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Abstract.  Damage in structures often leads to failure. Thus it is very important to monitor structures for 
the occurrence of damage. When damage happens in a structure the consequence is a change in its modal 
parameters such as natural frequencies and mode shapes. Artificial Neural Networks (ANNs) are inspired by 
human biological neurons and have been applied for damage identification with varied success. Natural 
frequencies of a structure have a strong effect on damage and are applied as effective input parameters used 
to train the ANN in this study. The applicability of ANNs as a powerful tool for predicting the severity of 
damage in a model steel girder bridge is examined in this study. The data required for the ANNs which are in 
the form of natural frequencies were obtained from numerical modal analysis. By incorporating the training 
data, ANNs are capable of producing outputs in terms of damage severity using the first five natural 
frequencies. It has been demonstrated that an ANN trained only with natural frequency data can determine 
the severity of damage with a 6.8% error. The results shows that ANNs trained with numerically obtained 
samples have a strong potential for structural damage identification. 
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1. Introduction 
 

Damage in structural systems is defined as any reduction in stiffness and mass that negatively 
affects the functionality of structures, affects the serviceability and safety which may finally lead 
to failure. There are four levels of damage identification consisting of determination of the 
presence of damage in the structure, determination of damage location, determination of the 
severity of damage and prediction of the remaining service life of the structure (Rytter 1993). 
Recently soft computing techniques such as artificial neural networks (ANNs), genetic algorithm 
(GA) and fuzzy logic have been used extensively for damage assessment with varied success. In 
this study the application of ANNs in structural damage detection is considered. 

ANNs are powerful tools used to solve many real life problems that are inspired by the human 
brain which has been applied to damage identification and is considered to be a strong method in 
the field of structural dynamics. For example, Mehrjoo et al. (2008) focused on reporting damage 
of joints in two truss bridge structures using ANNs. Natural frequencies and mode shapes were 
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applied as inputs to the ANN for damage identification. Applicability and efficiency of the ANN to 
determine the severity and locate damage of the joints in truss bridges was proven in this study. 
Park et al. (2009) proposed a sequential methodology for damage detection in beams using 
time-modal features and ANNs. 

Damage detection of a cracked column using ANN was studied by Yau (2005). In this study, 
the first natural frequency of a cracked column under different compression loads were calculated 
by an analytical method and applied as inputs and the crack size, crack location and the 
compression load of the column were chosen as outputs of the ANN. The authors, according to the 
results of testing patterns on a numerical example of a trained ANN found that BPNN is a useful 
tool for predicting the applied compressive force to the column, and the crack size-location on the 
cracked column. Natural frequencies were used to detect the location and depth of cracks in a 
clamped-free beam and a clamped-clamped plane frame by Suh et al. (2000), who presented a 
technique of combining neural network with a genetic algorithm for damage assessment. 

Damage assessment of a bridge structure was carried out based on the estimated modal 
parameters using ANN by Lee et al. (2002). As inputs to the neural networks, the ratios of the 
resonant frequencies before and after damage and the mode shapes after damage were used. The 
predicted damage locations and severities were found to compare well with the imposed damages 
on the structure. 

Also many other research efforts attempted to apply ANNs to identify damage in structural 
engineering (Rosales et al. 2009, Stull and Earls 2009, Inglessis et al. 2002, Ramadas et al. 2008, 
Lam and Ng 2008, Zapico et al. 2003, Ni et al. 2006, Lu and Tu 2004). 

This paper focuses on a numerical modal analysis based on a finite element simulation used to 
generate modal parameter data to train ANN for the purpose of damage severity prediction. In this 
work the finite element modeling of a bridge girder structure using DIANA (Release 9.3) as a 
robust and efficient software package is presented. Several damaged scenarios are created and the 
numerically obtained natural frequencies of the first five modes of the undamaged and damaged 
bridge model have been successfully applied as the training samples for the ANN. 
 
 
2. Artificial neural networks 
 

ANNs are usually employed when the relationship between the input and output is complicated 
or if the application of another available method takes a large amount of computational time and if 
the effort is very expensive. It requires suitable input parameters, good data selection for training 
and suitable computational algorithms, so that it is able to learn complicated relationships between 
inputs and outputs with a high precision (Mohammadhassani et al. 2013a, 2013b, Hakim et al. 
2011, Nam et al. 2009). 

ANNs operate as a black box and are powerful tools for capturing and learning significant data 
in structures. Neural networks can provide meaningful answer even when the data to be processed 
includes errors or are incomplete and can process information extremely rapidly when applied to 
solve real world problems. 

As shown in Fig. 1 a typical neural network has three layers: the input layer, the hidden layer 
and the output layer. Each neuron in the input layer represents the value of one independent 
variable. The neurons in the hidden layer are only for computational purposes. Each of the output 
neurons computes one dependent variable. Signals are received at the input layer, pass through the 
hidden layer, and reach the output layer. 
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Fig. 1 Typical BP neural network

 
 

Amongst various ANNs, the Multi-Layer Perceptron (MLP) is the most commonly used in 
structural identification problems (Wu et al. 2002, Xu et al. 2002). The reason is that MLP 
networks have been used successfully for many different problems and can approximate any 
continuous multivariate function to any degree of accuracy (Funahashi 1989, Hornik et al. 1989). 
In MLP neurons, each layer is connected to all the neurons in both the previous and the subsequent 
layer. Backpropagation is one of the best-developed algorithms that can train multilayer perceptron 
networks (Kim et al. 2009, Noorzaei et al. 2007, Fonseca and Vellasco 2003, Leu et al. 2004). The 
backpropagation algorithm has a performance index, which is the least Mean Square Error (MSE) 
(Hagan et al. 1996, Noorzaei et al. 2008). MSE is the sum of the squares of the errors between the 
actual outputs from the training set and the computed outputs is minimized iteratively. In this study, 
the error incurred during the training is calculated in Eq. (1). 
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In this equation, e(k) is the calculated error in kth neuron, t(k) is the exact output in kth neuron, 
a(k) is the network output in kth neuron and Q is the number of training patterns. The least mean 
square error algorithm adjusts the weights and biases of the network so as to minimize this mean 
square error. 
 
 
3. Damage detection strategy and finite element modelling 
 

In this work it is proposed that the first five natural frequencies are applied as inputs of the 
ANN for the prediction of damage severity. To identify the natural frequencies as dynamic 
properties of the bridge girder, finite element analysis with different damage scenarios was 
performed. In the first stage, numerical modeling was performed using an undamaged bridge 
girder in order to obtain the modal frequencies. Later, numerous damage scenarios were created by 
introducing different severities of damage at different locations along the bridge girder. Results of 
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the numerical modal analysis will then be used as training data for the ANN algorithm. By 
incorporating the training data, the ANN will be able to give outputs in terms of damage severity 
using the five first natural frequencies. 

The model as shown in Fig. 2 contains a plate with dimensions 1200 mm length including a 
100 mm overhangs at both support ends and 210 mm and 5mm in width and thickness, 
respectively. Three stiffeners as shown in this figure were fixed along the length of the plate with 
dimensions of 1200 mm by 50mm by 5mm representing length, width and height, respectively. 
The modulus of elasticity of the steel, the Poisson’s ratio and the density were, 2.1 × 1011 kg/m2, 
0.2 and 7850 kg/m3, respectively. The element type for the finite element model used is an 
eight-nodded isoparametric three dimensional solid brick element (DIANA 9.3). It is based on 
linear interpolation and Gauss integration. This element type have translations in the nodal x, y and 
z directions. 

The mesh configuration of the bridge girder model is shown in Fig. 3. The FE model consists 
of 14744 nodes and 7200 elements. With this mesh configuration, the bridge girder model has 
44232 degrees of freedom (DOF).The geometry of the finite element model bridge girder contains 
44 points, 88 lines, 55 surfaces and 10 bodies. The support conditions in one side are considered as 
fixed for x, y and z directions, but on other side only y and z are fixed and x direction is free. 

 
 

 
Fig. 2 Bridge girder geometry

 

 
Fig. 3 Finite element modeling of bridge girder
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Table 1 Frequencies of the first five modes at undamaged state 

Mode 1 
(Hz) 

Mode 2 
(Hz) 

Mode 3 
(Hz) 

Mode 4 
(Hz) 

Mode 5 
(Hz) 

129 165 255 391 452 
 
 

 
Fig. 4 Modes shape for undamaged cases

 
 
Table 2 Cross-section loss of the second moment of area (I) with different damage severity 

Cut slot 
(mm) 

I (%) 
Cut slot 
(mm) 

I (%) 
 

2 11.5 18 73.78 

4 22.10 20 78.40 

6 31.85 22 82.44 

8 40.73 24 85.94 

10 48.80 26 88.94 

12 56.10 28 91.48 

14 62.67 30 93.60 

16 68.55 - - 
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The bridge model was simulated in its undamaged state and under different damaged states to 
determine the first five natural frequencies. Table 1 lists the first five natural frequencies for the 
undamaged bridge girder. 

The mode shapes for the first five modes of the undamaged state of the bridge girder model is 
shown in Fig. 4. 

In this study various damage scenarios were simulated. These scenarios consisted of seven 
locations with fifteen severities for each location. The seven damage locations were at L/13, 2L/13, 
3L/13, 4L/13, 5L/13, 6L/13 and L/2 of the span length. These damage severities correspond to a 
cross-sectional loss of the second moment of area (I) as shown in Table 2. 

Table 3 shows the first five frequencies for a damage case from the numerical simulation at 
4L/13 and it is obvious that the natural frequencies drop when damage is induced. These results 
will be used for training ANNs for damage severity. 
 
 
4. Damage detection using ANNs 
 

In this study, different sets of data from the undamaged and damaged scaled down steel girder 
bridge deck were collected from the numerical modal analysis. These data were gathered for 
damage severity of the steel bridge girder, containing the first five natural frequencies. Different 
neural network models were conducted trained and tested using these available data. 

In this research, the feed forward backpropagation algorithm for the ANN training was selected. 
At first an input vector comprising the first five natural frequencies is fed to the input layer. This 

 
 
Table 3 Natural frequencies of the first five modes for damage at 4L/13 

Cut slot (mm) N.F 1 N.F 2 N.F 3 N.F 4 N.F 5 

2 128.7 164.4 390.1 450.4 754.7 

4 128.3 163.6 388.8 449.8 753.6 

6 127.9 162.8 387.5 449.1 753.2 

8 127.2 161.6 386.7 448.3 752.7 

10 126.9 160.4 385.8 447.5 751.6 

12 126.7 159.5 383.6 446.8 750.3 

14 126.3 158.4 381.7 445.3 749.5 

16 126.2 157.5 379.9 444.2 748.3 

18 125.8 156.7 378.5 442.6 747.6 

20 124.9 155.2 377.5 441.7 747.1 

22 124.4 153.8 375.8 439.7 746.5 

24 124.3 152.6 373.7 438.6 744.9 

26 123.6 151.5 371.8 437.6 744.2 

28 122.9 150.8 370.6 436.3 743.4 

30 121.7 149.6 369.9 434.7 743.1 

*N.F: Natural Frequency 

372



 
 
 
 
 
 

Structural damage detection of steel bridge girder using artificial neural networks 

input vector produces a set of outputs. The difference between the given output and the target 
output is an error, which will propagate through the network in a backward step. During this 
process, the mean square error (MSE) is minimized, and consequently the ANN output will be 
close to the target output. An accurately trained ANN gives successful predictions when a new 
sample is given as the input. 

The output parameter of the ANN is the damage index (DI), representing the severity of 
damage. This damage index is a ratio of the cross-sectional loss of the second moment area for the 
damaged to the undamaged case. The value of damage index based on different damage severity is 
demonstrated in Table 4. 

The network was trained using Matlab 7.11 (R2010b). Once the network is trained using 
training data, it is ready for the prediction of the severity of damage in the structure. Data sets from 
the numerical model were used for the training and testing of the network. 

In this research, 400 different sets of data from the undamaged and damaged steel girder bridge 
deck was collected from the numerical modal analysis. These data were gathered for the damage 
severity of the structure containing the first five natural frequencies. Divisions of the datasets were 
carried out randomly into the training and testing datasets. Out of the 400 datasets, 280 (70%) 
were used as training datasets, while the remaining datasets (30%) were used for the testing phase 
(120 datasets). 

This data was normalized between -1 and 1 and fed to the input neurons. The values of the 
damage index corresponding to each set of natural frequencies were also fed to the network as the 
desired outputs. The training process was then stopped when the maximum number of iterations 
reached 50000 or the mean square error (MSE) of the network for the training set reached 0.008. 

During the training of the ANN, the best network with the optimum parameters such as, 
connectivity weights, biases, number of hidden layers, number of neurons in each layer, type of 
activation function in the hidden and output layers were determined. Also the rate of learning and 
momentum values are specified. In this study, many architectural networks having different 
conditions were determined. After trying out different networks with one and two hidden layers 
and while taking into consideration network error, in a network with one hidden layer, a good 
convergence was achieved. 

Determining the hidden neurons in each hidden layer is the next step. The effect of different 
numbers of hidden neurons on the MSE was investigated. It was demonstrated that by increasing 

 
 
Table 2 Cross-section loss of the second moment of area (I) with different damage severity 

Cut slot (mm) DI* Cut slot (mm) DI* 

2 0.8850 18 0.2622 

4 0.7790 20 0.2160 

6 0.6815 22 0.1756 

8 0.5927 24 0.1406 

10 0.5520 26 0.1106 

12 0.4390 28 0.0852 

14 0.3733 30 0.0640 

16 0.3145 - - 

* DI: Damage Index 
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the hidden neurons, the training error is reduced, but there is a critical number of hidden neurons 
that exists for minimizing the error rate. The reason is that, with too many hidden neurons, a 
network can simply memorize the correct response to each pattern in its training set instead of 
learning a general solution. 

Therefore a network with architecture 5-14-1 is selected as the best possible architecture in this 
study. This architecture comprises of five neurons in the input layer corresponding to the five first 
natural frequencies, one hidden layer with fourteen neurons and one neuron in the output layer 
corresponding to the severity of damage in the steel bridge girder. In summary, in order to have 
minimum compatibility costs with a high accuracy, the number of hidden neurons in the hidden 
layer is fixed to 14. 

In this network the Hyperbolic Tangent Sigmoid function was applied to the hidden and output 
layer as activation functions and the constructed ANN had a learning rate of 0.15 and 0.65 for the 
momentum yielded with minimum error. 

Training of this architecture was continued up to 50000 iterations and the average percentage of 
the training error reached 6.8%. After that, the network was saved and the corresponding 
connectivity weights were saved. A comparison of the predicted damage severity by the ANN and 
target values from the numerical analysis is depicted in Fig. 5. 

The correlation coefficient (R2) gives an indication of the accuracy of the trained network, 
having a value between 0 to 1. If the correlation coefficient is close to 1, it shows how successful 
the training was. Smaller MSE and larger R2 mean a better performance. The selected network was 
capable of providing a good correlation between the natural frequency information and the extent 
of damage in terms of the damage index for a given set of natural frequencies. This network had a 
minimum MSE of 0.00785 and a maximum correlation of 0.981 compared to the other networks 
with different architectures. 

According to the results, the correlation coefficient (R2) reached 0.941 for the tested data set. 
The testing results were very close to the actual output and demonstrated that the ANN was 
successful in training the relationship between the input and output data with an acceptable error. 

After the network was trained, the testing set is used to avoid over-fitting and to assess the 
confidence in the performance of the trained network. At this stage, the trained network is tested 

 
 

 
Fig. 5 Comparison of damage severity identified by ANN and target data for training sets 
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with the data, which was not present in the training data set. After training, the network learned the 
samples and when tested with the new data, it should be able to identify the severity of damage 
with an acceptable error. Comparisons between the predicted damage severity and the target data 
for the testing data sets are shown in Fig. 6. From this figure it can be seen that there is a good 
agreement between the predicted values and the experimental data. The ANN was successful in 
predicting the severity of damage with an average percentage error of 8.25% for the testing sets 
which was close to the actual output. 

The results were also seen to be quite reasonable and the testing sets error had very similar 
characteristics without over fitting. In this study, the ANN predicted the damage severity with an 
error of 6.8% and 8.25% respectively for the training and testing sets. 
 
 
4. Damage detection using ANNs 
 

Deterioration and reduction in structural stiffness, produces changes in dynamics properties, 
such as the natural frequencies and mode shapes. In this study, neural networks are applied to 
extract knowledge from the natural frequencies of damaged structures at different locations. 
Details of the study using ANNs for the prediction of damage severity in a model steel girder 
bridge were described. 

The dynamic tests carried out on the damaged and undamaged test structure showed that a 
reduction in stiffness during the damage which led to a reduction in natural frequencies for 
different modes. The numerically generated natural frequencies of the first five modes of the 
undamaged and damaged bridge model were successfully applied as the training samples for the 
ANN. 

According to the results, the ANN was able to predict the damage severity with an average 
percentage error of 6.8 % and 8.25%, respectively for training and testing. Also, the results show a 
highly acceptable coefficient of correlation between the identified and numerical data and imply 
that the developed ANN model can be applied as a very good tool for the identification of damage 
severity in the bridge girder model. Therefore, it can be concluded that ANN trained with just 

 
 

 
Fig. 6 Comparison of damage severity identified by ANN and target data for testing sets 
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natural frequencies obtained from a numerical modal analysis as inputs can very well be applied to 
evaluate the severity of damage in a structure. 
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