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Abstract.  The sensitivity-based finite element model updating method has received increasing attention in 
damage detection of structures based on measured modal parameters. Finding an optimization technique 
with high efficiency and fast convergence is one of the key issues for model updating-based damage 
detection. A new simple and computationally efficient optimization algorithm is proposed and applied to 
damage detection by using finite element model updating. The proposed method combines the Gauss- 
Newton method with region truncation of each iterative step, in which not only the constraints are 
introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The 
developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have 
been compared and verified with those obtained from the trust region method. In order to investigate the 
reliability of the proposed method in damage detection of structures, the influence of the uncertainties 
coming from measured modal parameters on the statistical characteristics of detection result is investigated 
by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic 
method. 
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1. Introduction 

 
Damage detection is critical in structural health monitoring of civil, mechanical and aerospace 

engineering. Being non-destructive nature, structural dynamics approaches have received increasing 
attention during past decades since any degradation of the structural properties results in changes 
of the dynamic characteristics such as modal parameters (i.e., modal frequencies, mode shapes), 
which can be estimated by experimental modal analysis (Cawley and Adams 1979, Doebling et al. 
1998, Kosmatka and Ricles 1999, Shi et al. 2000, Carden and Fanning 2004, Meruane and Heylen 
2011). In nondestructive dynamic methods for damage detection, the finite element (FE) model 
updating method performs well in locating damage and quantifying damage severity by using 
experimentally measured data and the FE numerical model. 

In FE model updating, the physical parameters of a FE model is adjusted and updated such that 
numerically predicted features obtained from updated FE model are consistent with those obtained 
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from measurements. FE model updating techniques can be sorted into two categories: direct 
methods and iterative methods. In direct methods (Yang and Chen 2009), individual components 
of mass and stiffness matrices are directly updated with low computational efforts, and the updated 
models usually reproduce the measured data exactly. The drawback of direct methods is that the 
updated models are generally difficult to be interpreted with physical significance. The iterative 
methods overcome the limitation of the direct methods with larger computational efforts (Friswell 
and Mottershead 1995, Link 1999, Mottershead et al.2011). 

Recently, sensitivity-based FE updating methods, which are iterative methods -- using 
experimentally measured modal data, have been successfully used for damage detection of 
structures. In the sensitivity-based methods, damage is identified by minimizing the differences 
between the numerical and experimental vibration data by updating the physical variables and 
using sensitivity derivatives of modal parameters with respect to physical variables. Friswell and 
Mottershead (1995) and Mottershead et al. (2011) elaborated on relevant techniques and a 
comprehensive review of sensitivity-based updating methods is given by Link (1999). Zhang et al. 
(2000) tested sensitivity-based model updating techniques to locate and quantify the damage in a 
model suspension bridge structure from the laboratory testing. Jaishi and Ren (2005, 2006) used 
either single-objective or multi-objective optimization technique to update the FE models of civil 
engineering structures in structural dynamics using the strain energy residual. A sensitivity-based 
algorithm using modal flexibility residuals is implemented and verified on simulated and 
experimental multi-cracked beams (Jaishi and Ren 2007). Fang et al. (2008) developed a 
sensitivity-based updating method to identify the damage in a tested reinforced concrete frame 
modeled with a bidimensional damage function to reduce the number of unknown variables. Bakir 
et al. (2007) used sensitivity-based FE model updating scheme in a reinforced concrete frame 
structure with a trust region Newton optimization algorithm. Ren and Chen (2010) developed a 
response surface-based FE model updating procedure for civil engineering structures in structural 
dynamics. Chakraborty and Sen (2014) investigated the application of adaptive response surface 
on the FE model updating by using moving lest-square method. Reynders et al. (2010) presented 
the application of FE model updating on structural damage identification by using OMAX data. 
Chellini et al. (2010) gave the FE model updating procedure used to detect, assess and quantify the 
structural damage of a high ductile steel concrete composite frame subjected to increasing seismic 
damage by means of pseudo dynamic and cyclic test. Shiradhonkar and Shrikhande (2011) gave a 
study of detecting and locating the damage in the beams with the aid of vibration based system 
identification and FE model updating method in which the modal parameters are identified using 
frequency domain decomposition and empirical transfer function estimation. Ribeiro et al. (2012) 
described the calibration of the numerical model of a bowstring-arch railway bridge based on 
modal parameters identified from an ambient vibration test using modal strain energy residuals in 
objective function and a genetic algorithm optimization algorithm. Sipple and Sanayei (2014) used 
FE model updating method for parameter estimation of the University of Central Florida's Grid 
Benchmark Structure, in which model updating was performed by using measured frequency 
response functions from the damaged structure to detect physical structural change. 

It is well known that the success of sensitivity-based FE model updating methods depends on 
the accuracy of the FE model, the quality of modal test and identification, the chosen residuals in 
objective function and the capability of optimization algorithms (Gola et al. 2001, Natke 1998). 
Finding an optimization technique with high efficiency and fast convergence is one of the key 
issues for model updating. There are many global optimization methods that can be used for the 
process of FE model updating. These include gradient-based methods (trust region Newton 
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method, sequential quadratic programming) and computationally intelligent algorithms (Ribeiro et 
al. 2012, Tu and Lu 2008) (e.g., genetic algorithm, evolutionary strategies, particle swarm 
optimization). Among these methods, the trust region Newton optimization method, which is a 
gradient-based algorithm, is often used in model updating procedure. In each iteration step of trust 
region approach, the searching step is limited within a ‘trust region’ to avoid unexpected large 
steps. The trust region is a sphere with a trust region radius, which restricts the design variables. 
Compared to the line search methods, the trust region approaches are more powerful, more reliable 
in convergence, but they are less straightforward and more expensive in computation. The 
researches by Shi and Xu 2009, Qiu and Chen 2012 focus on the studying of sub-problem and 
determination of parameters in trust region approaches, which are critical to the capability of 
optimization and the convergence to global optimum and have not yet been solved satisfactorily. 

The objective of this paper is to develop a novel simple but computationally efficient 
optimization algorithm based on the sensitivity-based FE updating method. The original 
contribution of the paper is that the proposed algorithm integrates the Gauss-Newton method with 
the region truncation at each iteration step. Through this proposed method, not only the constraints 
are introduced instead of the penalty function, but also the design variables are restricted in 
truncated searching region. The proposed algorithm is illustrated by a numerically simulated 
25-bar truss structure. The results are compared with those obtained from the trust region Newton 
method. Using the Monte-Carlo simulation, the reliability of the proposed method in damage 
detection of structures is also investigated by taking the modal parameter uncertainties into 
account. 
 
 
2. General sensitivity-based FE updating method 

 
2.1 Objective function and minimization problem 
 
Generally, sensitivity-based FE model updating method can be posed as a minimization 

problem to find design variables set θ* such that 
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niθθθ
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where, f(θ) is the objective function and, ii   ,  are respectively the upper and lower bounds on the 
design variables θi. 

The objective function f(θ) is a sum of squared differences between FE computed and 
experimental eigenvalues and mode shapes, defined as 
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where, r(θ) is a residual vector containing the differences between FE computed and experimental 
modal parameters, assembled by ri,f (θ), rl,s (θ) which are the residual nonlinear functions of the 
updating variables θ. The updating variable vector θ Rn is a set of physical parameters, which 
will be adjusted in order to minimize the objective function f(θ). W is a diagonal weighting matrix 
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with each diagonal component inversely proportional to the modal frequency of the corresponding 
vibration mode, since the higher modal parameters are not measured and identified as accurately as 
the lower modal parameters. m denotes the number of vibration modes considered in the residual 
vector. 

Since modal frequencies provide the global information about the dynamic behavior of the 
structure and mode shapes contain spatial information, a combination of residuals in eigenvalues 
and mode shapes is used to define the residual vector as 
 

              Tsmfmslflsf θ,rθ,r,θ,rθ,r,θ,rθrθr ,,,,,1,1                 (3) 

 
where, ri,f (θ), rl,s (θ) are the residuals in the lth eigenvalue and mode shape, and can be respectively 
expressed as 
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where, )(

~
 ,)( θθ ll   are the FE computed and experimental eigenvalues (λl = 2πfl, fl is the lth modal 

frequency), respectively. )(~  ,)( θθ ll   are respectively the FE computed and experimental mode 
shapes. In Eq. (4b), the superscript p indicates a reference component of the lth mode shape (with 
respect to which the other components of the mode shapes are normalized), the superscript k refers 
to the components that are used in the updating process. As we can see, modal parameters are 
scaled and the relative differences are taken in Eqs. (4a)-(4b) in order to obtain the similar weight 
in each modal residual. 

 
2.2 Normalization of updating parameters 
 
Instead of the absolute value of each updating parameter θi, its relative variation to the initial 

value 
0
i  is chosen as a dimensionless updating parameter ai 
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Using the normalized parameters, the problem of numerical ill-condition due to large relative 

differences in parameter magnitudes can be avoided. The objective of FE model updating problem 
is to find the value of vector a that minimizes the difference between the FE computed and 
experimental modal parameters. Hence, Eq. (2) becomes 
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As a result, the minimization problem can be mathematically formulated as 
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2.3 Gradient of objective function 
 
The nonlinear optimization problem as shown in Eq. (7) can be solved with a gradient-based 

iterative optimization method. Therefore, the gradient matrix needs to be computed in each 
iterative step. Taking the first derivative of objective function in Eq. (6) with respect to the 
updating parameter ai gives 
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In its matrix form, Eq. (8) can be expressed as 
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The modal sensitivities with respect to the updating parameter ai can be calculated using the 

following expressions (Mottershead et al. 2011) 
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where, βlq is determined by using the generalized eigenvalue problem and orthogonalization 
properties of eigenvectors. Provided that the eigenvectors have been normalized to unit modal 
masses, one can get (Mottershead et al. 2011, Jaishi and Ren 2006) 
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The procedure explained above for the analytical computation of sensitivity may not be easy 

when the study is carried out using the FE model of structures with a large amount of degrees of 
freedom. In that case finite difference approximation is one of the alternatives computing the 
eigensensitivity. In the approach, the sensitivity matrix is approximated using the forward 
difference of the function with respect to each parameter considered. From Eqs. (12a) and (13), the 
derivatives of the structural stiffness and mass matrices with respect to the updating parameter ai 
are required, which can be obtained by 
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where, Δai is the step length (ΔD is a forward difference step size, which is generally taken as 0.2 
and ii aa  ,  are the upper and lower limit for the updating parameter respectively) and ei is the 
vector with its ith element equal to 1, and all other elements equal to zero. 

 
 

3. The proposed optimization algorithm 
 

Optimization algorithms can seek approximate solutions by iterative computing. One of the 
techniques to solve non-linear optimization problems is to expand the model vector into a Taylor 
series about the current parameters. The quadratic model m(a) is defined by a truncated Taylor 
series of f(a) 
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Hessian of f(a) are 
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In order to convert the constrained minimization problem Eq. (7) to the unconstrained problem 

and limit the design variables in each iteration step, the region truncation method is introduced to 
improve the gradient-based optimization algorithm Eq. (15) to guarantee that the searching step is 
always limited within an acceptable region to avoid unexpected large steps, just as that in the trust 
region method. In the region truncation-based optimization method, the region is updated to 
control the searching direction vector Δdk in each iterative step and the variable constraints are 
included in the region boundaries instead of using penalty functions. Using the Gauss-Newton 
method, the solution to Eq. (7) can be given as 
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where    aaaaIααIσαIσ kkkkkkk  ,min,1 ,0,, , Ik is the distance vector of the 
current iterative point to the nearest constraints, and kk σσ   ,  are the truncated region boundaries 
vectors. The optimization algorithm can be implemented by the following steps. 
 

● Step 1: Let k = 1, and let 0 < α < 1, ε be pre-specified constants; 
● Step 2: Let 

n
k Ra   be given; 

● Step 3: Evaluate the approximation of objective function with Eq. (15), and if m(a) < ε then 
stop; 

● Step 4: Determinate the truncation region with Eqs. (17a) and (17b); 
● Step 5: Generate the searching direction ),()())()(( 1 aWraSaWSaSd k

T
kk

T
k

  and if Δdk 
is within the region, then step 7; 

● Step 6: Otherwise, Δdk is taken to be the region boundary vectors and go to step 7; 
● Step 7: Calculate ak+1 = ak + Δdk, replace ak with ak+1, and go to step 3. 
 
 

4. Probability-based damage detection 
 
In the formulation above, the experimentally measured modal frequencies and mode shapes are 

considered to be exact and deterministic. In reality, however, there are always uncertainties in the 
measured modal parameters. The uncertainties may be introduced by the inherent variability in 
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Fig. 1 PDD and PDFs 
 
 

structural parameters and arise from the measurement noise and modal identification techniques. 
The uncertain measured data may lead to unreliable and false prediction of structural damage, and, 
as a result, it is necessary to detect the damage of structures in the probabilistic frame. In this work, 
the uncertainties are described as random variables with mean values and standard deviations. 

Integrating with the Monte-Carlo methods, the statistics (means and standard deviations) of the 
updating parameters ai (i = 1, 2,..., n), which are related to the damage severity of a structural, can 
be obtained in the case that the uncertainties in modal parameters are taken into accounted. Using 
the probabilistic method, the probability of damage detection (PDD) can be estimated by 
comparing the probability distributions of undamaged variables adi and damaged aui. Assuming 
that both aui and adi are normally distributed, their probability density functions (PDF), p(aui) and 
p(adi), can be obtained as shown in Fig. 1, where Lu is the lower bound of the parameter aui in the 
undamaged state. 

The lower bound Lu can be computed by 
 

     uiuiu aσαφaμL  1                          (18) 
 
where α is the confidence level α, ϕ(1 − α) is the 1 − α quantile of the standard normal distribution 
for a single-side confidence interval with α confidence level, which indicates that the undamaged 
parameter falls in the range of [Lu, ∞] with the probability of α. 

Further, the PDD of the structure can be calculated by 
 

  


uL

didi daapPDD                            (19) 

 
where, the PDD has a value between 0 and 1. The closer the PDD is to 1, and the higher the 
probability of damage existence. On the other hand, the closer the PDD is to 0, and the lower the 
probability of damage existence. 

 
 

5. Numerical studies 
 
In order to demonstrate the proposed method and investigate the reliability of the proposed 

optimization algorithm in damage detection, the numerical simulations of a 25-bar planar truss 
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Fig. 2 Schematic diagram of a 25-bar planar truss 
 
 

structures (Fig. 2) without and with damages are conducted. The mass density of bar material is 
7.8 × 103 kg/m3, and Young’s elastic modulus is 2.1 × 1011 N/m2. 

Analytically modal analysis is first carried out to obtain the initial reference modal frequencies 
and mode shapes by using FE model. Damages are introduced by reducing the elastic moduli of 
bar elements 1, 3, 4, 8 by 30%, 15%, 10%, 5%, respectively. Modal analysis is then again carried 
out on the damaged truss to obtain the damaged modal parameters. The comparison of damaged 
and initial modal parameters of the truss before updating is shown in Table 1. Fig. 3 shows the first 
ten mode shapes for the initial model and the damaged truss. Here, the index MAC (modal 
assurance criterion) is introduced to indicates the correlation between two sets of mode shapes, and 
it is defined as 
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where, MAC values change between 0 and 1. A MAC value close to 1 indicates a good correlation 
and a MAC close to 0 indicates a poor correlation. The maximum relative error in modal 
frequency is about 6% (Mode No. 3 and 5) and the minimum MAC is about 73% (Mode No. 8 and 
9) due to damages. 
 

5.1 Deterministic analysis 
 
The sensitivity–based FE updating with both the proposed optimization method and the trust 

region method is performed to identify the damage severity and location. The moduli of elasticity 
of bar elements are chosen as updating parameters. Instead of the absolute value of each elastic 
modulus, the relative reduction in modulus of elasticity which represents the severity of damage 
(SoD) in each bar is defined as 

undamaged

damaged

1SoD
j

j

E

E
                             (21) 

 
With the first 10 modal parameter of damaged truss, the SoDs of four damaged bar (elements 1, 
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Table 1 Comparison of damaged and initial modal parameters of truss before updating 

Mode No. 
Modal frequency (Hz) 

MAC % 
Damaged truss Initial model Relative error % 

1 9.9863 10.2441 2.5815 99.8844 

2 22.4781 23.1095 2.8090 98.7180 

3 30.3913 32.2470 6.1060 98.7731 

4 60.2776 60.5244 0.4094 99.4083 

5 70.4548 74.7424 6.0856 98.3333 

6 90.8862 91.3322 0.4907 99.7418 

7 106.9459 107.3259 0.3553 98.9470 

8 115.6163 116.4521 0.7229 72.2158 

9 117.1497 119.2319 1.7774 73.1560 

10 123.4195 123.6693 0.2024 99.1147 

 
 

 

Fig. 3 The first 10 mode shapes for initial model and damaged truss 
 
 

3, 4, 8) and one undamaged bar (element 10) are chosen and adjusted in the updating process of 
the analytical FE model. With both frequency and mode shape residuals in objective function, in 
which each modal residual has the same weight for assuming that the first 10 modal parameters are 
tested with accuracy, the tuning on modal parameters can be achieved with negligible error. The 
comparison of the iterative process and convergence of SoDs between the proposed method and 
trust region method for damaged bar elements 1, 3, 4 and 8 is shown in Fig. 4. The results show 
that the SoD for each element can converges to the actual value by the proposed optimization 
algorithm. The convergence is achieved with less computational effort by the proposed method 
than the trust region method. The CPU run time for the proposed method is about 18.406 seconds, 
and the CPU run time for the trust region method is about 27.388 seconds. It is also seen that the 
SoDs can be predicted very accurately in the case that the uncertainties in modal parameters are 
ignored. The results show that the FE updating method with the proposed method is reliable in 
detecting damage in the deterministic case. 

It is worthy to point out that the convergence of the proposed method can also be guaranteed 
even when the actual value is far away from the initial value in the case of extremely severe 
damage, although the work in this paper focuses on the relatively small damage detection 
considering that the uncertainties in modal parameters have more unfavorable effect on the  
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(a) Element 1 (b) Element 3 (c) Element 4 (d) Element 8 

Fig. 4 Iterative process of SoDs for two methods (A: Trust region method, B: The proposed method) 
 
 

(a) Element 1 (b) Element 3 (c) Element 4 (d) Element 8 

Fig. 5 Iterative process of SoDs in case of severe damage in bar element 1 

 
 
detection confidence of small damage. Fig. 5 shows the comparison of the iterative process and 
convergence of SoDs between two methods in the case that the elastic modulus of bar element 1 is 
reduced by 75%. It can be seen that the SoDs also converge to the actual values. However, the 
SoDs will not converge to the actual values in the case of more than 75% reduction in the elastic 
modulus of bar element 1. In fact, the convergence depends on the number of updating parameters 
as well as how far the actual values are from the initial values. 

 
5.2 Uncertain analysis 
 
As mentioned in Section 4, there are always substantial uncertainties in the modal parameters 

despite the significant efforts devoted to development and enhancement of the measurement 
instrumentation and modal identification techniques. In order to investigate the reliability of the 
proposed method in predicting structural damage in the case of uncertain modal parameters, four 
combinations of levels of uncertainty are used in consideration that modal frequencies are more 
accurately measured and identified than mode shapes. These combinations are: (1) Level 1: 0.5% 
COV for modal frequencies and 5% COV for modes shapes; (2) Level 2: 1% COV for modal 
frequencies and 5% COV for modes shapes; (3) Level 3:0.5% COV for modal frequencies and 
10% COV for modes shapes; (4) level 4: 1% COV or modal frequencies and 10% COV for mode 
shapes. The uncertain analysis of SoD for every element in damaged truss can be implemented by 
using Monte-Carlo simulation. Firstly, 5000 samples of the modal parameters for the damaged 
structure, assumed normally distributed with the given COV, are generated and used as virtually 
measured data. Then, 5000 samples of the updating parameters can be obtained by conducting the 
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Table 2 Comparison of damaged and updated modal parameters after updating (Level 1) 

Mode No. 
Modal frequency (Hz) 

MAC % 
Damaged truss updated model Relative error % 

1 9.9863 9.9883 0.02002 100 

2 22.4781 22.4814 0.01468 99.9996 

3 30.3913 30.4119 0.06778 99.9997 

4 60.2776 60.2897 0.02007 99.9999 

5 70.4548 70.4587 0.00553 99.9988 

6 90.8862 90.8799 -0.00693 99.9996 

7 106.9459 106.9577 0.01103 99.9989 

8 115.6163 115.6426 0.02274 99.9660 

9 117.1497 117.1892 0.03371 99.9679 

10 123.4195 123.4209 0.00113 99.9994 

 
 

Table 3 Comparison of damaged and updated modal parameters after updating (Level 2) 

Mode No. 
Modal frequency (Hz) 

MAC % 
Damaged truss updated model Relative error % 

1 9.9863 9.9736 -0.12717 99.9998 

2 22.4781 22.4355 -0.18951 99.9988 

3 30.3913 30.3248 -0.21881 99.9984 

4 60.2776 60.2793 0.00282 99.9998 

5 70.4548 70.3726 -0.11667 99.9985 

6 90.8862 90.8696 -0.01826 99.9999 

7 106.9459 106.9634 0.01636 99.9983 

8 115.6163 115.5831 -0.02871 99.9507 

9 117.1497 117.2 0.04293 99.9487 

10 123.4195 123.4287 0.00745 99.9964 

 
 

FE model updating of 5000 times. Lastly, the means and variances of the updating parameters can 
be estimated by sample means and variances, and the COV values can be calculated. 

Compared to the actual modal parameters of damaged structure, the means of modal parameters 
obtained by carrying out modal analysis of updated FE model with different levels of uncertainty 
are respectively shown in Tables 2-5. The results show that the relative differences in the modal 
frequencies and the MAC values are considerably improved after the FE model updating. 

Using the proposed updating method, the iterative process and convergence of mean values of 
SoDs obtained by using random modal parameters coming from the Monte-Carlo simulations with 
different levels of uncertainty are shown in Fig. 6. The results show that the SoD for each element 
converges to a certain value near the actual SoD. This demonstrates a good performance of the 
proposed optimization algorithm. It is also seen that the uncertainty in modal parameters 
introduces the uncertainty in mean value of SoD for each element. 

202



 
 
 
 
 
 

Damage detection using finite element model updating with an improved optimization algorithm 

Table 4 Comparison of damaged and updated modal parameters after updating (Level 3) 

Mode No. 
Modal frequency (Hz) 

MAC % 
Damaged truss updated model Relative error % 

1 9.9863 9.9867 0.00401 100 

2 22.4781 22.4746 -0.01557 99.9999 

3 30.3913 30.3937 0.00789 100 

4 60.2776 60.287 0.01559 100 

5 70.4548 70.4871 0.04584 99.9999 

6 90.8862 90.8904 0.00462 100 

7 106.9459 106.9524 0.00608 99.9998 

8 115.6163 115.6224 0.00527 99.9929 

9 117.1497 117.1661 0.01399 99.9931 

10 123.4195 123.4246 0.00413 99.9997 

 
 

Table 5 Comparison of damaged and updated modal parameters after updating (Level 4) 

Mode No. 
Modal frequency (Hz) 

MAC % 
Damaged truss updated model Relative error % 

1 9.9863 9.9862 -0.00100 99.9999 

2 22.4781 22.476 -0.00934 99.9994 

3 30.3913 30.3519 -0.12964 99.9988 

4 60.2776 60.2903 0.02106 99.9996 

5 70.4548 70.3703 -0.11993 99.9951 

6 90.8862 90.8575 -0.03157 99.9993 

7 106.9459 106.9807 0.03253 99.9926 

8 115.6163 115.6356 0.01669 99.8533 

9 117.1497 117.2724 0.10473 99.8502 

10 123.4195 123.4315 0.00972 99.9906 

 
 
Fig. 7 shows the mean value and standard deviation of SoD for each damaged element 

compared to the corresponding actual value. For each element, the result shows that the higher 
level of uncertainty in the modal frequencies introduces more uncertainty in both mean and 
standard deviation of predicted SoD (seen from comparison between Level 1 and Level 2, or 
between level 3 and level 4), while the uncertainty in the mode shapes contributes less to the 
uncertainty in mean value and standard deviation of predicted SoD (seen from comparison 
between level 1 and level 3, or between Level 2 and level 4). 

The COVs of SoDs with different levels of uncertainty is given in Table 6. The results show 
that the COVs of SoDs for different elements are significantly different in magnitude for different 
levels of uncertainty, ranging from 4.54% to 13.13% for element 1 (30% SoD), 29.76% to 65.31% 
for element 3(15% SoD), 28.93% to 63.13% for element 4 (10% SoD) and 57.32% to 143.16% for 
element 8 (5% SoD) when the level of uncertainty varies from Level 1 to Level 4. It is also seen 
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(a) Element 1 (b) Element 3 
  

(a) Element 4 (b) Element 8 

Fig. 6 Iterative process of SoDs (mean values) for damaged elements 
 
 

that both the less severe damage and the higher level of uncertainty can lead to the higher COV 
values, which means the larger dispersion of damage prediction from the mean value. It is also 
seen that the dispersion of damage detection data is sensitive to the uncertainty in modal 
frequencies and insensitive to the uncertainty in mode shape. In fact, the uncertainty in modal 
frequencies contributes much more to the changes in COV values than that in mode shape. A small 
COV of predicted SoD assures that the damage can be detected with good accuracy in the presence 
of uncertainty of measured modal parameters, while a large one indicates that the damage 
detection result could be totally annihilated by measurement uncertainties. 
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(a) Element 1 (b) Element 3 
  

 

(a) Element 4 (b) Element 8 

Fig. 7 R-square of mean values and standard deviation of SoD for damaged elements 
 
 

Table 6 COVs of SoDs with different levels of uncertainty 

Element 
No. 

Level of uncertainty 

Level 1 (0.5%, 5%) Level 2 (1%, 5%) Level 3 (0.5%, 10%) Level 4 (1%, 10%) 

1 0.0454 0.1662 0.0459 0.1313 

3 0.2976 0.6901 0.2922 0.6531 

4 0.2893 0.6556 0.3277 0.6313 

8 0.5732 1.1394 0.5638 1.4316 

 
 
5.3 Probability of damage detection 
 
To further assess the reliability of the proposed method in damage detection at different levels 

of uncertainty, the PDD values are estimated comparing the statistics of the stiffness parameters 
(dimensionless elastic modulus, DEM) of the undamaged and damaged structures using Eq. (18) 
and Eq. (19). With 95% confidence level, ϕ(1 − α) in Eq. (18) will be 1.645, which is the 5% 
quantile of the standard normal distribution for a single-side confidence interval. 
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(a) Element 1 
 

 

(b) Element 3 
 

 

(c) Element 4 
 

 

(d) Element 8 

Fig. 8 PDD values with damaged and undamaged PDFs 
 
 
The PDD of every element with different levels of uncertainty is shown in Fig. 8. It is observed 

that the highest PDE occurs at the element 1 (30% SoD) and the lowest PDE is with element 8 
(5% SoD) in the same level of uncertainty. In the case of Level 1, for example, the PDD is 100% 
for element 1 while the PDD is 54.33% for element 8. The results indicate that the damage can be 
confidently identified when it is severer, and the damage cannot be confidently detected when it is 
not significant. This means that the modal uncertainties will have a significant influence on the 

206



 
 
 
 
 
 

Damage detection using finite element model updating with an improved optimization algorithm 

results of damage detection, when the damage levels are small and the changes of modal 
parameters due to damage are not apparent. The results also show that the PDDs decrease 
apparently when a significantly high level of uncertainty is introduced in modal frequencies, and 
the change of PDDs is relatively small when a significantly high level of uncertainty is introduced 
in mode shapes. For example, the PDD in element 3 decreases from 97.88% to 33.28% when the 
uncertainty in frequencies increases from 0.5% to 1% with the uncertainty in mode shapes 
unchanged (5%), while the change of PDD is from 97.88% to 97.78% when the uncertainties in 
mode shapes increases from 5% to 10% with the uncertainty in frequencies unchanged (0.5%). 
The same situation occurs to other damaged elements. This indicates that the PDD is more 
sensitive to the uncertainty in frequencies while the uncertainty in mode shapes contributes less to 
the uncertainties in damage detection. 

 
 

6. Conclusions 
 
Based on FE updating method, a novel simple but computationally efficient optimization 

algorithm is proposed and applied to structural damage detection. The proposed method integrates 
the Gauss-Newton method with the region truncation at each iteration step. Through the proposed 
method, not only the constraints are introduced instead of the penalty function, but also the design 
variables are restricted in the searching region. The accuracy of the proposed method is verified by 
the trust region method. Compared to the trust region method, the convergence can be achieved 
with less computational effort by the proposed method. 

The reliability of the proposed method in damage detection is also investigated by considering 
different levels of uncertainties in modal parameters. Using the Monte-Carlo simulation, mean 
values and standard deviations of damages are obtained and the results show that both the severer 
damage and the higher level of uncertainty lead to the large dispersion of damage detection data 
from the corresponding mean value. Further, the probability of damage detection (PDD) is 
estimated by using the probabilistic method, and it is found that the PDD is much more sensitive to 
the uncertainty in frequencies than that in mode shapes. The conclusion is made that the proposed 
method can be reliably applied to damage detection with relatively less computational efforts in 
comparison with trust region method. 
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