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Abstract.  In this paper we have considered the vibration of parametrically excited oscillator with strong 
cubic positive nonlinearity of complex variable in nonlinear dynamic systems with forcing based on 
Mathieu-Duffing equation. A new analytical approach called homotopy perturbation has been utilized to 
obtain the analytical solution for the problem. Runge-Kutta’s algorithm is also presented as our numerical 
solution. Some comparisons between the results obtained by the homotopy perturbation method and 
Runge-Kutta algorithm are shown to show the accuracy of the proposed method. In has been indicated that 
the homotopy perturbation shows an excellent approximations comparing the numerical one. 
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1. Introduction 

 
Nonlinear phenomena occurs in engineering and physical sciences. One of the main interests in 

nonlinear science is the study on these nonlinear problems analytically. We have difficulty for 
finding an exact solution for these nonlinear problems and they have to be solved with other 
approximate analytical methods. 

Perturbation technique is one of the well-known analytical methods. They are not practical for 
strongly nonlinear equations, so for conquer the imperfections, novel techniques have been 
appeared in open literature, for instance: (He 1999a), Hamiltonian approach (Bayat and Pakar 
2011a, 2012, 2013a, Bayat et al. 2014a, b), energy balance method (He 2002, Bayat and Pakar 
2011b, Pakar and Bayat 2011, 2012, Mehdipour et al. 2010), variational iteration method 
(Dehghan and Tatari 2010, Pakar et al. 2012, He 1999b), amplitude frequency formulation (Bayat 
et al. 2011, 2012, Pakar and Bayat 2013a, He 2008), max-min approach (Shen and Mo 2009, Zeng 
and Lee 2009, Pakar and Bayat 2011, 2012), variational approach method (He 2007, Bayat and 
Pakar 2013a, Bayat et al. 2011, 2013), and the other approximare methods (Xu and Zhang 2009, 
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Xu 2008, Shaban et al. 2010, Kuo and Lo 2009, Wu 2011, Odibat et al. 2008, Filobello-Nino et al. 
2012, Ganji 2006, Ağırseven and Öziş 2010, Bayat and Abdollahzade 2011c, d, Bayat et al. 2014a, 
Andrianov et al. 2004). 

Among these methods, homotopy perturbation method is considered to analysis the vibration of 
parametrically excited oscillator with strong cubic positive nonlinearity of complex variable in 
nonlinear dynamic systems with forcing based on Mathieu-Duffing equation. 

Applications of homotopy perturbation method have been studied, to demonstrate the 
applicability and preciseness of the method, some comparisons between analytical and numerical 
solutions are presented. Eventually we have shown that HPM can converge to a precise cyclic 
solution for nonlinear equations. 

The governing equation of Mathieu-Duffing system which is considered in this study is 
described by the following high-order nonlinear differential equation (Andrianov et al. 2004) 
 

  0)0(   ,1)0(   ,2sin)2cos(2 0
3  xxtFxxtxx              (1) 

 
Where dots indicate differentiation with respect to the time (t), ε << 1 is a small parameter, β is 

the parameter of nonlinearity, and ξ is the transient curve. 
 
 
2. The basic concept of the solutions 

 
In this section, the basic of the utilized methods are explained for the better understanding of 

the reader. 
 
2.1 Basic idea of HPM 
 
To illustrate the basic ideas of this method, we consider the following equation 
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Where A is a general differential operator, B a boundary operator, f (r) a known analytical 

function and Γ is the boundary of the domain Ω. A can be divided into two parts of L and N, where 
L is linear and N is nonlinear. Eq. (2) can therefore be rewritten as follows 
 

 rrfxNxL 0)()()(                         (4) 
 

Homotopy perturbation structure is shown as follows 
 

    0)()()()()1(),( 0  rfvApxLvLppvH                  (5) 
where 

Rprv  ]1 ,0[:),(                             (6) 
 

In Eq. (5), ]1 ,0[p  is an embedding parameter and x0 is the first approximation that satisfies 
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the boundary condition. We can assume that the solution of Eq. (2) can be written as a power 
series in p, as following 


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And the best approximation for the solution is 
 

  2101lim vvvvx p                          (8) 
 

2.2 Basic idea of Runge-Kutta 
 
The fourth RK (Runge-Kutta) method has been used to verify the homotopy perturbation 

solution. 
This iterative algorithm is written in the form of the following formulae for the second-order 

differential equation 
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Where, Δt is the increment of the time and h1, h2, h3, and h4 are determined from the following 

formulae 
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The numerical solution starts from the boundary at the initial time, where the first value of the 

displacement function and its first-order derivative are determined from initial condition. Then, 
with a small time increment Δt, the displacement function and its first-order derivative at the new 
position can be obtained using Eq. (9). This process continues to the end of the time limit. 

 
 

3. The solutions 
 

In this section the applications of the two methods to the nonlinear equation of oscillator are 
discussed. 

 
3.1 homotopy perturbation method 
 
As the HPM was applied to the nonlinear equation of (1), we have 
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      02sin)2cos(2  1 0
3  tFxxtxxpxxxp            (11) 

 
After expanding the equation and collecting it based on the coefficients of p-terms, we have 

 

0: 000
0  xxxp                          (12) 

 

0)2sin()(cos42: 00
23

001111
1  tFxtxxxxxp            (13) 

 

03)(cos42: 2
101

2
1222

2  xxxtxxxxp               (14) 
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One can now try to obtain the solution of different iterations (12), in the form of 
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The obtained iteration is used to generate the equation for the next iteration, and therefore the 
second and third iterations are obtained. Since the two other ones and therefore the general 
solution are too long to be written in this article, we have shown them in figures. 

 
3.2 Runge-Kutta (Numerical) 
 
In this section, the Maple Package has been utilized for the numerical analysis of the problem, 

in which the rkf45 is used to solve ODEs. The solution for the displacement and the velocity for 
eleven different points of time are shown in Table 1. 
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Fig. 1 Comparison of displacement time history for Case 1 : γ = 3, ξ = 2, ε = 0.01, β = 2, F0 = 1 
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Fig. 2 Comparison of time history diagram of velocity ẋ for Case 1 : γ = 3, ξ = 2, ε = 0.01, β = 2, F0 = 1 
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Fig. 3 Comparison of velocity ẋ based on displacement x for Case 1 : γ = 3, ξ = 2, ε = 0.01, β = 2, F0 = 1 

 
 
4. Results and discussions 

 
In this section, to illustrate and verify the accuracy of this new approximate analytical approach, 

a comparison between homotopy perturbation method and numerical ones are presented in Figs. 1 
to 6 for Mathieu-Duffing equation. The Figs. 1 to 3 for one case and Figs. 4 to 6 for another case. 

Figs. 1 and 4 are the displacement time history comparisons and the Figs. 2 and 5 are the 
velocity time history comparisons of the problem. From those figures, the motion of the system is 
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a periodic motion and the amplitude of vibration is a function of the initial conditions. 
Comparisons of homotopy perturbation method for different parameters via numerical is 

presented in Table1. 
Table 1 is also presented to compare the point value of eleven extreme points of homotopy 

perturbation method and Runge-Kutta’s algorithm. An excellent agreement can be seen in Table 1 
between the analytical method and numerical one. 

To further illustration and verification of the proposed method, some comparison of homotopy 
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Fig. 4 Comparison of time history diagram of displacement x(t) for Case 2 : γ = 2, ξ = 1, ε = 
0.03, β = 3, F0 = 1 
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Fig. 5 Comparison of time history diagram of velocity ẋ for Case 2 : γ = 2, ξ = 1, ε = 0.03, β = 3, F0 = 1 
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perturbation method and numerical solution are presented in Figs. 3 and 6 for x(t) and ẋ(t) for 
different parameters of the systems. 
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Fig. 6 Comparison of velocity ẋ based on displacement x for Case 2 : γ = 2, ξ = 1, ε = 0.03, β = 3, F0 = 1 

 
Table 1 Comparative table for error detection of the analytic method, for γ = 3, ξ = 2, ε = 0.01, β = 2, F0 = 1 

Time 
Displacement (x) Velocity ( )x  

HPM RKM Error (%) HPM RKM Error (%) 

0 1 1 0 0 0 0 

5 0.152 0.157 2.993 -0.081 -0.084 3.489 

6 -0.100 -0.099 1.177 -0.245 -0.246 0.489 

7 -0.070 -0.068 2.936 0.284 0.284 0.203 

8 0.158 0.159 0.765 0.009 0.008 2.314 

9 -0.062 -0.062 0.203 -0.291 -0.292 0.092 

10 -0.107 -0.106 1.265 0.233 0.235 0.769 

11 0.150 0.152 0.830 0.097 0.096 1.313 

12 -0.018 -0.018 0.707 -0.314 -0.315 0.157 

13 -0.135 -0.134 0.756 0.164 0.166 1.426 

14 0.131 0.132 1.061 0.178 0.177 0.510 

15 0.026 0.026 0.167 -0.312 -0.313 0.251 

16 -0.153 -0.152 0.435 0.082 0.085 2.972 

17 0.101 0.102 1.476 0.244 0.243 0.265 

18 0.069 0.069 0.134 -0.285 -0.286 0.402 

19 -0.158 -0.158 0.205 -0.007 -0.006 2.989 

20 0.063 0.064 2.467 0.290 0.290 0.153 
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As shown in Figs. 3 and 6 and Table 1, it is apparent that homotopy perturbation method has an 
excellent agreement with the numerical solution using Rung-Kutta and these expressions are valid 
for a wide range. 
 
 
5. Conclusions 

 
In this study the homotopy perturbation method has been employed to analyze of   

parametrically excited oscillator with strong cubic positive nonlinearity of complex variable in 
nonlinear dynamic systems with forcing. The results obtained from this method have been 
compared with those obtained from numerical method using RK algorithm. This comparison 
shows excellent agreement between the two methods. Also, HPM does not require small 
parameters, so the limitation of the conventional perturbation method could be eliminated. The 
results indicated that HPM is extremely speedy, light, with high accuracy. Excellent agreement 
between approximate solution and the numerical one is demonstrated and discussed. The method 
can be easily extended to any nonlinear oscillator without any difficulty. 
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