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Abstract.  A numerical solution using finite difference method to evaluate the thermal buckling of simply 

supported FGM plate with variable thickness is presented in this research. First, the governing differential 

equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the 

governing equation has been solved using finite difference method. After validating the presented numerical 

method with the analytical solution, the finite difference formulation has been extended in order to include 

variable thickness. The accuracy of the finite difference method for variable thickness plate has been also 

compared with the literature where a good agreement has been found. Furthermore, a parametric study has 

been conducted to analyze the effect of material and geometric parameters on the thermal buckling 

resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than 

FGM plates. 
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1. Introduction 

 

Functionally graded materials (FGM) are considered as composite materials with smoothly 

varying properties through the thickness. The smoothness can be realized by gradually varying the 

volume fraction of the constituent materials. Usually, FGM are composed of metal and ceramic, 

where the metal has a high mechanical strength compared to ceramic material, while the ceramic 

material is characterized by its excellent resistance in high temperature environment due to its low 

thermal conductivity. Nowadays, FGM are used in many engineering and industrial domains, 

aircraft, space vehicles, etc., because they have excellent mechanical properties under high 

temperature environment. 

Because of the advantages of FGM, a number of researches have been carried out to investigate 
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the behavior of FGM under thermal environment. Many different theories and solutions are 

suggested in the literature (Noseir and Reddy 1992, Rohit and Maiti 2012, Koohkan et al. 2010, 

Mohammadi et al. 2010, Fekrar et al. 2013, Praveen and Reddy 1998). Hiroyuki (2009) 

investigated the thermal and mechanical analysis of FGM plates based on two-dimensional 

higher-order deformation theory through using power series expansion for the evaluation of 

displacements and stresses. Bouazza et al. (2009) analyzed thermal buckling behavior of a sigmoid 

distribution of FGM plates under uniform, linear, and sinusoidal temperature rise across the 

thickness. They used the first order shear deformation theory and the results are compared to those 

of classical plate theory. Zenkour and Mashat (2010) proposed a sinusoidal shear deformation 

plate theory (SPT) for analyzing thermal buckling of FGM plates. They compared the results with 

those obtained by using HPT, FPT and CPT where they found that their results are very close to 

those of HPT. Raki et al. (2012) presented a closed-form solution based on higher order shear 

deformation theory to investigate the critical buckling temperature. A uniform and gradient 

temperature through the thickness is considered. The results are compared with those obtained by 

finite element method. Javaheri and Eslami (2002a, b) carried out a mechanical and thermal 

buckling analysis of FGM plates based on the classical plate theory; furthermore, they studied also 

the thermal buckling of FGM plates using higher order shear deformation theory (2002c). Lanhe 

(2004) conducted a research work to study the thermal buckling of moderately thick rectangular 

FGPs based on the first order shear deformation theory. 

It should be mentioned that plates with constant thickness have been extensively studied. Even 

so, the variable thickness plates have also attracted the attention of designers and researchers. Such 

modification in shape can better enhance the smoothness of the stress distribution through 

decreasing the geometrical discontinuities. However, studies on variable thickness FGM plates 

using either closed-form solution or numerical methods are limited in number compared to 

constant thickness plates. As an example, a simple procedure was presented by Ait Atmane et al. 

(2011) where he studied the free vibration of sigmoid functionally graded beams with variable 

cross-section based on Bernoulli-Euler beam theory for simply supported, clamped and free ends 

type of supports. Rajasekaran and Wilson (2013), presented a numerical solution using finite 

difference method to evaluate the exact buckling loads and vibration frequencies of variable 

thickness isotropic plates. Various combinations of boundary conditions as well as many types of 

loading were considered. The researchers found a close agreement with the results in the literature. 

Mozafari (Mozafari and Ayob 2012, Mozafari et al. 2010a) studied the stability of a simply 

supported FGM plates with linearly varying thickness under mechanical buckling load using the 

higher-order theory assumptions. The presented formulation is based on Love-Kirchhoff 

hypothesis and the Sanders non-liner strain-displacement relations. 

Few studies were carried out specifically for the thermal analysis of FGM plates with variable 

thickness. Mozafari et al. (2010b), based on the same assumptions mentioned previously, they 

studied the effect of thickness variation on the thermal buckling of FGM plates. Moreover, 

Mozafari et al. (2012a) used a colonial competitive algorithm for optimized critical thermal 

buckling load for a FGM plate with variable thickness. In another paper (2012b), they based their 

work on imperialist competitive algorithm to optimization of critical buckling temperature for 

FGM plates with a variable thickness under non-uniform temperature load using a third-order 

shear deformation; the objective of this study was to maximize the critical temperature capacity of 

a FGM plate. Ghomshei and Abbasi (2013) developed a finite element formulation for analyzing 

the axisymmetric thermal buckling of FGM annular plates with a variable thickness. Pouladvand 

(2009) examined thermal stability of thin FG rectangular plates with variable thickness, the plate 
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Fig. 1 Typical FGM plate 

 

 

was considered simply supported in all edges, and the stability and equilibrium equation of plate 

was derived based on classical plate theory. The buckling analysis of FG plate was loaded under 

uniform, linear and non-linear temperature gradient through the thickness. 

It is intended here to accurately determine the critical buckling temperature in functionally 

graded plates with constant as well as variable thickness under uniform temperature rise. To this 

end, based on an analytical formulation to evaluate the critical buckling temperature difference, the 

governing equation is obtained. This equation is solved for simply supported BCs using the finite 

difference method. It should be mentioned that the finite difference method is adopted in order to 

have the ability of including the plate thickness variation. The effects of material and geometric 

properties are studied. 
 

 

2. Theoretical formulation 
 

Consider an elastic rectangular plate. The local coordinates 𝑥 and 𝑦 define the mid-plan of 

the plate, whereas the 𝑧-axis originated at the middle surface of the plate is in the thickness 

direction, Fig. 1. The material properties, such as Young’s modulus on the upper and lower 

surfaces are different but are pre-assigned according to the performance demands. 

The variation of FGM constituents follows a function where most researchers use the 

power-law function, exponential function, or sigmoid function to describe the material variation in 

terms of volume fractions. In order to compare the current study results with those of other 

researchers, two types of variations are used: Sigmoid (S-FGM) and power-law variations 

(P-FGM). 
 

 

3. Estimation of mechanical properties of FGM 
 

3.1 Sigmoid FGM variation 
 

The sigmoid variation (S-FGM) can be described in terms of volume fraction as follows 
 

𝑉𝑓
1 𝑧 = 1 −

1

2
(1 −

2𝑧

ℎ
)𝑘           0 ≤ 𝑧 ≤

ℎ

2                       
 

(1) 

𝑉𝑓
2 𝑧 =

1

2
(1 +

2𝑧

ℎ
)𝑘           −

ℎ

2
≤ 𝑧 ≤ 0 
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where 𝑘  is the material parameter that dictates the material variation profile through the 

thickness ℎ. 

By using the rule of mixture, the material properties such as modulus of elasticity 𝐸 and 

thermal expansion 𝛼 are assumed to be function of the constituent materials as, Fig. 2(a) 
 

𝐸 𝑧 =  
𝑉𝑓

1 𝑧 𝐸𝑐 +  1 − 𝑉𝑓
1 𝑧  𝐸𝑚             0 ≤ 𝑧 ≤

ℎ

2

𝑉𝑓
2 𝑧 𝐸𝑐 +  1 − 𝑉𝑓

2 𝑧  𝐸𝑚         −
ℎ

2
≤ 𝑧 ≤ 0

  (2) 

 

𝛼 𝑧 =  
𝑉𝑓

1 𝑧 𝛼𝑐 +  1 − 𝑉𝑓
1 𝑧  𝛼𝑚          0 ≤ 𝑧 ≤

ℎ

2

𝑉𝑓
2 𝑧 𝛼𝑐 +  1 − 𝑉𝑓

2 𝑧  𝛼𝑚         −
ℎ

2
≤ 𝑧 ≤ 0

  (3) 

 

where the indices ⬚𝑐  and ⬚𝑚  indicate the property of the ceramic and metal of the FGM plate, 

respectively. 
 

3.2 Power-law variation 
 

For power-law type of material distribution (P-FGM), the volume fractions of ceramic 𝑉𝑐  and 

metal 𝑉𝑚  are given by 

𝑉𝑐 = (
𝑧

ℎ
+

1

2
)𝑘 , 𝑘 ≥ 0 (4a) 

 

𝑉𝑚  𝑧 + 𝑉𝑐 𝑧 = 1 (4b) 

 

The material properties of the FGM plate are expressed as follows, Fig. 2(b) 
 

𝐸 𝑧 = 𝐸𝑐𝑉𝑐 + 𝐸𝑚 (1 − 𝑉𝑐) (5a) 
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(a) S-FGM variation (b) P-FGM variation 

Fig. 2 Young’s modulus variation in terms of the martial parameter k for S-FGM and P-FGM plate 
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𝛼 𝑧 = 𝛼𝑐𝑉𝑐 + 𝛼𝑚 (1 − 𝑉𝑐) (5b) 

 

3.3 Formulation of the stability equations 
 

Assuming the FGM plate shown in Fig. 1, with 𝑢, 𝑣, 𝑤 denote the displacement of the neutral 

plane of the plate in 𝑥, 𝑦, 𝑧 directions, respectively. The strains of the plate can be expressed 

according to the first order shear deformation theory as given in Eq. (6). Besides, the forces and 

moments per unit length are given in terms of the stress components through the thickness as Eq. 

(7) 
𝜀𝑥 = 𝑢,𝑥 + 𝑧 𝜙𝑥,𝑥

𝜀𝑦 = 𝑣,𝑦 + 𝑧 𝜙𝑦,𝑦

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 + 𝑧  𝜙𝑥,𝑦 + 𝜙𝑦,𝑥 

𝛾𝑥𝑧 = 𝜙𝑥 + 𝑤,𝑥

𝛾𝑦𝑧 = 𝜙𝑦 + 𝑤,𝑦

 (6) 

 

𝑁𝑖𝑗 =  𝜎𝑖𝑗  𝑑𝑧
ℎ/2

−ℎ/2

𝑀𝑖𝑗 =  𝜎𝑖𝑗  𝑧 𝑑𝑧
ℎ/2

−ℎ/2

𝑄𝑖𝑗 =  𝜏𝑖𝑗  𝑑𝑧
ℎ/2

−ℎ/2

 (7) 

 

The nonlinear equations of equilibrium according to Von Karman's tensor are given by 
 

𝑁𝑥,𝑥 + 𝑁𝑥𝑦 ,𝑦 = 0

𝑁𝑦,𝑦 + 𝑁𝑥𝑦 ,𝑥 = 0

𝑀𝑥,𝑥 + 𝑀𝑥𝑦 ,𝑦 − 𝑄𝑥 = 0

𝑀𝑥𝑦 ,𝑥 + 𝑀𝑦,𝑦 − 𝑄𝑦 = 0

𝑄𝑥,𝑥 + 𝑄𝑦,𝑦 + 𝑞 + 𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦 + 2 𝑁𝑥𝑦𝑤,𝑥𝑦 = 0

 (8) 

 

The use of Eqs. (2)-(3), (6)-(7) reduces Eq. (8) to the following equation 
 

𝛻4𝑤 +
2 1 + 𝜈 

𝐸1
𝛻2 𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦 + 2 𝑁𝑥𝑦𝑤,𝑥𝑦 + 𝑞 

−
𝐸1 1 − 𝜈2 

𝐸1𝐸3 − 𝐸2
2  𝑁𝑥𝑤,𝑥𝑥 + 𝑁𝑦𝑤,𝑦𝑦 + 2 𝑁𝑥𝑦𝑤,𝑥𝑦 + 𝑞 = 0 

(9) 

 

where 

 𝐸1 , 𝐸2 , 𝐸3 =   1, 𝑧, 𝑧2 𝐸 𝑧  𝑑𝑧
ℎ/2

−ℎ/2

 (10) 

 

The stability equations are established through using the critical equilibrium method. By 

assuming that the state of stable equilibrium of a general plate under thermal load may be simply 
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designated by the deflection 𝑤0. The displacement of the neighboring state is given by 
 

∆𝑤 = 𝑤0 + 𝑤1 (11) 
 

where 𝑤1 is an arbitrarily small increment of displacement. So, by substituting Eq. (11) into Eq. 

(9) and subtracting the original equation, results in the following stability equation 
 

𝛻4𝑤1 +
2 1 + 𝜈 

𝐸1
𝛻2 𝑁𝑥

0𝑤1,𝑥𝑥 + 𝑁𝑦
0𝑤1,𝑦𝑦 + 2 𝑁𝑥𝑦

0 𝑤1,𝑥𝑦  

−
𝐸1 1 − 𝜈2 

𝐸1𝐸3 − 𝐸2
2  𝑁𝑥

0𝑤1,𝑥𝑥 + 𝑁𝑦
0𝑤1,𝑦𝑦 + 2 𝑁𝑥𝑦

0 𝑤1,𝑥𝑦  = 0 

(12) 

 

where, 𝑁𝑥
0 , 𝑁𝑦

0 and 𝑁𝑥𝑦
0  are the pre-buckling force resultants. 

Once the pre-buckling thermal forces are found, the buckling temperature difference ∆𝑇𝑐𝑟  can 

be evaluated. 

By solving the membrane form of equilibrium equations, this gives the pre-buckling force 

resultants 

𝑁𝑥
0 = −

𝛷

1 − 𝜈

𝑁𝑦
0 = −

𝛷

1 − 𝜈
𝑁𝑥𝑦

0 = 0

 (13) 

 

Assuming a uniform temperature rise and using Eq. (10), we have 
 

𝛷 = 𝑃 ∆𝑇 (14) 

where 

𝑃 =  𝐸 𝑧  𝛼 𝑧  𝑑𝑧
ℎ/2

−ℎ/2

 (15) 

 

Substituting Eq. (13) and Eq. (14) into Eq. (12), one obtains 
 

𝛻4𝑤1 −
2 1 + 𝜈 

𝐸1

𝑃 ∆𝑇

1 − 𝜈
𝛻4𝑤1 +

𝐸1(1 − 𝜈2)

𝐸1𝐸3 − 𝐸2
2

𝑃 ∆𝑇

1 − 𝜈
𝛻2𝑤1 = 0 (16) 

 

The simply supported boundary conditions are defined as 
 

𝑤1 = 0
𝑀𝑥1 = 0
𝜙𝑦1 = 0

    at  𝑥 = 0, 𝑎 (17) 

 
𝑤1  =  0
𝑀𝑦1  =  0

ϕ𝑥1  =  0
   at  𝑦 = 0, 𝑏 (18) 
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4. Finite difference solution 

 

The governing equation presented by Eq. (16) is a fourth order differential equation which can 

be solved using finite difference method. The objective of using finite difference method is to have 

extra capabilities such as including thickness variation, while including such capability in 

analytical procedure can usually lead to complex expressions that are difficult to be resolved. 

To do so, we consider a rectangular FGM plate shown in Fig. 3 meshed into 𝑛 × 𝑚 nodes 

spaced by 𝛥ℎ in 𝑥 and 𝑦 directions. 

Eq. (16) is simplified as 
 

𝛻4𝑊.𝐴 + 𝛻2𝑊.𝐵 = 0 (19) 
 

where 
𝑊 = 𝑤 1

𝐴 = 1 −
2 1 + 𝜈 

𝐸1

𝑃 ∆𝑇

1 − 𝜈

𝐵 =
𝐸1 1 − 𝜈2 

𝐸1𝐸3 − 𝐸2
2

𝑃 ∆𝑇

1 − 𝜈

 (20) 

 

Eq. (19) can be written at node  𝑖, 𝑗  in finite difference (FD) format as follows 
 

 
20𝐴

∆ℎ2
− 4𝐵 .𝑊 𝑖,𝑗   +

𝐴

∆ℎ2
.𝑊 𝑖,𝑗−2 +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖,𝑗−1 +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖,𝑗+1 

+
𝐴

∆ℎ2
.𝑊 𝑖,𝑗+2 +

𝐴

∆ℎ2
.𝑊 𝑖−2,𝑗  +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖−1,𝑗  +

2𝐴

∆ℎ2
.𝑊 𝑖−1,𝑗−1 

+
2𝐴

∆ℎ2
.𝑊 𝑖−1,𝑗+1 +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖+1,𝑗  +

2𝐴

∆ℎ2
.𝑊 𝑖+1,𝑗−1 +

2𝐴

∆ℎ2
.𝑊 𝑖+1,𝑗+1 

+
𝐴

∆ℎ2
.𝑊 𝑖+2,𝑗  =  0 

(21) 

 

 

 

Fig. 3 Finite difference mesh of the plate 
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The mesh presented by Eq. (21) is applied at the nodes with coordinates (i = 2..n − 1, j = 2..m − 

1). Noting that this operation will result virtual nodes at the lines (i = 2, i = n − 1, j = 2, j = m − 1). 

The virtual nodes can be eliminated using the following boundary conditions. 

Since the plate is simply supported, all the displacements along the edges equal to zero, i.e., 

 

𝑊 𝑖,𝑗  = 0     at     [𝑖 = (1, 𝑛) 𝑎𝑛𝑑 𝑗 = (1. .𝑚)] 𝑎𝑛𝑑 [𝑖 = (1. . 𝑛) 𝑎𝑛𝑑 𝑗 = (1,𝑚)] (22) 

 

Also, the moment at all edges equals to zero (𝑀 = 0), where the moment can be expressed in 

terms of deflection as 

𝜕²𝑊

𝜕𝑥²
+
𝜕²𝑊

𝜕𝑦²
= −

𝑀

𝐷
 (23) 

 

As an illustrative example, at the bottom edge (𝑗 = 1), the moment can be expressed in finite 

difference at each node (𝑖, 1) as 
 

1

∆ℎ2
 −4𝑊 𝑖,1 + 𝑊 𝑖,0 + 𝑊 𝑖,2 + 𝑊 𝑖+1,1 + 𝑊 𝑖−1,1  =  −

𝑀 𝑖,1 

𝐷 𝑖,1 
= 0 (24) 

 

Since all 𝑊 𝑖,1 = 0 (1st boundary condition), the expression (24) can be simplified as 
 

𝑊 𝑖,0 = −𝑊 𝑖,2  (25) 
 

Where 𝑊 i,0  are virtual nodes to be substituted in Eq. (21) at nodes (𝑖, 𝑗 = 2), one can get 

 

 
19𝐴

∆ℎ2
− 4𝐵 .𝑊 𝑖,2  +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖,1 +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖,3 +

𝐴

∆ℎ2
.𝑊 𝑖,4 

+
𝐴

∆ℎ2
.𝑊 𝑖−2,2 +  −

8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖−1,2 +

2𝐴

∆ℎ2
.𝑊 𝑖−1,1 +

2𝐴

∆ℎ2
.𝑊 𝑖−1,3 

+  −
8𝐴

∆ℎ2
+ 𝐵 .𝑊 𝑖+1,2 +

2𝐴

∆ℎ2
.𝑊 𝑖+1,1 +

2𝐴

∆ℎ2
.𝑊 𝑖+1,3 +

𝐴

∆ℎ2
.𝑊 𝑖+2,2 =  0 

(26) 

 

By applying the same principle for all other edges, all the virtual nodes can be eliminated. 

Finally, the following system of simultaneous equations is obtained 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

18𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵

𝐴

∆ℎ2
… . . . . 0 0 0

−
8𝐴

∆ℎ2
+ 𝐵  

19𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵 … . . . . 0 0 0

𝐴

∆ℎ2
−

8𝐴

∆ℎ2
+ 𝐵  

20𝐴

∆ℎ2
− 4𝐵 … . . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ . 0 0 0

. . . …  
20𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵

𝐴

∆ℎ2
… . . .

. . . … −
8𝐴

∆ℎ2
+ 𝐵  

20𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵 … . . .

. . . …
𝐴

∆ℎ2
−

8𝐴

∆ℎ2
+ 𝐵  

20𝐴

∆ℎ2
− 4𝐵 … . . .

0 0 0 . ⋮ ⋮ ⋮ ⋱ . . .

0 0 0 . . . . …  
20𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵

𝐴

∆ℎ2

0 0 0 . . . . … −
8𝐴

∆ℎ2
+ 𝐵  

19𝐴

∆ℎ2
− 4𝐵 −

8𝐴

∆ℎ2
+ 𝐵

0 0 0 . . . . …
𝐴

∆ℎ2
−

8𝐴

∆ℎ2
+ 𝐵  

18𝐴

∆ℎ2
− 4𝐵  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑊 2,2 

 
𝑊 3,2 

 
𝑊 4,2 

⋮
𝑊 𝑖−1,𝑗  

 
𝑊 𝑖,𝑗  

 
𝑊 𝑖+1,𝑗  

 
⋮

𝑊 𝑛−3,𝑚−1 

 
𝑊 𝑛−2,𝑚−1 

 
𝑊 𝑛−1,𝑚−1  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0
 
0
 
0
⋮
0
 
0
 
0
 
⋮
0
 
0
 
0 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (27) 
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Solving the above homogeneous simultaneous equations system will result (𝑛 − 2) × (𝑚 − 2) 

mode shapes for 𝑊(𝑖,𝑗 ). Then, to evaluate the critical temperature ∆𝑇𝑐𝑟 , the significant mode shape 

i.e., the first mode has to be used into Eq. (19). 

However, to solve the Eq. (27), the value of ∆𝑇𝑐𝑟  which is incorporated in the values of A and 

B, must be known first. Hence, two strategies can be used: 

 

- It is possible to use the trial and error technique to find the correct ∆𝑇𝑐𝑟 . Since the shape of 

the buckling mode 𝑊(𝑥, 𝑦) is totally independent from the value ∆𝑇𝑐𝑟 , any initial value of 

 ∆𝑇𝑐𝑟  to solve Eq. (27) found to have no effect on results of 𝑊(𝑖,𝑗 ). 

- Otherwise, in the analytical solution of buckling analysis, the mode shapes 𝑊(𝑥, 𝑦) are 

usually assumed to be sinusoidal function that satisfies the boundary conditions. 

Accordingly, to solve numerically the buckling or vibration of plates, it is then possible to 

assume that the shape modes are the same as given by  𝛻4𝑊(𝑥, 𝑦) = 0 since it has the same 

solution as assumed in the analytical solution. 

 

The adopted technique to solve Eq. (27) the trial and error technique with assuming ∆𝑇𝑐𝑟 = 0 

as an initial value. Thus, Eq. (27) is arranged to the following expression 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

18

∆ℎ2
 −

8

∆ℎ2

1

∆ℎ2
… . . . . 0 0 0

−
8

∆ℎ2
 

19

∆ℎ2
 −

8

∆ℎ2
… . . . . 0 0 0

1

∆ℎ2
−

8

∆ℎ2
 

20

∆ℎ2
 … . . . . 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ . 0 0 0

. . . …  
20

∆ℎ2
 −

8

∆ℎ2

1

∆ℎ2
… . . .

. . . … −
8

∆ℎ2
 

20

∆ℎ2
 −

8

∆ℎ2
… . . .

. . . …
1

∆ℎ2
−

8

∆ℎ2
 

20

∆ℎ2
 … . . .

0 0 0 . ⋮ ⋮ ⋮ ⋱ . . .

0 0 0 . . . . …  
20

∆ℎ2
 −

8

∆ℎ2

1

∆ℎ2

0 0 0 . . . . … −
8

∆ℎ2
 

19

∆ℎ2
 −

8

∆ℎ2

0 0 0 . . . . …
1

∆ℎ2
−

8

∆ℎ2
 

18

∆ℎ2
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑊 2,2 

 
𝑊 3,2 

 
𝑊 4,2 

⋮
𝑊 𝑖−1,𝑗  

 
𝑊 𝑖,𝑗  

 
𝑊 𝑖+1,𝑗  

 
⋮

𝑊 𝑛−3,𝑚−1 

 
𝑊 𝑛−2,𝑚−1 

 
𝑊 𝑛−1,𝑚−1  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0
 
0
 
0
⋮
0
 
0
 
0
 
⋮
0
 
0
 
0 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (28) 

 

By substituting the first mode vector 𝑊 in Eq. (19) yields 

 

∆𝑇𝑐𝑟 =
𝛻4𝑊

2 1 + 𝜈 𝑃
𝐸1(1 − 𝜈)

𝛻4𝑊 −
𝐸1 1 − 𝜈2 𝑃

 𝐸1𝐸3 − 𝐸2
2 (1 − 𝜈)

𝛻2𝑊
 

(29) 

 

The Eq. (29) can be expressed in finite difference format at each node as given by eq. (30), 

while the adopted value of ∆𝑇𝑐𝑟  is the minimum value of ∆𝑇𝑐𝑟  𝑖  
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∆𝑇𝑐𝑟 𝑖 

=
 

  
 

20
∆ℎ2  .𝑊 𝑖,𝑗  −

8
∆ℎ2 .𝑊 𝑖−1,𝑗  −

8
∆ℎ2 .𝑊 𝑖+1,𝑗  −

8
∆ℎ2 .𝑊 𝑖,𝑗−1 −

8
∆ℎ2 .𝑊 𝑖,𝑗+1 

+
2

∆ℎ2 .𝑊 𝑖−1,𝑗−1 +
2

∆ℎ2 .𝑊 𝑖+1,𝑗−1 +
2

∆ℎ2 .𝑊 𝑖−1,𝑗+1 +
2

∆ℎ2 .𝑊 𝑖+1,𝑗+1 

+
1

∆ℎ2 .𝑊 𝑖−2,𝑗  +
1

∆ℎ2 .𝑊 𝑖+2,𝑗  +
1

∆ℎ2 .𝑊 𝑖,𝑗−2 +
1

∆ℎ2 .𝑊 𝑖,𝑗+2  

  
 

 

  
 

 
20𝐶
∆ℎ2 − 4𝐷 .𝑊 𝑖,𝑗  +  −

8𝐶
∆ℎ2 + 𝐷 .𝑊 𝑖−1,𝑗  +  −

8𝐶
∆ℎ2 + 𝐷 .𝑊 𝑖+1,𝑗  +  −

8𝐶
∆ℎ2 + 𝐷 .𝑊 𝑖,𝑗−1 

+ −
8𝐶
∆ℎ2 + 𝐷 𝑊 𝑖,𝑗+1 +

2𝐶
∆ℎ2 .𝑊 𝑖−1,𝑗−1 +

2𝐶
∆ℎ2 .𝑊 𝑖+1,𝑗−1 +

2𝐶
∆ℎ2 .𝑊 𝑖−1,𝑗+1 +

2𝐶
∆ℎ2 .𝑊 𝑖+1,𝑗+1 

+
𝐶
∆ℎ2 .𝑊 𝑖−2,𝑗  +

𝐶
∆ℎ2 .𝑊 𝑖+2,𝑗  +

𝐶
∆ℎ2 .𝑊 𝑖,𝑗−2 +

𝐶
∆ℎ2 .𝑊 𝑖,𝑗+2  

  
 

 
(30) 

 

where 

𝐶 =
2 1 + 𝜈 𝑃

𝐸1 1 − 𝜈 

𝐷 = −
𝐸1 1 − 𝜈2 𝑃

 𝐸1𝐸3 − 𝐸2
2 (1 − 𝜈)

 (31) 

 

 

5. Thermal buckling analysis and results 

 

5.1 Constant thickness FGM plate 
 

A thermal buckling analysis of simply supported rectangular FGM plate with constant 

thickness has been carried out to validate the finite difference solution by comparing the results 

with the exact solution presented by Bouazza et al. (2009). The plate dimensions in 𝑥 − 𝑦 plane 

are 𝑎 by 𝑏 with ≤ 𝑏. The plate thickness is ℎ, as shown in Fig. 1. The plate is assumed to have 

a sigmoid type of material distribution, as described by Eq. (1), and exposed to a uniform thermal 

load. The reference temperature is assumed to be 5°C. The metal and ceramic used in the FGM are 

Aluminum and Alumina with the following properties: 𝐸𝑚 = 70 GPa,  𝛼𝑚 = 23 × 10−6 (1/C°) 

for the Aluminum and 𝐸𝑐 = 380 GPa,  𝛼𝑚 = 7.4 × 10−6 (1/C°) for the Alumina. While, the 

Poisson’s ratio 𝜈 is assumed to be constant through the thickness. 

As a first step, a convergence study of the finite difference formulation has been performed to 

examine the sensitivity of the analysis to the mesh density. According to Fig. 4 which represents 

the convergence rate of the FD solution, it was found that when the mesh density 𝑎/∆ℎ (number 

of divisions) increases, the solution converges to the exact value given by Bouazza et al. (2009). In 

other words, the relative error of the results becomes smaller than 0.035% when the plate is 

divided into more than 40 segments each side. It should be also noted that, the finite difference 

solution errors for coarse mesh (𝑎/∆ℎ < 30) are quite bigger for thin plate (𝑎/ℎ = 50) than that 

of thick plate (𝑎/ℎ = 5) . However, for finest mesh used (𝑎 ∆ℎ = 50) the solution errors 

decrease to less than 0.035% and 0.017% for 𝑘 = 0 and 𝑘 = 50 respectively. Besides, it was 

remarked that the finer the mesh used, the longer time is required to resolve the problem, bearing 

in mind that in case of 𝑎/∆ℎ = 50, there are 2601 nodes in the model. 

Accordingly, the adopted mesh density for the rest of analysis was taken as 𝑎/∆ℎ = 50 which 

was found to be suitable and satisfactory in terms of accuracy and time consuming. 
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Fig. 4 Finite difference solution convergence 

 

 

  
 

  

Fig. 5 Displacement 𝑊𝑖,𝑗of the FGM plate under the first four natural modes 

 

 
Table 1, represents a comparison between the exact solution presented by Bouazza et al. (2009) 

and the present finite difference solution for different ratios of 𝑎/ℎ and 𝑏/𝑎 and different values 

of material parameter 𝑘. Fig. 5 represents the first four modes of the displacement 𝑊𝑖,𝑗  for FGM 

plate with 𝑏/𝑎 = 1, 𝑎/ℎ = 10 and 𝑘 = 10. 
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Table 1 Present finite difference solution vs. exact solution 

 
a / h 

Exact 

solution 

[Bouazza] 

Finite difference mesh density (𝑎/∆ℎ) 

10 20 30 40 50 

∆𝑇𝑐𝑟  %error* ∆𝑇𝑐𝑟  % error* ∆𝑇𝑐𝑟  % error* ∆𝑇𝑐𝑟  % error* ∆𝑇𝑐𝑟  % error* 

k 
=

 0
 

5 2802.902 2784.000 0.674% 2798.500 0.157% 2801.200 0.061% 2802.200 0.025% 2802.600 0.011% 

10 794.731 789.012 0.720% 793.680 0.132% 794.547 0.023% 794.850 0.015% 794.991 0.033% 

20 205.601 204.071 0.744% 205.320 0.137% 205.552 0.024% 205.633 0.016% 205.671 0.034% 

50 33.236 32.970 0.798% 33.174 0.185% 33.212 0.071% 33.225 0.031% 33.232 0.013% 

k 
=

 1
 

5 2743.361 2724.400 0.691% 2739.000 0.159% 2741.700 0.061% 2742.600 0.028% 2743.000 0.013% 

10 764.145 758.256 0.771% 762.774 0.179% 763.613 0.070% 763.907 0.031% 764.043 0.013% 

20 196.649 195.090 0.793% 196.286 0.185% 196.508 0.072% 196.586 0.032% 196.622 0.014% 

50 31.725 31.471 0.800% 31.666 0.186% 31.702 0.072% 31.715 0.032% 31.720 0.014% 

k 
=

 1
0
 

5 2797.583 2777.700 0.711% 2793.000 0.164% 2795.900 0.060% 2796.900 0.024% 2797.300 0.010% 

10 762.036 756.146 0.773% 760.690 0.177% 761.534 0.066% 761.829 0.027% 761.966 0.009% 

20 194.872 193.332 0.791% 194.520 0.181% 194.741 0.068% 194.818 0.028% 194.854 0.009% 

50 31.381 31.131 0.796% 31.324 0.182% 31.360 0.068% 31.372 0.028% 31.378 0.010% 

k 
=

 5
0
 

5 2914.566 2893.600 0.719% 2909.600 0.170% 2912.600 0.067% 2913.600 0.033% 2914.100 0.016% 

10 792.918 786.729 0.781% 791.459 0.184% 792.337 0.073% 792.645 0.034% 792.787 0.017% 

20 202.700 201.083 0.798% 202.319 0.188% 202.548 0.075% 202.629 0.035% 202.666 0.017% 

50 32.638 32.376 0.803% 32.576 0.189% 32.614 0.075% 32.627 0.035% 32.633 0.017% 

* 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝐹𝑖𝑛𝑖𝑡𝑒  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −𝐸𝑥𝑎𝑐𝑡  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐸𝑥𝑎𝑐𝑡  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 %; where the exact solution is given by Bouazza et al. 

(2009) 

 

 
Based on Table 1, a very good agreement was found between the numerical and the analytical 

solution for different ranges of geometric and material properties. Thus, the present finite 

difference solution can be used efficiently to analyze buckling of FGM plate with a very good 

accuracy. 

Generally, the results indicate that as the rigidity of the plate increases, the critical temperature 

increases. Noting that the plate rigidity increases when using lower values of 𝑎/ℎ, and lower value 

of material parameter 𝑘. Also, the results indicate that the critical buckling temperature of FGM 

plates 𝑘 ≥ 1 is lower than that of homogenous plate (𝑘 = 0). 
 

5.2 Thermal buckling of FGM plate with linear thickness variation 
 

The finite difference procedure described above has been extended to be used for evaluating the 

thermal buckling of FGM plate with variable thickness. The thickness variation capability can be 

easily included in the FD formulation by varying the thickness at each node, i.e., introducing a 

variable thickness ℎ𝑖,𝑗  which represents the plate thickness at the node (𝑖, 𝑗), as clarified in Fig. 6. 

Two types of linear thickness variation have been studied, linear variation in one direction and 

linear variation in both directions. The linear variation of the plate thickness in 𝑥 or 𝑦-direction 

is assumed to change according to the following equation 
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Fig. 6 FGM plate with linear variable thickness 

 

 
ℎ 𝑥 = 𝑐1𝑥 + 𝑐 2

ℎ 𝑦 = 𝑐1𝑦 + 𝑐2

 (32) 

 

Where, 𝑐1 is a non-dimensional parameter which represents the slope of the variation, and 𝑐2 

is nominal thickness of the plate at origin. While, in case of linear variation in both 𝑥 and 𝑦 

directions, the following equation is used 
 

ℎ 𝑥, 𝑦 = 𝑐1𝑥 + 𝑐1𝑦 + 𝑐2 (33) 
 

The example of FGM plate with variable thickness which was analyzed by Pouladvand (2009) 

has been adopted to be used for the comparison. The FGM plate constituents follow a power-law 

type of distribution as described previously by Eqs. (4a), (4b), (5a) and (5b). The top surface of the 

plate is ceramic-rich while the bottom surface is metal-rich. The ceramic and metal properties are 

varied as described by Eq. (5). 

Figs. 7, 8, 9 and 10 present the thermal buckling of FGM plates with linear thickness variation 

predicted by the present finite difference solution against the closed-form solution presented by 

Pouladvand (2009). 
 

 

 

Fig. 7 Effect of the aspect ratio on the buckling critical temperature in the plate with variable 

thickness in x-direction 
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As an overview, and based on Figs. 7, 8, 9 and 10, one can observe that the present numerical 

solution results methods are close to the exact solution. It should be mentioned that the solution 

presented by Pouldvand (2009) is also based on the classical plate theory (CPT). Accordingly, the 

later comparison validates and confirms that the finite difference method is accurate, efficient, and 

relatively simple for predicting the thermal buckling behaviour of FGM plates with linear 

thickness variation. 

Moreover, the simplicity to introduce the thickness variation in finite difference solution, 

permit us to accurately analyze FGM plates with any type of thickness variation such parabolic or 

sinusoidal variation. While, varying the plate thickness in the analytical solutions leads usually to 

complex expressions that are difficult or impossible to be solved. 

Figs. 7 and 8 show the effect of the aspect ratio 𝑏/𝑎 and the material distribution parameter 𝑘 

on the critical buckling temperature difference ∆𝑇𝑐𝑟  of FGM plate linear variable thickness in  

 

 

 

Fig. 8 Effect of the aspect ratio on the buckling critical temperature in the plate with variable 

thickness in y-direction 
 

 

 

Fig. 9 The buckling critical temperature in terms of c1 for square plate with variable thickness 

in x-direction, 𝑐2 = 0.01𝑎 
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Fig. 10 The buckling critical temperature in terms of 𝑐1 for square plate with variable thickness 

in x and y-direction, 𝑐2 = 0.01𝑎 

 

 
x-direction, and y-direction, respectively. The linear thickness parameters of the plate in the two 

figures have the values of 𝑐1 = 0.005, 𝑐2 = 0.01𝑎. 

By comparing the effect of the linear thickness variation in x-direction and y-direction on the 

critical temperature difference  ∆𝑇𝑐𝑟 , one can observe that ∆𝑇𝑐𝑟  in x-direction is lower than that of 

y-direction for all geometric and material parameters. This indicates that FGM plates with linear 

variable thickness in y-direction have a higher thermal buckling resistance than FGM plates with 

linear thickness variation in x-direction. 

The effect of thickness variation parameters 𝑐1
 on the critical temperature difference ∆𝑇𝑐𝑟 , for 

different material distribution parameter 𝑘, is illustrated in Fig. 9. The results indicate that the 

thermal buckling resistance of the plate increases when 𝑐1 increases, but with a low sensitivity to 

different material parameters 𝑘 compared to a homogenous plate (𝑘 = 0). 

In this section, the FGM plate is square and has a linear variable thickness in both x and 

y-directions. The effect of the thickness variation parameter 𝑐1  on the critical temperature 

difference ∆𝑇𝑐𝑟  for difference values of material parameter 𝑘, is presented by Fig. 10. The results 

confirm also that increasing the thickness variation parameter 𝑐1 leads to an increase in the 

thermal buckling resistance of the plate. However, this increase is not highly affected by the 

material distribution parameter 𝑘 compared to a homogenous plate. 

 

 

6. Conclusions 
 

This study deals with the thermal buckling analysis of FGM plates having linear thickness 

variation. The solution is based on an analytical procedure for constant thickness FGM plate, then 

the finite difference method is used to introduce the variable thickness. The results for of constant 

thickness plate as well as variable thickness are compared with those found in the literature. 

According to the obtained results, it was found that the present numerical method was very 

close to the analytical solution found in the literature for plate with constant thickness as well as 

linear variable thickness. Therefore, the finite difference method was judged to be an accurate tool 
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and relatively easy method to evaluate the thermal buckling of FGM plates.  

Moreover, the parametric study indicates that the thermal resistance of the FGM plates 

increases with the increase of its rigidity. The latter is directly related to the values of a/h, b/a, the 

material distribution parameter 𝑘, and the thickness parameter 𝑐1 in case of linear FGM plates. 

Also, the increase of the thickness variation parameter leads to an increase in the thermal buckling 

resistance of the plate. However, this increase is slightly affected by the material distribution 

parameter compared to a homogenous plate. 
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