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 Technical Note

Generalization of shear truss model to the case
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Abstract. A theoretical model for shear strength evaluation of fibrous concrete beams reinforced with
stirrups is proposed. The formulation is founded on the theory of plasticity and the stress field concepts,
generalizing a known plastic model for calculating the bearing capacity of reinforced concrete beams, to
the case of fibrous concrete. The beneficial effect of steel fibres is estimated taking into account the
residual tensile strength of fibrous concrete, by modifying an analytical constitutive law which presents a
plastic plateau as a post-peak branch. Around fifty results of experimental tests carried out on steel
fibrous concrete beams available in the literature were collected, and a comparison of shear strength
estimation provided by other semi-empirical models is performed, proving that the numerical values
obtained with the proposed model are in very good agreement with the experimental results.
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1. Introduction

The behaviour of reinforced concrete (RC) structural elements, predominantly subjected to shear

actions, remains an area of much concern. The complexity of the problem arises from the presence

of many different physical phenomena, such as the propagation of cracks and the compression stress

transfer mechanism from loading points to supports. Moreover, geometry, load conditions and

arrangement of longitudinal and transversal reinforcement influence the response of the structural

member. Thus design codes are continually revised and generally become more stringent, suggesting

design formulations which are usually derived from theoretical models in order to provide a wide

range of use. However, analysis and design methods still have to be improved to provide a more

rational tool for the prediction of shear strength. To this aim, only formulations based on a robust

theoretical approach allow accurate estimation of shear strength in a wide range of cases.

The use of steel fibre reinforced concrete (SFRC) has been growing for the last two decades,

particularly when crack propagation control is of primary importance (Muttoni and Ruiz 2008).

Many authors (e.g. Casanova and Rossi 1997, Spinella et al. 2010) have reported that the addition

of steel fibres results in significant improvement of the shear capacity for reinforced beams, and a

large number of experimental results are available concerning beams with longitudinal reinforcement for

flexure and steel fibres only for shear (Adebar et al. 1997). Moreover, it has been shown (Cucchiara

et al. 2004) that steel fibres can partially substitute shear steel reinforcements (generally constituted

by vertical stirrups and horizontal steel bars), obtaining equivalent performance in terms of both
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strength and ductility. The use of transversal reinforcement made up of both steel fibres and stirrups

seems to be a promising application. As a matter of fact, the post-cracking stress in tension due to

fibres is not always sufficient to totally replace the steel reinforcement, and at the same time the

placement of a large amount of stirrups can result in reinforcement that is so dense as to

compromise the cast phase. By contrast, an optimized mix of steel fibres and stirrups as shear

reinforcement assures a ductile response of structural elements, which is of practical importance in

the design of structural members in seismic regions. In this field, the capacity of absorbing the

energy due to seismic actions is nowadays required in widely adopted design codes, incorporating

performance-based criteria and advanced tools for numerical analysis (i.e. push-over).

The design formula for shear strength incorporated in most international building codes of practice

derives from robust theoretical approaches, such as: the Modified Compression Field Theory

(MCFT) (Vecchio and Collins 1986) for the Canadian Code (CSA A23.3-04 2004); the AASHTO LRFD8

(2007), the rational model based on the Critical Shear Crack Theory (CSCT) (Muttoni and Ruiz

2008) and adopted by the Swiss Code (SIA 262 2003). In Eurocode 2 (2004) (EC2) the classical

model of Ritter and Mörsch based on the truss analogy (with a 45 degree angle for the diagonal

compression strut) is replaced by a more general model based on the plastic theory, which takes

stress distributions into account as uniform inclined fields (Nielsen 1999). The plastic approach

assumes that the angle θ, which defines the inclination of the compressive stress field with respect

to the horizontal axis, is not fixed at 45 degrees, but may be variable in a wide range of values.

This theoretical model has been enhanced to evaluate N-M-V interaction resistance domains for box

and I-shaped reinforced concrete cross-sections (Recupero et al. 2003).

In this paper, the plastic model originally formulated by Nielsen et al. (1999), which is the basis

of the EC2 (2004) shear design formulation, is extended to the case of structural elements

reinforced in shear with both steel fibres and stirrups. The ability of fibres to provide residual

tensile strength of the composite is mainly taken into account rearranging an appropriate theoretical

constitutive law for SFRC (Lim et al. 1987); thus the ability of material to transfer tensile stress

across cracks at the ultimate limit state is taken into account by the plastic model theory. Furthermore,

flattened stress-strain constitutive laws in the post-peak range of fibrous concrete behaviour in

tension make the SFRC more suitable than plain concrete for the application of the plastic theory. A

stress field corresponding to longitudinal reinforcement along the web is also included in the

proposed model (Mancini et al. 1996).

A database of test results (Swamy and Bahia 1985, Furlan and Bento de Hanai 1997, Campione

and Mindess 1999, Dupont and Vandewalle 2003, Campione et al. 2004, Kearlsley and Mostert

2004) reported in the literature was collected and two well-known semi-empirical models are

considered (Thomas and Ramaswamy 2006, Campione et al. 2004). The comparisons between the

shear strength estimation provided by the proposed model and the analytical formulations taken into

account highlight the effectiveness of the proposed theoretical model to evaluate the shear strength

of beams reinforced with steel fibres and stirrups.

Then a numerical analysis is performed to investigate the effectiveness of the proposed analytical

model in predicting the ability of fibres to shift the beam failure mode from brittle for shear to

ductile for flexure.

2. A new shear strength model for sfrc beams with stirrups

Since the beginning of the 20th century, when Ritter and Mörsch postulated the earliest truss
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models, great progress has been made in the investigation of the analytical solution of shear

problems in RC. However, most of the proposed highly sophisticated tools (Vecchio and Collins

1986) require considerable simplification to make them suitable for codes of practice. Nonetheless,

new theoretical concepts have been progressively introduced, such as the idealization of the stress

field, certainly performing better in describing the behaviour of the structural member than the

classical strut-and-tie model.

The newly developed models have strongly influenced international design codes for RC elements

(CSA 2004, EC2 2004), and the truss-based model formulation was rapidly replaced with analytical

expressions derived from the stress field assumption.

2.1 Stress field model

The proposed shear strength model is based on the work of Nielsen et al. (1999), where compression

stress fields with variable inclination are used to evaluate the shear capacity of RC elements with

stirrups. Nielsen’s model is founded on the plastic theory, and it is derived on the basis of the

theorems of limit analysis, more precisely the static theorem, which provide the actual shear

strength of the beam as the maximum shear among those of the statically admissible solutions

(lower bound solution). Each statically admissible solution can be derived from the equilibrium

condition of a free body diagram in which the internal stresses satisfy the plastic admissibility

condition; the failure mechanism is then determined, depending on which stress field reaches its

ultimate stress. In order to derive the model, the following assumptions are made:
● The distribution of internal force in the beam at failure is described by the free body diagram in

Fig. 1, where two internal forces are considered, namely those acting on the top and bottom

chords, and two stress fields due to the concrete of the web and the web reinforcement. 
● The top and bottom chords are dimensionless and subjected to axial force only, i.e. have been

idealized as stringers carrying concentrated internal forces (Nielsen 1999) made up of compressed

concrete and longitudinal reinforcement, respectively
● The compression concrete web stress field is assumed to be uniform as provided by the theory

of plasticity, and it is inclined by an angle θ on the longitudinal axis, which may differ from 45°
● Stirrups, placed inclined by an angle a on the longitudinal direction, are assumed to be smeared

along the depth of the beam and able to transfer axial force only.

Further shear strength mechanisms, such as dowel action and aggregate interlock, are only

apparently neglected. They are taken into account by means of the inclination of the compression

web stress field, which is different from that of the crack. This physical behaviour plays a key role

in the shear failure mechanism at the basis of the model; as a matter of fact shear slips along cracks

deteriorate the effective strength of the compressed concrete (Nielsen 1999, Zhang 1997, Vecchio

2000), which is limited to values lower than the capacity of the material measured by a uniaxial

compression test.

An interesting extension of Nielsen’s theory was provided by Mancini et al. (1996) for the case of

RC beams with surface reinforcement. They generalised Nielsen’s model by introducing another

horizontal stress field to represent the action of skin reinforcement when it is present.

The presence of longitudinal reinforcement along the depth of a member is relevant for shear

behaviour. Kuchma et al. (1997) demonstrated the highly beneficial effect on shear strength provided by

the addition of three longitudinal layers of relatively low diameter bars along the depth of a

specimen 1000 mm deep. As a result, the shear strength of the structural element increased about
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50%, the ductility was doubled and a well distributed crack pattern was formed, without any early

localization of shear-critical cracks. 

The addition of fibres is able to providing a similar effect in-member response and, as will be

seen later, the formulation proposed here for SFRC beams includes a simple term to take into

account the contribution of fibres to shear strength. Fibres help the concrete matrix to contain the

shear slips along the crack surface (Spinella et al. 2010). Consequently, they reduce the deterioration of

concrete, allowing higher effective compression strength for fibrous concrete than for plain concrete.

Moreover, the most important beneficial effect of fibres on the strength of composites concerns the

residual tensile strength. Indeed, fibres bridge tensile stress across matrix cracks, providing

considerable residual tensile strength for the composite, which is also present in the presence of

significant values of tensile strain. As a result, the width of cracks is reduced by fibre action,

increasing the shear capacity of the beam. In the proposed model for the evaluation of the shear

strength of SFRC beams with stirrups, the assumption of concrete able to resist compression stress

only is removed, and a tensile stress field is introduced. This distribution of tensile stress is assumed

to be uniform along the web section and orthogonal to the compression stress field; thus its

inclination angle with respect to the longitudinal axis of the beam is equal to θ + π/2.

2.2 Lower bound solution for fibrous RC beams

As briefly described in the previous section, the proposed model includes in a clear and easy way

the contributions to shear strength due to each strength mechanism. In the following sections, each

contribution is defined by an appropriate analytical rule, founded on the plastic theory, aiming to

obtain analytical laws for stress distribution at the ultimate limit state (ULS) as a function of the

mechanical and geometrical characteristics of the beam, and to provide the beam shear strength by

means of the lower bound solution.

To this purpose, the plastic theory provides robust tools, known as theorems of limit analysis. In a

previous work (Mancini et al. 1996), the analogous plastic model for plain concrete was reported. It

was formulated adopting dimensional terms to represent all the features concerning the physical

problem. As a consequence, the original analytical equations are lengthy. However, the work of

Mancini et al. (1996) can be used as a benchmark, because the model proposed in this work is a

natural extension of that model to fibrous concrete beams.

Here, to obtain as general a formulation as possible, all geometrical and mechanical quantities

involved in the physical problem are expressed in terms of non-dimensional parameters (Fig. 1).

The non-dimensional shear and bending moment are defined as τ = V/bwfcd2z and µ = M/bwfcd2z
2

respectively, where bw is the width of the beam web, z is the lever arm, and fcd2 the effective

compression strength of the material. Referring to Fig. 1, the variation laws of shear and bending

moment, along the longitudinal axes of the structural element, may be expressed as functions of the

non-dimensional abscissa ξ = x/z as follows

 (1)

(2)

τ* and µ* being the values of shear and bending moment corresponding to the abscissa ξ= 0 respectively;

and p(ξ) = q(ξ)/bwfcd2 the law of the non-dimensional distributed load acting on the beam.

Now the shear strength along the beam will be evaluated as a function of the geometrical and
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mechanical characteristics of structural element, and of the compression stress field angle (θ). Thus,

a segment of beam ranging from the abscissa ξ = 0 and delimited by a cut-section parallel to the

tensile stress field of the stirrups (Fig. 2) is considered. The external load p(ξ) causes shear, τ, and

bending moment, µ, which are resisted by the inclined compression and tensile stress fields on the

concrete web and axial forces on the top (c = C/bwzfcd2) and bottom (t = T/bwzfcd2) chord. The plastic

admissible condition at ULS along the transversal direction of the beam at the abscissa ξ reads as

follow

 (3)

where ωcf = fctf/fcd2 is the ratio between the residual tensile strength of the fibre reinforced concrete

(fctf), influenced by the presence of fibres in the mixture, and the effective compressive strength

(fcd2) at the ULS, (cotθ + cotα) sinθ and (tanθ – cotα) cosθ are the resultant of the dimensionless

compressive and tensile stress fields on the horizontal axis acting on the cut section at the ULS, and

the terms on the right-hand side in Eq. (3) are their projections on the vertical axis.

In order to satisfy the plastic limit condition, the shear force τ(ξ) has to be less than or equal to

the plastic shear strength expressed by the whole right-hand side in Eq. (3). Rearranging Eq. (3), the

shear strength due to web concrete can be expressed as a function of cot(θ)

τ ξ( ) cotθ cotα+( )sin
2
θ ωcf tanθ cotα–( )cos

2
θ+≤

Fig. 1 Shear stress field model

Fig. 2 Cut-section parallel to tensile stress field of stirrups
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 (4)

Likewise, in Fig. 3 there is depicted a segment of beam ranging from the abscissa ξ = 0 and

delimited by a cut section parallel to the compressive stress field of web concrete induced by the

external load p(ξ). In this case the static vertical equilibrium condition returns the limit shear

strength that the stirrups are able to withstand

 (5)

ωsw = (Aswfywd)/(bwsfcd2) being the mechanical ratio of stirrups having horizontal space s, section area

Asw and yield strength of steel fywd.

Eqs. (4) and (5) provide the limit values of shear strengths at the ULS corresponding to the

collapse of web concrete or stirrups respectively, as a function of the mechanical and geometrical

characteristics of the structural element, taking into account the presence of fibres in the mixture by

means of simple additional terms depending on ωcf, the angle of compression stress field (θ), and

the inclination of the stirrups (α). The top (c) and bottom (t) chords are assumed to resist along their axial

direction only. Considering the beam segment in Fig. 3, the rotating equilibrium condition evaluated with

respect to the top chord (point A) in conjunction with the plastic admissible condition may be

written as follow

 (6)

where ωsl = (Aslfyld)/(bwzfcd2) is the mechanical ratio of skin reinforcement Asl with a yield strength

fyld, and t = T/(bwzfcd2) = (Aslbfyd)/(bwzfcd2) =ωslb the mechanical ratio of bottom longitudinal reinforcement,

i.e. the non-dimensional bottom chord strength. With the help of Eqs. (1), (2) and (5), Eq. (6) can

be rearranged in the following simpler form

 (7)
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cotθ cotα+

1 cot
2
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--------------------------≤ ωcf cotθ
1 cotθcotα–
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2
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-----------------------------+
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2
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Fig. 3 Cut-section parallel to compressive stress field of web concrete
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Eq. (7) provides the interaction of bending moment and shear along the abscissa ξ; their limit

values are related to the strength of the bottom (ωslb) and surface (ωsl) reinforcement, and the

composite tensile strength due to the fibre effect. The influence of external shear force, and the

resisting contribution of skin reinforcement (ωsl) and fibre reinforced concrete (ωcf) affect in the

same manner the action and the strength of the tensile chords (i.e. the terms on the left and right

hand side in Eq. (7) are affected by the coefficient ½) as a consequence of the assumption of a

uniform stress field and the model for compression and tensile zones that have been idealized as a

stringers carrying concentrated forces (Nielsen 1999). 

The bending moment law µ(ξ) can be expressed as a function of the shear τ(ξ), mainly depending

on the load type and constraint conditions. Thus Eq. (7) can be interpreted as an expression for the

shear strength limit. In addition, the formulation makes it possible to evaluate the flexural strength

where the shear vanishes and the bending moment is the maximum.

The right-hand side of Eqs. (4), (5) and (7) provides the strength of structural members associate

with different collapse mechanisms: crushing of web concrete, yielding of stirrups, or failure at

chord level. The limit shear strength is attained in the beam critical section (ξ0) only, where one or

more of Eqs. (4), (5) or (7) is/are satisfied as equality and shear or flexural failure take effect.

Fibres have a beneficial effect in improving the shear strength of all mechanisms, and the

proposed model takes this into account by means of simple additive terms, which are essentially a

function of the mechanical ratio of the residual tensile strength of the composite (ωcf), the angle of

the compression stress field (θ), and the inclination of the stirrups (α).

3. Constitutive behaviour of material

The proposed theoretical model is based on the plastic theory, and one of its fundamental

assumptions concerns the constitutive behaviour of material. It is assumed to be always perfectly

plastic. However, the effective material strength, coinciding with the plateau value that is typical of

a perfectly plastic constitutive curve, is not estimable with a standard uniaxial stress test, and the

goodness of the plastic models is strongly influenced by the assumed effective strength values of the

material. At failure, the cracked concrete in compression is simultaneously subjected to compression

and orthogonal tensile strains. Therefore it exhibits reduced strength compared to uncracked concrete in

uniaxially compression. This physical behaviour, namely compression softening (Vecchio and

Collins 1986, Nielsen 1999), can be recognized in the plastic theory by the effectiveness factor (ν),

which reduces the compressive cylinder concrete strength to the effective value. In addition, as

highlighted by Zhang (1997) and Vecchio (2000) for plain concrete, shear slips along cracks further

degrade the effective compression strength of material. By contrast, fibres help to contain the width

of cracks and shear slips, preserving the strength of the composite (Spinella et al. 2010).

3.1 Effective compressive strength

Eurocode 2 (2004) adequately takes into account the physical phenomena described above, adopting the

following effectiveness factor (ν) for the concrete in compression of members requiring shear

reinforcement (EC2 2004)

              (8)ν 0.6= for fck 60 MPa≤
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 (9)

where fck = fcm− 8 (in MPa) is the characteristic cylinder strength.

Few expressions have been proposed to estimate the value of the effectiveness factor in compression of

fibrous concrete (Spinella et al. 2010, Voo et al. 2006). Fibrous concrete shows uniaxial compression

strength similar to plain concrete, but less softening in the post-peak branch is always observed

when a small quantity of steel fibres is placed in the mixture (Nataraja et al. 1999). Thus for fibrous

concrete a higher value of the effectiveness factor in compression than for plain concrete is

reasonably expected. A recalibration of the effectiveness factor for fibrous concrete in compression

would be needed, but it would require a large testing campaign. However, for the proposed model

the effectiveness factor ν for plain concrete, as defined in Eqs. (8) and (9), is also adopted for

SFRC, providing a lightly conservative evaluation of the effective compressive concrete strength.

3.2 Effective tensile strength

As previously mentioned, the constitutive behaviour of fibrous concrete under direct tensile force

is different than that of plain concrete, specially in the cracking phase. In fact, the residual tensile

strength of the material is negligible for plain concrete; by contrast, it takes on a significant value

for fibrous concrete, and it is practically constant after the first cracking of the matrix, also for high

tensile strain values (Vandewalle 2002). Thus it can be modelled by a plastic constitutive behaviour.

Fibres provide the bridging of stress across cracks due to the pullout process, which provides an

improvement of the toughness of the composite and an increasing in fracture energy before collapse,

depending on the bond-slip behaviour at the interface between fibre and matrix.

Most of the analytical laws proposed in literature to model the constitutive behaviour of fibrous

concrete under direct tensile stress are derived from the pull-out mechanism of a single fibre

embedded in the matrix. The pull-out curve is usually evaluated by means of experimental tests

(Banthia and Trottier 1994), but in some interesting models theoretical pull-out curves are derived

(Foster et al. 2006, Lim et al. 1987). Lim et al. (1987) derived a theoretical pull-out curve for a

single fibre embedded in the matrix, and then a generalization to the case of more random fibres

dispersed in the mixture was performed. The model was validated by several experimental tests

carried out by the authors on different SFRC specimens subjected to direct tension.

ν 0.9 fck 200⁄–= for fck 60 MPa≥

Fig. 4 Analytical constitutive tensile law proposed by Lim et al. (1987)
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The shape of σ-ε constitutive curve proposed by Lim et al. (1987) for fibrous concrete under

tensile stress is shown in Fig. 4. The first branch is linear up to the tension value σcr corresponding

to the first crack in the matrix; then the post-peak phase is modelled with a plateau representing the

constant value of residual tensile strength (σtu), which is always smaller than the cracking stress

value (σcr). This shape of the post-peak branch makes this constitutive model suitable for the

application of the plastic theory. Thus in the proposed model the prediction of the strength of SFRC

beams with stirrups is achieved by using the theoretical constitutive tensile law proposed by Lim et

al. (1987).

For the residual tensile strength value (σtu), the following analytical expression is suggested (Lim

et al. 1987)

 (10)

where Vf is the volumetric percentage of fibres; lf/df is the aspect ratio between the length (lf) and

the diameter of fibre (df), respectively; τf is the average bond stress between matrix and fibre;

η0 = 0.405 is the orientation factor; and ηl is the length efficiency factor of the fibre, which depends

on the critical length lc = (σfu df)/(2τf): if lf is less than or equal to lc then ηl = 0.5, else ηl = (1−lc/2lf )

(Lim et al. 1987). In the proposed model the residual tensile strength of fibrous concrete (fctf) is

assumed to be equal to the residual tensile strength (σtu), while the tensile strength of the matrix (fct)

matches the tension at the first crack of the matrix (σcr).

3.2.1 The fibre factor F
τ

As in most of the analytical constitutive tensile laws for SFRC proposed in the literature, in Lim

et al.’s model knowledge of the average bond stress between matrix and steel fibre (τf) is needed in

order to calculate the residual tensile strength (10). Many experimental and analytical works have

been published in the literature about this complex issue, suggesting several values (Swamy and

Bahia 1985, Narayanan and Darwish 1987) or calculation methods (Valle and Büyüköztürk 1993)

for τf. Voo and Foster (2003), analyzing a large database of experimental results, observed that the

average bond stress is strictly related to the fibre shape and the tensile strength of the matrix (fct), as

previously stated by Valle and Büyüköztürk (1993). On the basis of this large work, Voo and Foster

(2003) suggested simple analytical relationships between the tensile strength of the matrix (fct) and

the average bond stress (τf), as a function of the fibre type (hooked or straight). Those relationships

are rearranged here and introduced in the original expression of the residual strength (9), which is

rewritten as follows

 (11)

where Fτ = Vf (lf /df )βτ is the fibre factor (Spinella et al. 2010), and βτ = τf /fct is equal to 2.5 or 1.2

for hooked or straight fibre embedded in concrete matrix, respectively (Voo and Foster 2003). Now,

the residual tensile strength for fibrous concrete (11) depends directly on the tensile strength of the

matrix (fct), which is assumed to be equal to 0.45fcm
0.4 (in MPa) as suggested by Bentz (2000).

The fibre factor, F
τ
, provides a measure of the ability of fibre to confer toughness on the

composite and reaches its maximum value, F
τ, max = 1/(2η0ηl), when the residual tensile strength of

the composite matches the tensile strength of the matrix, i.e. the equality fctf = fct in Eq. (11) is

verified. To investigate the influence of the length efficiency factor, ηl, on the fibre factor and on

the residual tensile strength provided by fibres, a sensitivity analysis was carried out and is shown

σtu 2η0ηlVf lf df⁄( )τf=

fctf 2η0ηlFτ fct=
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in Fig. 5. In Fig. 5(a), Fτ, max is plotted for various values of the length efficiency factor of the fibre,

ηl, which depends on the geometrical and mechanical characteristics of fibres and concrete.

Increasing the value of ηl (i.e. improving the bond strength between fibre and matrix), the

maximum value of the fibre factor decreases. In Fig. 5(b) the curves of the fibre factor, F
τ
, versus

the fctf/fct = F
τ
/F

τ,max ratio are depicted. Once the geometrical (lf and df) and mechanical properties

(σfu) of fibre and concrete (fct) are known, the length efficiency factor (ηl) and the aspect ratio (lf/df)

are defined. The length efficiency factor allows one to evaluate Fτ, max in Fig. 5(a) and the

corresponding line in Fig. 5(b). Varying the volumetric percentage of fibre (Vf), the fibre factor Fτ is

easily evaluated (Fτ = Vf βτ lf /df ) and the fctf /fct ratio can be calculated.

4. Application of the proposed model

The proposed model is now completely defined by Eqs. (4), (5) and (7), which represent the

strength limits of the beam for different collapse mechanisms. Furthermore, all mechanical and

constitutive parameters that appear in the equations are defined in an explicit way. The presence of

fibres is taken into account by the parameter wcf. If this value is equal to zero (no fibres in the

mixture, so that no residual tensile strength is considered) the formulation matches the model

proposed for plain concrete beams (Mancini et al. 1996). The analytical formulation at the basis of

the proposed model to evaluate the shear strength of SFRC beam with stirrups is simple. Further, it

provides interesting information on the collapse mode of beams and the residual capacity of each

shear strength mechanism.

4.1 Shear strength domain

The variation laws of strength mechanism capacity relating to crushing of web concrete (4),

yielding of stirrups (5), and failure at chord level (7) were written to be plotted in a τ-Cot(θ) plane.

They define a shear strength domain in the range 1 ≤ Cot(θ) ≤ 2.5, as suggested by EC2 (2004), and

Fig. 5 Non-dimensional residual tensile strength of composite as a function of fibre and concrete properties
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depending on the mechanical and geometrical characteristics of the structural element. In order to

plot the curve of the shear strength provided by Eq. (7) the choice of the critical cross-section (ξ0),

where the failure is expected, is needed. In Fig. 6 a beam scheme for a four-point load test and the

corresponding variation in shear and bending moment are shown. In the region under the load point

the compressive and tensile stress fields assumed at the basis of the proposed model are not

developed. Then the width of this discontinuity region, denoted with letter D in Fig. 6, is assumed

to be equal to the height (h) of the beam, as suggested by EC2 (2004). As a consequence of these

observations, the critical shear section is chosen in the B region in the section where shear and

bending moment reach their maximum value: ξ0= (a-h)/z. Moreover, for the beam-scheme considered, the

shear-bending moment interaction along the shear span of the beam can be expressed as µ(ξ) = τ(ξ)ξ.

Thus Eq. (7) can be rearranged obtaining the analytical expression of the shear strength

 (12)

By contrast, failure due to bending moment is likely in the mid-span region of beam; then the

flexural strength for the four-point load scheme is evaluated setting equal to zero the shear value in

Eq. (7)

 (13)

In Figs. 7(a) and 7(b) graphical representations of the equations proposed are reported, assuming

that stirrups are placed with an inclination angle on the horizontal axis of 45° or 90° (as is usual in

common practice), respectively. The dashed line curves define the shear domain for a plain concrete

beam (ωcf = 0), while solid line curves define the analogous domain for fibrous concrete (ωcf = 0.05). In

the same Figs, the mechanical percentage of stirrups (ωsw) is kept constant at the value of 0.05,

while the non-dimensional abscissa of the shear critical section (ξ0) is assumed to be equal to 1.00.

τ ξ( )
2ωslb ωsl ωcf 1 cotαcotθ–( )+ +

2ξ cotθ cotα–+
----------------------------------------------------------------------≤

µ ξ( ) ωslb≤
ωsl

2
------

ωcf

2
------- 1 cotαcotθ–( )+ +

Fig. 6 Bernoulli (B) and Discontinuity (D) regions
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The area between two analogous curves plotted for plain and fibrous concrete, respectively, gives

a measure of the strength increase due to fibres related to each collapse mechanism. The beneficial

effect of fibres is clear, especially for a beam with stirrups inclined 90° with respect to its

longitudinal axis and for the collapse mechanism related to yielding of stirrups (5). This highlights

and confirms the ability of fibres to help stirrups as shear reinforcement. The shear strength

mechanisms related to concrete crushing (4) and chord failure (12) show a small and constant

increase in τ due to the fibre for every value of Cot(θ). By contrast, the increment due to the fibre

in beams where shear strength is ruled by stirrup failure (5) is greater for high values of Cot(θ) (i. e.

high slope of compression stress field). Similar considerations may be made for a beam with

stirrups inclined 45° with respect to its longitudinal axis. However, the enhancement of shear

strength due to the use of fibres is less than its counterpart in beams with stirrups inclined 90°, but

the trend for each curve is the same.

The ordinate of the intersection points between curves (4), (5) and (12) inside the admissible

range of Cot(θ) provides the shear strength values allowed for the structural element: thus the

effective shear strength of the beam is the minimum value among them. It has to be compared with

the flexural strength evaluated by Eq. (13) to identify the effective failure mechanism of the beam

and the corresponding collapse load.

The proposed model provides the collapse mode. For example, when the intersection point related

to the shear strength of the beam is obtained as the intersection of curves (5) and (12), as in Fig. 7b,

ductile failure is caused by the simultaneous yielding of stirrups and equivalent skin reinforcement

before the flexural strength is reached. As a function of the parameters involved, the failure can be

due to crushing of concrete and yielding of stirrups or surface reinforcement. If the beam is heavily

reinforced in shear, the crisis is due to crushing of concrete with stress level of steel reinforcement

in both directions (transversal and surface rebar) under the yield limit, and the failure of the beam is

brittle.

Fig. 7 Shear strength domain for stirrups inclined (a) 45° and (b) 90°



Generalization of shear truss model to the case of SFRC beams with stirrups 239

5. Validation of proposed model

With the aim of validating the proposed model for the evaluation of the shear strength of FRC

beams with stirrups, a wide database of around fifty experimental test results (Swamy and Bahia

1985, Furlan and Bento de Hanai 1997, Campione and Mindess 1999, Dupont and Vandewalle

2003, Campione et al. 2004, Kearlsley and Mostert 2004) was collected from the literature. The

database used for validation of the proposed model is representative of large variations in all

parameters influencing the response of SFRC beams with stirrups under shear actions. In fact,

variation in the fibre aspect ratio (lf/df) in the range of 40 to 133 was considered, together with a

volume percentage of fibres (Vf) between 0.38% and 2.00%, as in the most common practical

applications of steel fibres in the construction field, and the geometrical percentage of stirrups (pw)

in the range of 0.09% to 1.55%.

5.1 Corroboration and comparison with other models

In Fig. 8(a) the comparison between the experimental and analytical results for fibrous concrete

beams provided by the proposed model is shown. The analytical model for the estimation of the

shear strength appears to be very effective in predicting the load-bearing capacity of SFRC beams,

and the mean and Coefficient of Variation (COV) values are 1.06 and 0.23, respectively. Most of

the known formulations for the evaluation of the shear strength of SFRC beams with stirrups are

obtained by numerical regression on a test database, and consequently their range of use is often

limited to the range of variation of the parameters investigated during the tests, so that they are not

able to capture the physical mechanism of failure. However, some power equations are based on a

macroscopic description of phenomena involved in the strength mechanism, and then the numerical

coefficients are calibrated by statistical analyses; they may be classified as semi-empirical models,

such as those recently proposed by Campione et al. (2006) (CLP06) and Thomas and Ramaswamy

(2006) (TR06). These two models were considered in order to carry out a further comparison on the

effectiveness of the shear strength prediction.

Campione et al. (2006) extend a formulation given in the literature for plain concrete beams based

on an evaluation of the strength contribution of beam and arch actions in the case of fibrous

concrete beams. The CLP06 model is worthy of note because it introduces a parameter able to

measure the shear stress shared between stirrups and steel fibres. Thomas and Ramaswamy (2006)

proposed a model derived from the regression of 518 test data for the prediction of the shear

strength of reinforced and prestressed concrete beams with different cross-section shapes, with and

without shear reinforcement such as stirrups and/or steel fibres. The TR06 model is able to take into

account the presence of fibres over the partial or full depth of the beam. Despite its semi-empirical

nature, the TR06 model allows one to evaluate the shear strength of structural elements with several

geometrical and mechanical characteristics.

The results shown in Figs. 8(b) and 8(c) prove that the models considered, despite their semi-

empirical nature, provide good estimations of the shear capacity of SFRC beams with stirrups.

However, the mean and COV obtained with the considered semi-empirical models are still higher

than the corresponding values obtained with the proposed analytical model. The theoretical basis of

formulation proposed here is able to reproduce each shear strength mechanism and its interactions,

providing realistic values of shear capacity of the beam and useful information about the collapse

mode of the structural element.
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Fig. 9 sums up the comparison with variation in the tests on different types (crimped and hooked)

and with different volumes (0-1% and 1-2%) of fibres, showing that the proposed model provided a

good performance in all cases considered.

5.2 Numerical analysis of failure mechanism

Fibre reinforcement enhances shear resistance by transferring tensile stress across diagonal cracks

and reducing diagonal crack spacing and width, which increases aggregate interlock. Consequently,

the inclination of the compressive stress field with respect to the horizontal axis (θ) is smaller for

fibrous concrete beams than for analogous plain concrete beams, proving to be closer to 45 degrees,

as can be recognized by comparing the curves in Fig. 7 for the predicted value of Cot(θ) at collapse

for fibrous and plain concrete.

With the aim of investigating the capacity of the proposed model to reproduce the ability of fibres

Fig. 8 Comparison between experimental and analytical results using (a) the proposed model, (b) the CLP06
model, and (c) the TR06 model

Fig. 9 Comparison between experimental and analytical results differentiating types and volume percentages
of fibres
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to change the failure mode of beam from brittle for shear to ductile for flexure, a numerical analysis

was carried out. All specimens taken into account for the validation of the proposed model are now

considered with and without fibre in the concrete mixture. On the basis of the experimental results

available, first the capacity of the analytical model to reproduce the behaviour of regular concrete

beams was checked. The analysis carried out on the database of available specimens (18 beams)

provided a mean and COV of predicted shear strength values of 1.02 and 0.22, respectively,

confirming the goodness of the analytical model.

Secondly, a critical shear span (a*) for which the flexural and shear strength have the same value

is calculated by an iterative procedure, for both plain and fibrous concrete specimens. To calculate

the critical shear span a*, the position of the vertical load was moved along the abscissa ξ, until the

difference between flexural and shear strength was less than a prefixed error. Denoting with a the

actual shear span used during the experimental test, the ratio between the critical and actual shear

span (a*/a) was evaluated; values of the (a*/a) ratio greater than one indicated a predicted brittle

collapse of the beam, and values smaller than one a predicted ductile failure mode. 

In Fig. 10, two histograms are plotted showing the shear span ratio obtained by analysis of

plain and fibrous concrete beams, respectively. Observing the results it can be recognized that the

proposed model is able to predict the change in failure mode due to the presence of fibres. The

value of the ratio a*/a is more than one in most of the regular concrete beams considered,

proving that they are critical in shear, as expected. Considering the fibre reinforcement for each

corresponding beam, the shear span ratio decreased in all cases; hence the analytical model was

able to reproduce the beneficial effect of fibres in terms of shear strength. In some cases, the

ratio a*/a reached values of less than one, and thus the analytical model predicted ductile

collapse.

6. Conclusions

A theoretical model for evaluation of shear strength of SFRC beams with stirrups has been

proposed. The beneficial contribution of fibres to each shear strength mechanism is mainly taken

Fig. 10 Comparison between numerical shear span ratio (a*/a) of plain and fibrous concrete beam
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into account by introducing the tensile stress field in the concrete web. An analytical constitutive

tensile law has been adequately modified to evaluate the residual tensile strength of fibrous

concrete, as a function of the fibre factor F
τ
 which takes into account the amount and mechanical

and geometrical characteristics of fibres.

The validation against a wide database of experimental test results published in the literature and

a comparison with two well known semi-empirical models showed the goodness of the proposed

formulation, obtaining very small values of mean error and COV. The effectiveness of the model

proves the consistency of the physical role of the tensile stress field considered and the efficiency of

the residual tensile strength relationship assumed for SFRC.

The graphical interpretation of the proposed equations allows an understanding of the interaction

between the shear strength mechanisms involved. It also shows the capacity of fibres to keep the

inclination of the compression stress field close to 45°, and consequently to promote ductile failure.

The graphical representation of the analytical relationship proposed leads to a simple procedure for

the optimal design of shear reinforcement made up of both steel fibres and stirrups. 

Finally, the results of numerical analyses carried out to evaluate the shear span (a*) for which the

flexural and shear strength have the same value highlights the ability of the proposed model to

predict the change in beam failure mode from brittle to ductile due to fibre reinforcement.
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Nomenclature

a, a* Effective and critical shear span

Asl Skin reinforcement area

Asw Stirrup reinforcement area

bw Width of beam cross-section

c, C Non-dimensional and dimensional top chord forces

d, h Effective depth and full height of beam cross-section

df, lf Diameter and length of fibre

fcd2 Effective compression strength

fck, fcm Characteristic and mean cylinder strength

fct, fctf Tensile strength of matrix and residual tensile strength of composite

fyld Yield strength of steel surface reinforcement

fywd Yield strength of steel stirrup

Ft Fibre factor

lc Critical length of fibre

M Dimensional bending moment

p, q Non-dimensional and dimensional uniform distributed loads

P, Q Non-dimensional and dimensional nodal loads

Rck Characteristic cubic strength of concrete

s Stirrup spacing

t, T Non-dimensional and dimensional bottom chord forces

V Shear

Vf Volumetric percentage of fibres

x Abscissa along longitudinal axis of beam

z Lever arm

α Inclination of stirrups with respect to horizontal axis of beam

αc Coefficient for prestressed structures

β
τ

Fibre bond factor

η0, ηl Orientation and length efficiency factors of fibre

µ Non-dimensional bending moment

µ* Non-dimensional bending moment at specific value of ξ

ν Effectiveness factor

θ Inclination of compressive stress field with respect to the horizontal axis of the beam

σcr, σtu First crack and residual tensile strength of material (Lim et al. 1987 model)

τ Non-dimensional shear

τ* Non-dimensional shear at specific value of ξ

τf Average bond stress between matrix and fibre

ωcf fctf/fcd2 = Mechanical ratio of residual tensile strength of composite

ωsl (Aslfyld)/(bwzfcd2) = Mechanical ratio of skin reinforcement 

ωslb Mechanical ratio of bottom longitudinal reinforcement

ωsw (Aswfywd)/(bwsfcd2) = Mechanical ratio of transversal reinforcement

ξ Non-dimensional abscissa

ξ0 Non-dimensional critical section of abscissa




