_{x i}+H_{4} \ddot{u}_{x j}=\left.C_{55}^{k} \frac{\partial u_{z}}{\partial z}\right|_{i} \tag{14}
\end{equation*}
$$

where the constants A_{4}, B_{4}, \qquad and H_{4} are given in the Appendix. The system of six equations for the six unknowns obtained for the base element (k) may be written as:

$$
\begin{equation*}
[M]_{k}\{\ddot{X}\}_{k}+[K]_{k}\{X\}_{k}=\{F(t)\}_{k} \tag{15}
\end{equation*}
$$

where:
[M] and $[K]$ are the 6×6 mass and stiffness matrices $\{F(t)\}$ is the 6×1 force matrix

Expressing Eq. (8a) in term of displacements, by using the Eqs. (1) and (4) and replacing the derivatives by proper finite difference approximation, results into the expressions for displacement components on the inter laminar boundaries in term of the displacement values of neighbouring nodes (Fig. 2) as follows:

$$
\begin{gather*}
U_{Z k l}^{k}=U_{Z k I+1}^{k+1}=A \cdot U_{Z k I-1}^{k}+B \cdot U_{Z k I+2}^{k+1}+C \cdot U_{Y k I-1}^{k}+D \cdot U_{Y k I+2}^{k+1}+E \cdot U_{X k I-1}^{k}+F \cdot U_{X k I+2}^{k+1} \\
U_{X k I}^{k}=U_{X k I+1}^{k+1}=A^{\prime} \cdot U_{Z k I-1}^{k}+B^{\prime} \cdot U_{Z k I+2}^{k+1}+C^{\prime} \cdot U_{Y k I-1}^{k}+D^{\prime} \cdot U_{Y k I+2}^{k+1}+E^{\prime} \cdot U_{X k I-1}^{k}+F^{\prime} \cdot U_{X k I+2}^{k+1} \\
U_{Y k I}^{k}=U_{Y k I+1}^{k+1}=A^{\prime \prime} \cdot U_{Z k I-1}^{k}+B^{\prime \prime} \cdot U_{Z k I+2}^{k+1}+C^{\prime \prime} \cdot U_{Y k I-1}^{k}+D^{\prime \prime} \cdot U_{Y k I+2}^{k+1}+E^{\prime \prime} \cdot U_{X k I-1}^{k}+F^{\prime \prime} \cdot U_{X k I+2}^{k+1} \tag{16}
\end{gather*}
$$

where:

Fig. 2 Configuration fo K and $K+1$ elements

$A, B, \ldots, F^{\prime \prime}$ are constant coefficients (see Appendix).
Substituting Eq. (16) into (15), the dynamic finite element equilibrium equations for two neighbouring elements at interior (k) th and $(k+1)$ th interfaces are obtained as:

$$
\begin{gather*}
{[M]_{k}\{\ddot{X}\}_{k}+[K]_{k}\{X\}_{k}=\{0\}} \tag{17a}\\
{[M]_{k+1}\{\ddot{X}\}_{k+1}+[K]_{k+1}\{X\}_{k+1}=\{0\}} \tag{17b}
\end{gather*}
$$

By applying Eq. (16) for the first and last nodes, displacement values for these nodes can be obtained, and then from Eq. (15), the dynamic equations for the first and last element becomes:

$$
\begin{gather*}
{[M]_{1} \cdot\{\ddot{X}\}_{1}+[K]_{1} \cdot\{X\}_{1}=\{0\}} \tag{18a}\\
{[M]_{M I} \cdot\{\ddot{X}\}_{M I}+[K]_{M I} \cdot\{X\}_{M I}=\{F(t)\}_{M I}} \tag{18b}
\end{gather*}
$$

By assembling Eqs. (15), (17a,b), (18a,b), the general dynamic finite element equilibrium equations are obtained as:

$$
\begin{equation*}
[M] \cdot\{\ddot{X}\}+[K] \cdot\{X\}=\{F(t)\} \tag{19}
\end{equation*}
$$

where in Eqs. (18b) and (19):

$$
\begin{array}{ll}
{[M] \text { and }[K]} & \text { are matrices of }(3 M I-6-3 N) \times(3 M I-6-3 N) \text { sizes. } \\
M I \text { and } N & \text { are the number of elements and layers respectively. }
\end{array}
$$

Once the finite element equilibrium is established, the Newmark direct integration method with suitable time step is used and the equations are solved.

4. Numerical results and discussion

Two- and three-layered cross-ply shallow cylindrical panels composed of graphite-epoxy are considered. The forcing function is chosen as:

$$
\begin{equation*}
p(Y, X, t)=P_{0}\left(1-e^{-13100 t}\right) \sin \beta_{m} Y \sin p_{n} X \tag{20}
\end{equation*}
$$

The material properties are

$$
\begin{aligned}
E_{L} & =85 \mathrm{Mpa}, E_{T}=2.125 \mathrm{Mpa}, G_{L T}=1.0625 \mathrm{Mpa} \\
G_{T T} & =0.425 \mathrm{Mpa}, v_{L T}=v_{T T}=0.25, \rho=1408\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

Figs. 3 and 4 show the radial stress $\left(\sigma_{z}\right)$ across the thickness in two and three layered panels at 2.5 msec . At this time the dynamic loading in figure forward (Eq. 20) has the maximum value and is contant from this point. It is seen that the boundary and inter laminar conditions are satisfied. Circumferential normal stress (σ_{Y}) and it's time history for two and three layers are shown in Figs. 5

Fig. 3 Distribution of σ_{Z} across thickness at $Y=\phi / 2$, $z=1 / 2$ ($0 / 90 \mathrm{deg}$.)

Fig. 5 Distribution of σ_{Y} across thickness ($0 / 90$ deg.)

Fig. 4 Distribution of σ_{Z} across thickness at $Y=\phi / 2$, $z=1 / 2(0 / 90 / 0 \mathrm{deg}$.)

Fig. 6 Distribution of σ_{Y} across thickness (0/90/0 deg.)

Fig. 7 Variation of σ_{Y} with time (0/90 deg.)

Fig. 9 Distribution of $\tau_{Z Y}$ across thickness ($0 / 90$ deg.)

Fig. 11 Variation of $\tau_{Z Y}$ with time ($0 / 90$ deg.)

Fig. 8 Variation of σ_{Y} with time ($0 / 90 / 0$ deg.)

Fig. 10 Distribution of $\tau_{Z Y}$ across thickness (0/90/0 deg.)

Fig. 12 Variation of $\tau_{Z Y}$ with time ($0 / 90 / 0$ deg.)

Fig. 13 Distribution of $\tau_{X Z}$ across thickness ($0 / 90$ deg.)

Fig. 15 Variation of U_{Z} with time ($0 / 90 \mathrm{deg}$.)

Fig. 17 Variation of $\tau_{X Z}$ with $H / R(0 / 90 \mathrm{deg}$.)

Fig. 14 Distribution of $\tau_{X Z}$ across thickness (0/90/0 deg.)

Fig. 16 Variation of U_{Z} with time (0/90/0 deg.)

Fig. 18 Variation of σ_{z} with $H / R(0 / 90$ deg.)

Fig. 19 Variation of σ_{y} with H / R ($0 / 90$ deg.)

Fig. 20 Variation of $\tau_{y z}$ with layer
and 6; and 7 and 8, respectively. As the Figures show, this stress is not continuous at inter laminae. In the case of three-layered panel this stress is symmetric about neutral axis and in mid lamina is greater than the other two laminae.
The in-plane shear stress in the circumferential direction $\left(\tau_{Z Y}\right)$ and it's variation with respect to time are shown in Figs. 9 through 12. This shear stress distribution is parabolic and satisfies the boundary and inter laminae conditions. It is also symmetric about the neutral axis in circumferential direction. The other in-plane shear stress ($\tau_{x Z}$) for two and three layer are shown in Figs. 13 and 14 respectively. This distribution also has an approximate parabolic form. The time history of the radial displacement distribution $\left(U_{Z}\right)$ are shown in Figs. 15 and 16.
Influence of depth to mid radius ratio (H / R) of panel in transverse shear stress $\left(\tau_{X Z}\right)$, normal radial stress $\left(\sigma_{Z}\right)$ and normal circumferential stress $\left(\sigma_{Y}\right)$ are shown in Figs. 17, 18 and 19, respectively. in Fig. 18 with increasing the H / R, shallow panel changes from thin shell to the thick one and this cause that the radial stress $\left(\sigma_{\mathrm{Z}}\right)$, changes from tension in the outer surface to the compression toward the inner layer. According to the Fig. 19 as H / R increases, the distribution of σ_{Y} across the thickness becomes more linear and close to the bending behavior of plate. Also discontinuity of this stress decreases with

Fig. 21 Variation of radial displacement $\left(U_{Z}\right)$ with $R / H(0 / 90)$
increasing the H / R. This is because that with increasing the thickness of shallow panel with constant radius, depth of panel decreases and consequently it's behavior is close to the behavior of the plate. Variations of in plane shear stress ($\tau_{Z Y}$) with layers is shown in Fig. 20. Fig. 21 shown distribution of radial displacement (U_{Z}) in three-dimensional elasticity and classic shell theory (CST). As expected the CST gives very poor results at relatively high ratio of H / R, and the elasticity solution asymptotically approaches to the CST solution.

5. Conclusions

The main aspect of an elasticity solution for any mechanical structure is to be able to solve the problem which can be used as a basic to access the degree of accuracy of other approximate methods. The elasticity solution of multi-layered shells and panels under dynamic loading is quite complicated, but as is shown in the paper, is possible with some restrictions for boundary conditions.
In this paper the response of multi-layered shallow cylindrical panels under dynamics loading is presented. The results achieved could be used for above mentioned purpose, and that, the following conclusions can be made;

1. The through-thickness distribution of transverse shear stresses, $\left(\tau_{Z Y}\right)$ and $\left(\tau_{X Z}\right)$ are very close to parabola. These distributions in two layered panel are not symmetric and their maximum are not located at mid radius of panels.
2. The sign of σ_{Z} changes with increasing the thickness to mid radius ratio H / R.
3. It is shown that CST underestimates the radial displacement $\left(U_{Z}\right)$ and gives a poor estimate for relatively high value of H / R. With increasing the thickness to mid radius ratio, the CST results approach the elasticity results.
4. Amplitude of vibration in radius direction $\left(U_{Z}\right)$ is increased in three layered panel $(0 / 90 / 0)$ in comparison with two layered one ($0 / 90$).
5. Through thickness shear stress $\left(t_{Z Y}\right)$ decreased with increasing the number of layers.

References

Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular platform using three-dimensional elasticity theory", Int. J. Solids Structures, 23(7), 897-913.
Huang, N.N. and Tauchert, T.R. (1992), "Thermal stresses in doubly-curved cross-ply laminates", Int. J. Solids Structures, 29(8), 991-1000.
Bhimaraddi, A. and Chandrashekhara K. (1992), "Three-dimensional elasticity solution for static response of simply supported orthotropic cylindrical shell", J. Composite Structurs, 20, 227-235.
Bhimaraddi, A. (1993), "Three-dimensional elasticity solution for static response of orthotropic doubly curved shallow shells on rectangular planform", J. Composite Structures, 24, 67-77.
Jing, H.S. and Tzeng, K.G., (1993), "Bending analysis of thick cross-ply laminated doubly-curved shells", Advanced Materials: Performance Through Technology Insertion, 38, I, Anaheim, California, USA, 707-718.
Soong, T.V. (1970), "A subdivisional method for linear system", Proc. 11 ${ }^{\text {th. AIAA/ASME Structures, 211-223. }}$
Qatu, M.S. (1995), "Natural vibration of free, laminated composite triangular and trapezoidal shallow shells", Composites Structures, 31(1), 9-20.
Shakeri, M., Eslami, M. R. and Alibiglu, A. (2000), "Elasticity solution for thick laminated shallow circular cylindrical panels under dynamic patch load", Proc. The Second Asian-Australasian Conference on Composite Materials, 2, 921-927.

Shakeri, M., Eslami, M.R. and Alibigu, A. (2000), "Dynamic analysis of multi-layered anisotropic shallow cylindrical panels", Fourth Int. Colloquium on Computation of Shell \& Spatial Structures, 1-11.

Appendix

$$
\begin{gathered}
A_{4}=P_{n}\left[\frac{1}{3 R}\left(C_{12}^{k}+C_{55}^{k}\right)\left(z_{j}-z_{i}\right)-\frac{1}{2}\left(C_{13}^{k}+C_{55}^{k}\right)\right] \\
B_{4}=\frac{P_{n}}{2}\left[\frac{1}{3 R}\left(C_{12}^{k}+C_{55}^{k}\right)\left(z_{j}-z_{i}\right)+C_{13}^{k}+C_{55}^{k}\right] \\
C_{4}=\frac{-P_{n} \beta_{m}}{3}\left(C_{12}^{k}+C_{66}^{k}\right)\left(z_{j}-z_{i}\right) \quad D_{4}=\frac{-P_{n} \beta_{m}}{6}\left(C_{12}^{k}+C_{66}^{k}\right)\left(z_{j}-z_{i}\right) \\
E_{4}=-\left[\frac{1}{3}\left(C_{11}^{k} P_{n}^{2}+\beta_{m}^{2} C_{66}^{k}\right)\left(z_{j}-z_{i}\right)+C_{55}^{k}\left(\frac{1}{2 R}+\frac{1}{z_{j}-z_{i}}\right)\right] \\
F_{4}=-\frac{1}{6}\left(C_{11}^{k} P_{n}^{2}+\beta_{m}^{2} C_{66}^{k}\right)\left(z_{j}-z_{i}\right)+C_{55}^{k}\left(\frac{1}{2 R}+\frac{1}{z_{j}-z_{i}}\right) \\
G_{4}=-\frac{\rho}{3}\left(z_{j}-z_{i}\right), H_{4}=\frac{G_{4}}{2} \\
A=D_{1} \times K_{1}, B=E_{1} \times K_{1}, C=-D_{2} \times K_{2} \\
D=-F_{2} \times K_{2}, E=-E_{3} \times K_{3}, \quad F=-G_{3} \times K_{3} \\
A^{\prime}=-D_{1} \times K_{4}, B^{\prime}=-E_{1} \times K_{4}, C^{\prime}=D_{2} \times K_{5} \\
D^{\prime}=F_{2} \times K_{5}, E^{\prime}=E_{3} \times K_{6}, \quad F^{\prime}=G_{3} \times K_{6} \\
A^{\prime \prime}=-D_{1} \times K_{7}, B^{\prime \prime}=-E_{1} \times K_{7}, C^{\prime \prime}=D_{2} \times K_{8} \\
D^{\prime \prime}=F_{2} \times K_{8}, E^{\prime \prime}=E_{3} \times K_{9}, F^{\prime \prime}=G_{3} \times K_{9}
\end{gathered}
$$

where: Δh is the thickness increment and:

$$
\begin{gathered}
K_{1}=\frac{B_{2} \times C_{3}}{\operatorname{det} A_{1}^{1}}, K_{2}=\frac{B_{1} \times C_{3}}{\operatorname{det} A_{1}^{1}}, K_{3}=\frac{B_{2} \times C_{1}}{\operatorname{det} A_{1}^{1}}, K_{4}=\frac{A_{2} \times B_{3}}{\operatorname{det} A_{1}^{1}} \\
K_{5}=\left(A_{1} \times C_{3}-A_{3} \times C_{1}\right) \times \frac{1}{\operatorname{det} A_{1}^{1}}, \quad K_{6}=\frac{A_{2} \times C_{1}}{\operatorname{det} A_{1}^{1}}, K_{7}=\frac{A_{3} \times B_{2}}{\operatorname{det} A_{1}^{1}} \\
K_{8}=\frac{A_{3} \times B_{1}}{\operatorname{det} A_{1}^{1}}, \quad K_{9}=\left(A_{1} \times B_{2}-A_{2} \times B_{1}\right) \times \frac{1}{\operatorname{det} A_{1}^{1}} \\
A_{1}=\frac{C_{23}^{k}-C_{23}^{k+1}}{R}+\frac{C_{33}^{k}+C_{33}^{k+1}}{\Delta h}, \quad B_{1}=\beta_{m} \times\left(C_{23}^{K+1}-C_{23}^{K}\right)
\end{gathered}
$$

$$
\begin{gathered}
C_{1}=\beta_{m} \times\left(C_{13}^{K+1}-C_{13}^{K}\right), D_{1}=\frac{C_{33}^{K}}{\Delta h}, E_{1}=\frac{C_{33}^{K+1}}{\Delta h}, \quad A_{2}=\beta_{m} \times\left(C_{44}^{K}-C_{44}^{K+1}\right) \\
B_{2}=C_{44}^{k}\left(\frac{1}{\Delta h}-\frac{1}{R}\right)+C_{44}^{k+1}\left(\frac{1}{\Delta h}+\frac{1}{R}\right), \quad D_{2}=\frac{C_{44}^{K}}{\Delta h}, \quad F_{2}=\frac{C_{44}^{K+1}}{\Delta h} \\
A_{3}=\beta_{m} \times\left(C_{55}^{K}-C_{55}^{K+1}\right), C_{3}=\frac{1}{\Delta h} \times\left(C_{55}^{K}+C_{55}^{K+1}\right), \quad E_{3}=\frac{C_{55}^{K}}{\Delta h} \\
G_{3}=\frac{C_{55}^{K+1}}{\Delta h}, \operatorname{det} A_{1}^{1}=A_{1} \times B_{2} \times C_{3}-A_{2} \times B_{1} \times C_{3}-A_{3} \times B_{2} \times C_{1}
\end{gathered}
$$

CC

