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Abstract.  A procedure for critical buckling moment of a tapered beam is proposed with the application of 
potential energy calculations using Ritz method. Respective solution allows to obtain critical moments 
initiating lateral buckling of the simply supported, modestly tapered steel I-beams. In particular, 
lateral-torsional buckling of beams with simultaneously tapered flanges and the web are considered. 
Detailed, numerical, parametric analyses are carried out. Typical engineering, uniformly distributed design 
loads are considered for three cases of the load, applied to the top flange, shear centre, as well as to the 
bottom flange. In addition simply supported beam under gradient moments is investigated. The parametric 
analysis of simultaneously tapered beam flanges and the web, demonstrates that tapering of flanges 
influences much more the critical moments than tapering of the web. 
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1. Introduction 

 
Steel beams or columns tapered along their length or height are commonly applied in civil 

engineering because of their more optimal capabilities to carry on typical loads. This is particularly 
true when they are applied for middle size structures like industrial halls, trade malls, small 
bridges etc. That is why these type of steel structures are subjected of intensive research recently 
(see e.g., Marques et al. 2013, Benyamina et al. 2013, Yuan et al. 2013, Asgarian et al. 2013). 

When properly designed against lateral torsional buckling, the steel beams are very economical 
in practical applications. However if these beams are not sufficiently resistant against flexural- 
torsional or lateral buckling their load capacity may substantially be reduced. 

Stability of steel beams with linearly varying cross-sections along their length was analyzed by 
a relatively narrow group of specialists, though initial research on this problem started as early as 
in the fifties and sixties of the twentieth century. Butler (1966) presented the results of 
experimental I-section steel beams and channel sections with variable cross-section. Kitipornchai 
and Trahair (1972) gave approximate formulas for calculating the critical load initiating loss of 
stability of steel beams with tapered cross sections. The authors on the latter study also conducted 
an experiment on simply supported aluminium tapered I-beams. They found good agreement 
between their experimental results and the results of critical loads obtained from the analytical 
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formulas. 
Finite Difference Method was applied to the solution of the problem of stability of tapered steel 

beams by Brown (1981). Wang et al. (1986), and Saka (1997) presented in their work the problem 
of optimal shape of tapered webs of steel beam with respect to the maximum critical load. 

Probably the first attempt of applying the Finite Element Method (FEM) in determining the 
critical load of tapered steel beams was presented by Yang and Yau (1997). In their FEM model 
they took into account an uneven bending, using shell theory. These authors propose a formula 
with succeeding terms of stiffness matrix, which may deed possible to solve the respective 
stability problem. The obtained results were compared with existing experimental results of 
Kitipornchai and Trahair (1972). Further applications of FEM in solving the beam stability 
problems were presented by Bradford (1988), as well as Bradford and Cuk (1988). These 
researchers proposed matrices of rigidity and inertia of the beam finite elements which takes into 
account variations of the cross-section along the beam. Good agreement of their analytical 
solutions was confirmed with the experiments of Kitipornchai and Trahair (1972) for simply 
supported beam and a cantilever. A similar problem was also solved by Gupta et al. (1996). 
Another simplified method for determining the critical load to cover variations of the web of the 
beam was published by Raftoyiannis and Ermopoulos (2005). Comprehensive publication on the 
stability of steel beams with tapered webs was presented by Andrade et al. (2007). In their work 
they applied the Rayleigh - Ritz method to determine the critical load of simply supported beams 
and cantilevers, for two types of convergence of the web for various spans. A comparison of their 
results with FEM program ABAQUS showed a good agreement. The extension of the above 
studies was made by Zhang and Tong (2008). They proposed, an expression describing the 
potential energy in the beam with tapered web. Their formula for total potential energy include 
terms depending on the angle of inclination of the beam shelf to its axis. They also examined two 
cases of converging beams using ANSYS FEM software, comparing respective results of 
calculations. 

Recently Asgarian et al. (2013) and Benyamina et al. (2013) published papers on the stability 
of tapered beams limiting their research to the problem of tapered web. The paper by Asgarian et 
al. (2013) is devoted to the issue of stability of beams with arbitrary open cross-sections. These 
authors applied the method of power series to determine the critical lateral-torsional buckling of 
simply supported beams and cantilevers. It was demonstrated that when the number of power 
series terms exceeded 12, the difference between consecutive solutions was less than 1%. However 
they did not reveale exactly how the geometric section features along the beam length are 
changing. They analyzed the same load cases and patterns of convergence as in the paper by 
Andrade et al. (2007), showing good agreement of the results with existing solutions. The second 
recent paper on the stability of tapered beams was written by Benyamina et al. (2013) and was 
limited to beams with tapered web. They proposed a non-linear formula based on 1D model, 
which takes into account new kinematic relationships. Web tapered I-beam under uniformly 
distributed load was investigated for one scheme of convergence. This load was applied to the 
upper and lower flanges, as well as to the shear center. Also simply supported beam with tapered 
cross-section, under gradient moments at both ends was analyzed. The results were compared with 
the available previous literature output, demonstrating good agreement. 

The purpose of this paper is to apply the Ritz method to obtain the critical lateral-torsional 
buckling moments for modestly tapered beams. Unlike in the previous papers, this time 
simultaneous changes of the web height and flange width are considered. This was obtained by 
defining two separates parameters describing web variations (TP) and changes in the flanges 
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width (βTP). Respective formula for the critical buckling moment depending on these parameters is 
derived and applied in detailed parametric study. 
 
 
2. A model of bisymmetric tapered I-beam 

 
2.1 Geometrical properties of tapered cross-section 
 
Geometrical properties of beams with tapered cross-sections depend on parameters which 

define their shape. In this paper following two parameters were chosen: TP to describe the web 
and βTP for flanges. This parameters can be change simultaneously in all the calculations. These 
parameters are described in detail in Fig. 1 together with the initial cross-sectional characteristics 
defined as follows 
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It is assumed that the tapering of the beams analyzed in this paper is limited only to twice the 
cross-section size at both support. When parameters TP and βTP equals zero, the beam is prismatic 
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Fig. 1 Geometrical properties of beam with tapered web and flanges 
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with constant values of dimensions h0 and bf 0 along the beam (uniform shape). The maximum 
tapering takes place when the support cross-section is twice as big as the left support. In this case 
it is assumed that the taper parameter takes value equal to 1. 

Assuming that the thickness of the web and flanges are constant along the length of the beam, 
the characteristics of any geometrical cross-section varying over the length, can be expressed as 
follows 
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In these equations A(x) is the cross section area, IT (x) is the torsion constant of the cross-section, 

Iy (x), Iz (x) are principal moment of inertia about y and z axes, I (x) is the warping constant, hw0 is 
the height of web, tw is the web thickness, tf is the flange thickness. 

 
2.2 Total potential energy for beam with tapered cross-section 
 
In this paper the functional for the total potential energy of the beam, commonly available in 

the literature (Benyamina et al. 2013, Andrade et al. 2007, Bradford and Cuk 1988) was used. In 
addition, components for total potential energy depending on the strain energy in web and flanges, 
due to their rotation and displacement during lateral buckling, were included (Bradford and Cuk 
1988). Similar derivations of the components of the potential energy functional can be found in the 
papers by Benyamina et al. 2013 and Andrade et al. (2007). 

Key element of present paper is now an introduction of the parameters defining the tapering of 
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Fig. 2 I-section under lateral-torsional buckling 

 
 

the web TP and flanges βTP into the integrands of the potential energy. 
In Fig. 2, u, v, w are the displacement components of the shear centre point in the x, y and z 

directions, x is the twist angle. 
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Where Izt (x) is moment of inertia of the tension flange, Izb (x) is moment of inertia of the 
compression flange 

 
 

3. General solution for critical buckling moments using Ritz method 
 

Introducing discretization into the integral formulas (10), the problem is brought to systems of 
algebraic equations with unknowns parameters ai, assumed for basis shape functions θi. 
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When it comes to the state of static equilibrium of the beam, the potential energy takes a 
minimum value, so the parameters ai can be determined with following extreme conditions 
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To solve the stability problems using variational calculus method, proper functions θi should be 
adopted to reflect the appropriate shape of the element axis after lateral buckling. These functions 
are limited in this paper to the shape characterising for simply supported I-beams. For this model 
the boundary conditions are defined as follows 
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Now the Ritz functions can be defined. For this purpose trigonometric functions satisfying the 
boundary conditions (13) are defined as follows 
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Application of a finite number of elements of the sum in the expressions (14-15) leads to 
formal substitution of a continuous model by the discrete one. In order to obtain the desired level 
of accuracy of the calculations one must take a sufficiently large number of the elements. For 
practical, engineering, design calculations of simply supported beams, the critical buckling load 
can sufficiently be estimated using the first approximation (i = 1). 

In order to determine the critical buckling load, function of the gradient of the bending moment, 
depending on the load of the beam 
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should be introduced into the potential energy functional (10). In equation (16) symbol My stands 
for the actual bending moment while M  represents maximum bending moment in static 
equilibrium, during the state of the loss of stability critical buckling moment. 

Finally following form for the potential energy with Ritz functions (14-15) is derived 
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Expression (17) can be written in a more concise form as follows 
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Applying, in accordance with the Ritz method, minimization of the functional of total potential 

energy (17) using conditions 
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the following system of homogeneous, algebraic equations is obtained 
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The components of the determinant of the matrix Eq. (20) for the first iteration (i = m = n = 1) 

take form 
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The determinant of formula (20) equals the smallest, zero value for the critical moment Mcr 
which initiates loss of stability of the beam. The solution of Eq. (20) takes form of the familiar 
square polynomial with the unknowns +/-M. Detailed definition of critical moment Mcr depends on 
the external loads and geometrical features of the beam. Detailed examples are given in Section 5 
of this paper. 

 
 

4. Application for tapered beam under different load cases 
 
4.1 I-beam with tapered cross-section with uniformly distributed load 
 
Simply supported beam with uniformly distributed load was adopted as shown in Fig. 3. 
In this case formula (16) takes following form 
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while the maximum bending moment in the beam equals 
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and actual bending moment in the beam equals 
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Fig. 3 Scheme beam with uniformly distributed load 
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The components of the matrix (20), taking into account formula (24) and the characteristics of 
the beam shown in Fig. 1 are 
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Setting the integrand expressions, taking into account the geometric parameters of the tapered 
beam for various patterns of tapering (Fig. 1), matrix elements (20) were obtained. Finally the 
particular solution Eq. (20) for the simply supported beam under uniformly distributed load equals 
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Solution of Eq. (30) with respect to moment M, leads to the determination of the critical 
buckling moments initiating loss of stability. This solution will be used in calculation examples of 
Section 5. 

 
4.2 I-beam with tapered cross-section under positive gradient moments 
 
Simply supported beam under positive gradient moments was considered as shown in Fig. 4. 
In this case formula (16) takes following form 
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Fig. 4 Scheme beam under positive gradient moments 
 
 

while the maximum bending moment in the beam equals 
 

MM max (32)
 

and actual bending moment in the beam equals 
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The components of the matrix (20), taking into account formula (31) and the characteristics of 
the beam shown in Fig. 1 are 
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Using the same procedure as mentioned in paragraph 4.1 matrix elements (20) were calculated 
and in next step critical buckling moments for beam under positive moment gradient were 
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computed. Detailed examples are shown in section 5 of this paper. 
 
 

5. Applications and results of calculations 
 
The purpose of this chapter is to check the accuracy of solutions obtained by the method 

proposed in Chapter 4, in comparison with the finite element approach as well as to carry on a 
parametric analysis. Steel beams are assumed to be made of steel with Young's modulus of E = 
210 GPa, modulus of Kirchoff G = 81 GPa, i.e., Poisson’s ratio = 0.3. 

The verifying computations were performed using the ANSYS FEM software system. A rod 
“BEAM188” finite element was assumed. It is a two-node element with seven degrees of freedom 
- three translational UX, UY, UZ, three rotary ROTX, ROTY, ROTZ and seventh optional degree 
of freedom to restrict the freedom of cross-sectional warping. The beam supports were modeled by 
blocking translational degrees of freedom UY = 0, UZ = 0 and locking the axial rotation degree of 
freedom ROTX = 0. 

 
5.1 Example 1 – I-beam with tapered flanges 
 
In this example, critical buckling moments of simply supported steel bisymmetrical I-beam 

with tapered flanges and uniform web was investigated. The beam span varied from 6 to 12 m, the 
taper parameter changed from βTP = 0 (prismatic beam) to βTP = 1 (bm = 2bf 0), the load was applied 
to the shear center, the upper flange and the lower flange. The difference between the values of the 
critical buckling moments, calculated using the Ritz method, and those of the ANSYS program 
were determined according to the formula. 

 

%100
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Ansys
cr

Ansys
cr

Ritz
cr

M

MM
 (37)

 
Tables 2A-2C summarize the critical buckling moments for beams with taper flanges for the 

tapering parameter βTP = 0  1, as well as for different variants of the application of the load on the 
section height.  

First the results using formula (30) and the FEM solutions are compared. In all the three 
analyzed cases (beams with spans 6, 9 and 12 m), the critical buckling moments calculated using 
the formula (30) revealed sufficient accuracy (Tables 2A-2C). 

For beam with a load on the upper flange (ez(x) = 0.15 m), the maximum difference between the 
critical moments calculated by Ritz method, and in the program ANSYS were up 7%, respectively, 
for the scheme of Fig. 3(b) (ez(x) = 0, 0 m) - 3.8%, and Fig. 3(c) (ez(x) = - 0.15 m) - 10.7%. 

Next a parametric analysis with respect to flange tapering βTP is carried out. It can be seen that 
the convergence of the flanges has a significant influence on the growth of critical buckling 
moments (Tables 2A-2C) with respect to the prismatic beam (Tables 2A-2C, βTP = 0.0). For the 
load applied to the upper flange and the tapering parameter βTP = 0.4 the increase of critical 
buckling moment equals approx. 32%, while for the tapering parameter βTP = 1.0 up to 64%, 
relative to prismatic beam with βTP = 0.0. 

For the remaining two spans of beam (9 m and 12 m), with the same parameters of flanges 
tapering the differences were similar. 

907



 
 
 
 
 
 

Juliusz Kuś 

 

Fig. 4 Sketch showing a simply supported beam with tapered flanges, under distributed load 
applied to top flange (a), shear centre (b) and bottom flange (c) 

 
 

Table 1A Critical buckling moments for simply supported beam with tapered flanges under distributed load 
(Fig. 4(a)) 

L (m) βTP 

Load on top flange 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 64,08 64,39 0,5 

0,2 73,62 73,55 0,1 

0,4 84,64 87,62 3,4 

0,6 97,89 102,86 4,8 

0,8 113,83 119,31 4,6 

1,0 132,87 137,02 3,0 

9,0 

0,0 40,29 40,84 1,3 

0,2 46,45 46,87 0,9 

0,4 52,74 54,98 4,1 

0,6 59,86 63,48 5,7 

0,8 67,90 72,49 6,3 

1,0 77,35 82,12 5,8 

12,0 

0,0 30,24 30,51 0,9 

0,2 34,69 35,10 1,2 

0,4 39,23 40,86 4,0 

0,6 44,18 46,99 6,0 

0,8 49,63 53,35 7,0 

1,0 55,68 59,94 7,1 
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Table 1B Critical buckling moments for simply supported beam with tapered flanges under distributed load 
(Fig. 4(b)) 

L (m) βTP 

Load on shear centre 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 86,45 86,70 0,3 

0,2 102,81 103,09 0,3 

0,4 122,12 124,96 2,3 

0,6 145,24 148,86 2,4 

0,8 172,82 174,87 1,2 

1,0 205,45 203,17 1,1 

9,0 

0,0 51,22 51,17 0,1 

0,2 60,02 60,55 0,9 

0,4 70,19 72,29 2,9 

0,6 81,92 84,85 3,5 

0,8 95,46 98,31 2,9 

1,0 111,06 112,80 1,5 

12,0 

0,0 35,97 36,48 1,4 

0,2 42,55 43,02 1,1 

0,4 49,36 50,94 3,1 

0,6 57,01 59,22 3,7 

0,8 65,62 68,22 3,8 

1,0 75,32 77,74 3,1 
 
 

Table 1C Critical buckling moments for simply supported beam with tapered flanges under distributed load 
(Fig. 4(c)) 

L (m) βTP 

Load on bottom flange 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 115,29 116,45 0,9 

0,2 143,41 138,54 3,5 

0,4 175,95 170,52 3,2 

0,6 215,15 205,76 4,6 

0,8 261,90 244,38 7,2 

1,0 317,06 286,48 10,7 

9,0 

0,0 63,58 64,07 0,8 

0,2 77,47 75,84 2,1 

0,4 93,32 91,88 1,6 

0,6 111,97 109,36 2,4 

0,8 133,81 128,29 4,3 

1,0 159,21 147,75 7,8 
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Table 1C Continued 

L (m) βTP 

Load on bottom flange 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

12,0 

0,0 43,07 43,58 1,1 

0,2 52,14 51,46 1,3 

0,4 62,05 61,74 0,5 

0,6 73,49 72,85 0,9 

0,8 86,65 84,74 2,3 

1,0 101,73 97,56 4,3 
 
 
5.2 Example 2 – I-beam with simultaneously tapered flanges and web 
 
In the following example, critical buckling moments for simply supported steel I-beam with a 

cross section which has both tapered flanges and the web are analyzed. Span of the beam is set to 6 
m, 9 m and 12 m. The tapering parameter of web and flanges changes from TP = βTP = 0 (prismatic 
beam) to tp = βtp = 1 (hm = 2h0, bm = 2bf 0). 

The values of the critical moments are gathered in Tables 3A-3C. The load was applied to the 
shear centre, as well as to the upper and lower flanges. 

First the accuracy of the solutions using formula (30) and the FEM ANSYS model are 
compared. Again the results using the Ritz method are in sufficient agreement with the results of 
the FEM analysis. In most cases it is about 0,2%-5% which is enough in practical engineering, 

 
 

 

Fig. 5 Sketch showing a simply supported beam with simultaneously tapered web and flanges, 
under distributed load applied to top flange (a), shear centre (b) and the bottom flange (c) 
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Table 2A Critical buckling moments for simply supported beam with simultaneously tapered flanges and 
web under distributed load (Fig. 5(a)) 

L (m) TP = βTP 

Load on top flange 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 64,4 64,3 0,1 

0,2 76,1 81,2 6,3 

0,5 102,9 111,4 7,6 

0,8 145,0 147,8 1,9 

1 184,1 175,8 4,7 

0,0 40,8 40,8 0 

9,0 

0,2 46,9 49,9 6,0 

0,5 59,6 65,2 8,7 

0,8 78,2 83,0 5,8 

1 95,2 96,3 1,2 

0,0 30,5 30,5 0 

0,2 34,7 36,8 5,6 

12,0 

0,5 42,7 47,0 9,1 

0,8 53,5 58,3 8,3 

1 63,1 66,7 5,3 

0,0 64,4 64,3 0,1 

0,2 76,1 81,2 6,3 

0,5 102,9 111,4 7,6 
 
 

Table 2B Critical buckling moments for simply supported beam with simultaneously tapered flanges and 
web under distributed load (Fig. 5(b)) 

L (m) TP = βTP 

Load on shear centre 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 86,7 85,9 0,9 

0,2 107,9 112,0 3,7 

0,5 154,4 161,0 4,1 

0,8 225,1 219,6 2,5 

1 289,5 266,3 8,7 

0,0 51,2 50,8 0,7 

9,0 

0,2 61,7 64,1 3,7 

0,5 83,4 87,7 4,8 

0,8 115,0 116,1 0,9 

1 143,3 138,0 3,9 

0,0 36,5 36,3 0,6 

0,2 43,3 45,0 3,7 
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Table 2B Continued 

L (m) TP = βTP 

Load on shear centre 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

12,0 

0,5 56,5 59,9 5,7 

0,8 74,9 77,5 3,4 

1 90,9 90,8 0,2 

0,0 86,7 85,9 0,9 

0,2 107,9 112,0 3,7 

0,5 154,4 161,0 4,1 
 
 

Table 2C Critical buckling moments for simply supported beam with simultaneously tapered flanges and 
web under distributed load (Fig. 5(c)) 

L (m) TP = βTP 

Load on bottom flange 

Critical buckling moments (kNm) 
% 

Ritz method Ansys 

6,0 

0,0 116,6 116,1 0,5 

0,2 152,4 154,2 1,2 

0,5 254,2 243,8 4,3 

0,8 348,4 325,6 7,0 

1 454,2 402,8 12,8 

0,0 64,1 63,8 0,4 

9,0 

0,2 83,1 82,3 1,0 

0,5 116,4 117,7 1,0 

0,8 168,6 162,0 4,0 

1 215,2 196,4 9,5 

0,0 43,6 43,4 0,4 

0,2 55,1 55,0 0,2 

12,0 

0,5 74,4 76,4 2,7 

0,8 104,3 102,8 1,5 

1 130,6 123,4 5,8 

0,0 116,6 116,1 0,5 

0,2 152,4 154,2 1,2 

0,5 254,2 243,8 4,3 
 
 

design applications. The maximum difference did not exceed 10%. 
As a result of this parametric analysis, it can be concluded that the simultaneous tapering of the 

flanges and web causes a significant increase of the critical lateral-torsional buckling moments. 
Consider for example the results for the beam with the bottom flange loaded. For the tapering 

parameters TP = βTP < 0.5 the increase of critical moments with respect to the prismatic beam 
assumption equals approx. 24%. For TP = βTP = 1.0 the critical moment increases up to 75%. 
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Fig. 6 Plot of critical buckling moments as a function of flange and web taper parameters (9 m 
span beam under uniformly distributed load applied to its shear centre) 

 
 
In order to assess the influence of tapering of beam elements on critical buckling moments, a 

surface 3D plot has been prepared and presented in Fig. 6. The computations were carried out for a 
9 m span beam under uniformly distributed load applied to the shear centre. In this plot the first, 
horizontal axis stands for the web taper parameter (TP), while the second one represents flange 
taper parameter (βTP). 

The comparison between critical buckling moments calculated using formula (30) for different 
tapering parameters of beams elements, showed that the critical buckling moments are the most 
influenced in case of simultaneously tapered flanges and web. Tapering of web gives relatively 
small increase of the critical buckling moment. The difference between prismatic beam (TP = 0) 
and the web tapered beam (TP = 1) is about 11%. Similar differences of critical buckling moments 
for the web tapered beam can be found in the paper by Andrade et al. (2007). Beams with tapered 
flanges are more resistant to stability loss than beams with tapered web. For the same value of 
tapering parameter, difference between values of critical buckling moments for beam with tapered 
flanges (βTP = 1) and beam with tapered web (TP = 1) was about 59%. 

 
5.3 Example 3 – I-beam with tapered cross-section under gradient moments 
 
In the following example, critical buckling moments of two sets of simply supported beams 

with tapered cross-section, under gradient moments are addressed. In first case (Fig. 7(a)) 
flange-tapered cross-section is analyzed. Range of gradient moment varies from  = 1 to  = 0,25. 
Flange width is changing from bf 0 = 150 mm to bm = 300 mm. Table 5 contains values of critical 
buckling moments compared with FE model in ANSYS. 

Critical buckling moments evaluated by the presented method and FE model are in good 
agreement. Relative differences do not exceed more than 4%. As could be expected highest value 
of critical load have beams with taper parameter βTP equal 1,0. 
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Fig. 7 Sketch showing a simply supported beam under gradient moments 
 
 

Table 3 Critical buckling moments for simply supported flange-tapered beam under gradient moments (Fig. 
7(a)) 

L (m) βTP 

Critical buckling moment (kNm) 

 = 0,25  = 0,5  = 0,75  = 1 

This paper ANSYS This paper ANSYS This paper ANSYS This paper ANSYS

6,0 

0,0 132,9 134,9 110,8 113,6 94,9 93,6 83,1 82,1 

0,25 164,2 166,7 136,9 140,3 117,3 119,8 102,6 104,3 

0,50 203,2 206,2 169,4 173,6 145,2 148,2 127 129,5 

0,75 251,7 251,3 209,8 203,8 179,8 185,9 157,3 158,6 

1,0 311,6 308,1 259,6 266,1 222,5 227,2 194,7 193,4 

9,0 

0,0 79,1 75,3 65,9 64,5 56,5 55,8 49,4 48,9 

0,25 96,4 100,2 80,3 84 68,8 71,6 60,2 62,1 

0,50 116,9 127,5 97,4 105,1 83,5 88,4 73 75,9 

0,75 141,2 141,7 117,7 115,1 100,8 95,8 88,2 81,7 

1,0 170,1 189 141,8 151,1 121,5 125,1 106,3 105,9 

 
 
Second set (Fig. 7(b)) contains the beam with linear web tapering varying from h0 at left 

support to hm at right support. In all six cases height of beam on left side was constant and takes 
value hm = 300 mm, height of the beam on left side was changing from h0 = 180 mm (TP = 0,67) 
to h0 = 300 mm (TP = 0,0) Gradient moment is varied from  = 1 (which correspond to uniform 
moment) to  = 0,25. Two types of length are investigated. Table 6 gives results of calculations 
using proposed Ritz method with compare to existing values of critical buckling loads from paper 
by Benyamina et al. (2013). 
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Table 4 Critical buckling moments for simply supported web-tapered beam under gradient moments 
(Fig. 7(b)) 

L (m) TP 

Critical buckling moment (kNm) 

 = 0,25  = 0,5  = 0,75  = 1 

This 
paper 

Benyamina 
et al. (2013) 

This 
paper 

Benyamina
et al. (2013)

This 
paper

Benyamina
et al. (2013)

This 
paper 

Benyamina
et al. (2013)

4,0 

0,67 209,4 207,4 174,5 175,5 149,6 150,8 130,8 131,7 

0,25 224,9 220,1 186,9 186,9 160,2 161,1 140,2 140,9 

0,0 240,7 233,0 200,6 198,3 171,9 171,4 150,4 150,2 

6,0 

0,67 119,7 118,7 99,7 100,8 85,5 86,8 74,8 75,8 

0,25 125,9 123,5 105,0 105,0 90,0 90,7 78,8 79,3 

0,0 132,9 128,8 110,8 109,4 94,9 94,6 83,0 82,9 

 
 
Comparing the results from the above table, it can be seen that proposed approximation is 

enough accurate for the tapered beam analyzed in the paper. Highest difference does not exceed 
more than 3%. 

 
 

6. Conclusions 
 

Results of the research on lateral torsional buckling problem of beams with simultaneously 
tapered flanges and webs are reported. A solution of this problem using the Ritz method is 
developed. It allows determining the critical lateral-torsional buckling moments for tapered beams. 

Bisymmetrical I-beams with linearly changing flanges as well as with equally variable flanges 
widths and web heights were analysed, considering four load cases: with distributed load applied 
at the shear centre, at the upper flange and at the lower flange and under gradient moments. 

It was observed that the values of critical buckling moment calculated using the applied 
implementation of the Ritz method (Eq. (30)) and the FEM approach, gave satisfactory agreement 
from an engineering point of view (mostly below 2% - only in three extreme cases reaching 10%). 

As could be expected, the critical moments computed for the beams with converging flanges 
are significantly higher than the critical moments computed for prismatic beams (from 16% for βTP 
= 0,2 up to 64% for βTP = 1,0). 

For beams with simultaneously tapered flanges widths and web height, the critical buckling 
moment increased by 70% (TP = 1,0, βTP = 1,0) compare to the beam with a prismatic cross- 
section for the same initial values of h0 and bf 0 (TP = βTP = 0). It may also be concluded that the 
simultaneous tapering of the flanges and the web generates a relatively small increase in the 
critical moments of the beams compare, to the tapered flanges. This increase equals respectively 
30% and 17% for beams with a span of 6 m and 12 m. 

Moreover, it can be seen that among the analyzed structural cases, tapering of web has the 
smallest influence for critical buckling moments of beams. Difference between values of critical 
buckling moments for prismatic beam and web tapered beam was about 11%. 

It may be concluded that the application of the tapered flanges and web is particularly 
beneficial since these types of beams are not only lighter but also represent better load capacity 
with respect to the lateral torsional bucking. 
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