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Abstract. This paper presents the investigation of the stochastic responses of seismically isolated
bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and
site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke
coherency model. The effect of the wave-passage is dealt with various wave velocities in the response
analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-
response effect where the bridge supports are constructed. The ground motion is described by filtered
white noise and applied to each support points. For seismic isolation of the bridge, single and double
concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the
isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by
using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the
stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions
compared with each other for the special cases of the ground motion model. It is concluded that friction
pendulum systems having single and double concave surfaces have important effects on the stochastic
responses of bridges to spatially varying earthquake ground motions.

Keywords: seismic isolation; highway bridge; spatially varying ground motions; stochastic analysis;
equivalent linearization technique.

1. Introduction

Base isolation of structures is a viable solution for earthquake protection. Using base isolation,

responses of structures such as buildings, bridges, tanks and pipelines are shifted to a higher

fundamental period. Base isolations have been commonly used in the construction of new structures

and retrofit of existing structures during the last years. Two of the base isolation bearings are that of

single and double concave friction pendulum (SCFP and DCFP). The bearings are innovative and

viable isolation bearings that are becoming a more widespread application for the earthquake

protection of structures. While the SCFP bearings have one concave surface, the DCFP consists of

two concave surfaces and an articulated slider covered by a Teflon-based high bearing capacity

composite material. The concave surfaces may be the same radii of curvature in latter isolation

bearing. Also, the coefficient of friction on the two concave surfaces may be the same or different.

Experimental and analytical results on the behaviour of a system having concave surfaces of both

equal and unequal radii and both equal and unequal coefficient of friction at the upper and lower

sliding surfaces were presented by Tsai et al. (2006). Constantinou (2004), Fenz and Constantinou
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(2006) described the principles of operation of the DCFP bearing and presented the development of

the force-displacement relationship based on considerations of equilibrium. The theoretical force-

displacement relationship was verified through characterization testing of bearings with sliding

surfaces having the same and then different radii of curvature and coefficients of friction. Also,

practical considerations for analysis and design of DCFP bearings were presented. Hyakuda et al.

(2001) presented the description and observed response of a seismically isolated building in Japan

which utilized DCFP bearings. Zayas et al. (1989) introduced one of the most effective sliding

isolation systems, namely the friction pendulum system namely SCFP, which utilizes friction to

dissipate the transmitted energy to the structure.

The dynamic responses of extended structures like bridges, pipelines and dams are significantly

affected by spatially varying earthquake ground motions. The earthquake response analysis of long

span non-isolated bridges subjected to spatially varying earthquake ground motions were investigated by

many researchers (Harichandran and Wang 1988, Zerva 1991, Kiureghian and Neuenhofer 1991,

Harichandran et al. 1996). Lou and Zerva (2005) investigated the effects of spatially varying earthquake

ground motions on the seismic response of a skewed, multi-span and RC highway bridge. Soyluk

and Dumanoglu (2004) carried out stochastic analysis of non-isolated cable-stayed bridges for

delayed support excitations and concluded that any seismic analysis of even moderately long span

non-isolated cable-stayed bridges requires the consideration of the wave-passage effects. Soyluk et

al. (2004) presented various random vibration and deterministic analyses of non-isolated cable-stayed

bridges to asynchronous ground motion. It was found that the structural response values show

important amplifications depending on the decreasing ground motion wave velocities. Ates et al.

(2005, 2006, 2009) studied stochastic response of isolated bridges by friction pendulum systems to

spatially varying earthquake ground motions and reported that friction pendulum systems have

important effects on the stochastic responses of bridges to spatially varying earthquake ground

motions.

A new procedure for simulating the tunnel response under spatially varying ground motion was

developed by Parka et al. (2009). The procedure utilizes the longitudinal displacement profile, which

is developed from spatially variable ground motion time histories. The longitudinal displacement profile is

used to perform a series of pseudo-static three-dimensional finite-element analyses. Results of the

analyses show that the spatially variable ground motion causes longitudinal bending of the tunnel

and can induce substantial axial stress on the tunnel lining. The effect can be significant at

boundaries at which the properties of the ground change in the longitudinal direction. Konakli and

Der Kiureghian (2011) introduced a generalized formulation of the multiple support response

spectrum method by accounting for the quasi-static contributions of truncated modes. The effects of

differential support motions including the influence of spatially varying soil conditions on the quasi-

static, dynamic and total responses were examined.

The effects of the uniform and spatially varying ground motions on the stochastic response of

fluid-structure interaction system during an earthquake were investigated by using the displacement

based fluid finite elements (Bilici et al. 2009). It was concluded that spatially varying earthquake

ground motions have important effects on the stochastic response of fluid-structure interaction

systems.

It will be seen from the literature review above that the importance of spatially varying earthquake

ground motions on the non-isolated bridges were investigated by many researches. As a result of

these studies, it is highlighted that spatially varying earthquake ground motions including incoherence,

wave passage and site-response effects should be taken into account separately and altogether in the
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analyses. The effects of spatially varying earthquake ground motions on the isolated bridges with

the DCFP bearings have not been comprehensively investigated up to date. For this reasons, the

focus of this study is to investigate the effectiveness of the spatially varying earthquake ground

motion on the stochastic response of isolated multi-span continuous bridges with the DCFP bearings

and compared with the SCFP bearings.

2. Double concave friction pendulum bearings

The double concave friction pendulum (DCFP) bearings are made of two concave surfaces which

are named as upper and lower and shown in Fig. 1 (Constantinou 2004, Fenz and Constantinou

2006). The concave surfaces may be the same radii of curvature. Also, the coefficient of friction on

the two concave surfaces may be the same or not equal. The maximum displacement capacity of the

bearing is 2d, where d is the maximum displacement capacity of a single concave surface in Fig. 1.

Note that due to rigid body and relative rotation of the slider, the displacement capacity is actually

slightly different than 2d. The force-displacement relationship for the DCFP bearing is given by the

following equation

(1)

where W is the vertical load, R1 and R2 are radii of the two concave surfaces, h1 and h2 are the part

F
W

R1 h1– R2 h2–+
-----------------------------------⎝ ⎠

⎛ ⎞vb

Ff1 R1 h1–( ) Ff2 R2 h2–( )+

R1 h1– R2 h2–+
----------------------------------------------------------⎝ ⎠

⎛ ⎞+=

Fig. 1 The single (a) and double (b) concave friction pendulum bearings
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heights of the articulated slider, Vb is the total displacement (bearing displacement) and the sum of

the displacements on the upper and lower surfaces

(2)

herein vb1 and vb2 are the displacements of the slider on the upper and the lower concave surfaces,

respectively, and the individual displacements on each sliding surfaces are

(3)

(4)

in Eqs. (3) and (4), Ff1 and Ff2 are the friction forces on the concave surfaces 1 and 2, respectively.

The forces are given by

(5)

(6)

where µ1 and µ2 are the coefficient of friction on the concave surfaces 1 and 2, respectively; 

and  are sliding velocities at upper and lower surfaces, respectively; sgn (.) denotes signum

function. Most applications of the DCFP bearings will likely utilize concave surfaces of equal radii,

namely, R1 = R2. Parts height of the articulated slider h1 and h2 are nearly equal in most cases. 

In Eq. (1), the first is the stiffness of the pendulum component (spring forces) and the second is

the stiffness of the friction component. The natural period of vibration is given by following

equation

(7)

where g is the acceleration of gravity; Re is the effective radius of curvatures. Eq. (7) shows that the

natural period of vibration is independent of mass, but it is controlled by the selection of the radius

of the spherical concave surfaces. In this study, the period of the isolation system is calculated as

2.75 sec by depending on the radii of the two concave surfaces. The important parameter is

employed as = 1.88 m. The lateral restoring stiffness of the DCFP bearing

(spring forces) is given by following equation

(8)

It is also shown in Eq. (8) that the stiffness of the pendulum depends on weight carried by

bearing. The coefficient of the friction of the two concave surfaces depend on bearing pressure and

given by Eq. (9)

(9)

where fmax and fmin are the maximum and minimum mobilized coefficients of friction, respectively;

and a is a parameter that controls the variation of the coefficient with the velocity of sliding. Thus,

the effective coefficient of friction equal to the average of µ1 and µ2, and is given by

vb 2d vb1 vb2+= =

vb1

F Ff1–

W
---------------⎝ ⎠

⎛ ⎞ R1 h1–( )=

vb2

F Ff2–

W
---------------⎝ ⎠

⎛ ⎞ R2 h2–( )=

Ff1 µ1Wsgn v·b1( )=

Ff2 µ2Wsgn v·b2( )=

v·b1
v·b2

T 2π
R1 R2 h1– h2–+

g
----------------------------------- 2π

Re

g
-----= =

Re R1 R2 h1– h2–+=

kb

W

R1 R2 h1– h2–+
-----------------------------------=

µ1 2, fmax fmax fmin–( )e
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(10)

In this study, R1− h1 = R2− h2 = 0.94 m and µe is calculated as 0.05 by Eq. (10) due to variability

in properties µ1 = 0.045 and µ2 = 0.055.

3. Single concave friction pendulum 

Single concave friction pendulum (SCFP) proposed by Zayas et al. (1989) is chosen as a sliding

bearing system namely friction pendulum system shifting the natural period of the supported

structure. The natural period of vibration is given by following equation

 (11)

where R is the radius of spherical concave surface, and g is the acceleration of gravity. Eq. (11)

shows that the natural period of vibration is independent of mass, but it is controlled by the

selection of the radius of the spherical concave surface. The force-displacement relationship of the

SCFP in any direction may be given by the expression

 (12)

where  and  are the total weight carried by the SCFP, the radius of spherical concave

surface, the sliding displacement, the coefficient of friction on the sliding surface and the sliding

velocity, respectively; sgn ( ) is the signum function. In Eq. (12), the first is the pendulum

component and the second is the friction component. The lateral restoring stiffness of the bearing is

given by following equation

 (13)

It is also shown in Eq. (13) that the stiffness of the pendulum depends on weight carried by

bearing.

4. Governing equation of motion

The equation of motion of a structural system can be written as

(14)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively;  and

 are vectors of total accelerations, velocities and displacements, respectively and {R} is a

vector of reaction force. The degrees of freedom can be defined as known and unknown. The

known degrees of freedom are associated with those of the structure-foundation interface. The

unknowns are related to degrees of freedom of the structure. The former degrees of freedom will be

µe
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denoted henceforth as the vector vg, and the latter as vr. Here, the subscript g denotes the ground

degrees of freedom and r denotes the response degrees of freedom (Harichandran et al. 1996, Ates

et al. 2005, 2006).

5. Stochastic response

The variance of the ith total response is expressed as (Harichandran et al. 1996)

 (15)

in which  is the variance of the ith quasi-static response component;  is the variance of the

ith dynamic response component and  is the covariance between the ith quasi-static and

dynamic components. The variance of the ith quasi-static component can be written as

(16)

in which  is the ith quasi-static component of the spectral density function of the structural

response; r is the number of restrained degrees of freedom;  is the cross-spectral density

function of accelerations between supports l and m; and  and  are equal to static displacements for

unit displacements assigned to each support points. The variance of the ith dynamic response

component may be defined as 

 (17)

where  is the ith dynamic component of the spectral density function of the structural

response; H(ω) is the frequency response function; n is the number of free degrees of freedom; ψ is

the eigenvectors and Γ is the modal participation factor. The covariance of the ith quasi-static and

dynamic components is obtained as

 (18)

The most important parameters in stochastic analysis are mean of maximum value and its

standard deviation. The maximum value can be expressed as

 (19)

The standard deviation of the mean of maximum value is defined as

 (20)

where p and q are peak factors which are functions of the time of the motion and mean zero-

crossing rate, respectively.
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6. Spatially varying ground motion

The cross-spectral density function of the earthquake ground motion, between support points l and

m is expressed as (Harichandran et al. 1996)

 (21)

where  denotes the coherency function. The power spectral density function is assumed to be

of the following form suggested by Clough and Penzien (1993)

 (22)

are the frequency responses of first and second filters representing characteristics of the layers of

soil medium above the rock bed; So is the amplitude of the white-noise process; ωf and ξf are the

resonant frequency and damping of the first filter, and ωg and ξg are those quantities of the second

filter.

In this paper, So is obtained for each soil type by equating the variance of the ground acceleration

to the variance of the SKR090 component of Kocaeli, Turkey, earthquake recorded at Sakarya

station in 1999. The calculated values of the intensity parameter for each soil type are shown in

Table 1. Homogeneous firm, medium and soft soil conditions are used for the non-isolated and

isolated bridge supports and the filter parameters for these soil conditions which are proposed Der

Kiureghian and Neuenhofer (1991) are also utilised as shown in Table 1. The earthquake is given in

Fig. 2(a); its power spectral density function and its acceleration spectral density function for

different soil types are given in Figs. 2(b) and 2(c), respectively.

The coherency function is dimensionless and of complex value. The coherency function is defined as

(23)

where  characterises the incoherence effect,  indicates the complex valued wave-

passage effect and  denotes the complex valued site-response effect.

For the incoherence effect, resulting from reflections and refractions of waves through the soil during

their propagation, an extensively used model is considered. The model proposed by Harichandran

and Vanmarcke (1986) is defined as

 (24)

 (25)
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Table 1 Filter and intensity parameter of filtered white-noise process for different soil types

Soil type ωf  (rad/s) ξf ωg  (rad/s) ξg So  (m
2/s3)

Firm 15.0 0.6 1.5 0.6 0.000464

Medium 10.0 0.4 1.0 0.6 0.000689

Soft 5.0 0.2 0.5 0.6 0.000968
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1.09 and 2.78, respectively (Zerva 1991). Adanur et al. (2003) observed that the correlation function

proposed by Harichandran and Vanmarcke (1986) gives the largest response values through four

different correlation functions, namely Harichandran and Vanmarcke, Abrahamson, Hindy and Novak and

Uscinski. This is because in this study the correlation function proposed by Harichandran and Vanmarcke

(1986) is used. 

The wave-passage effect resulting from the difference in the arrival times of waves at support

points is defined as

Fig. 2 SKR090 component of Sakarya station of the 1999 Kocaeli earthquake: (a) acceleration time history
(b) power spectral density function (c) acceleration spectral density function for different soil types



Investigation of effectiveness of double concave friction pendulum bearings 203

(26)

where vapp is the apparent wave velocity and  is the projection of  on the ground surface

along the direction of propagation of seismic waves. The apparent wave velocities employed in this

study are selected as 300, 800 and 2000 m/s for soft, medium and firm soil conditions, respectively.

The site-response effect due to the differences in the local soil conditions is obtained as

(27)

where  is the local soil frequency response function representing the filtration through soil

layers. 

7. Numerical example

7.1 Description of the bridge

In order to investigate the stochastic response of non-isolated and isolated bridges, a two-dimensional

analytical model used by Der Kiureghian et al. (1997) is selected as numerical examples. The

selected highway bridge and its finite element models are created in Fig. 3. The bridge has uniform

mass and stiffness properties along its continuous deck with a cross section. Its four identical

columns with circular cross section, which diameter is 2.50 m and elastic modulus of 32E6 kN/m2,

have fixed supports at the bottom. These supports are situated on soft, medium and firm soil

conditions. It is accepted that the amplitudes and frequency contents of the ground motion do not

change, and the propagation speed of the seismic wave is constant along the firm soil. The distance

between support points of A and B, B and C, C and D, D and E and E and F vary between 0-36.6

m, 36.6-109.8 m, 109.8-183.0 m, 183.0-256.2 and 256.2-292.8 m. The arrival time to each support

of the selected bridge model is calculated using the relation of . For instance, for 300 m/s

the arrival time to each support point is 0.0, 0122, 0.366, 0.610, 0.854 and 0.976 s, respectively.

The arrival times are taken into account as 0.0 s for all support points when the apparent wave

velocity is assumed infinite. This situation corresponds to uniform ground motion. The linear weight

of the continuous deck is 172.50 kN/m, and its moment of inertia and elastic modulus are taken as

79.88 m4 and 32E6 kN/m2, respectively.

The SCFP and DCFP which are used as isolators for sliding isolation system of the selected bridge

are connected between the top of the piers and the deck as shown in Fig. 3. The bridge is isolated with

two isolators at each abutment and pier location for a total 12 isolators. The isolators are directly

located on the cap beam above the circular columns at the bents. The bearings are installed at the tops

of the piers as two bearings per pier and modelled as a link element with the radius and the coefficient

of friction on the concave surfaces. The horizontal input is assumed to travel across the bridge from

left to right side with finite velocities of 300, 800 and 2000 m/s for soft (S), medium (M) and firm (F)

soil conditions, respectively. The acceleration spectral density function for firm soil type is applied to

each support points as an earthquake ground motion in Fig. 4. The analyses are carried out with

computer program called SVEM (Dumanoglu and Soyluk 2002) which is modified to include the

behaviour frictional pendulum bearings. The first 15 modes and 5% of damping ratio are selected for

the stochastic response analysis. The first 5 modes are given in Table 2.
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Stochastic analyses of the non-isolated and the isolated bridges are performed for spatially varying

earthquake ground motion by taking into account the incoherence, the wave-passage, and the site-

response effects. For this purpose, three different soil conditions are considered for the bridge model

in Fig. 4. These soil conditions are FMSSMF, FMMMSS and SMFFMS.

Fig. 3 The selected bridge and its finite element models



Investigation of effectiveness of double concave friction pendulum bearings 205

For instance, FMSSMF: The bridge has six supports and these supports are assumed to be founded on

FMSSMF. Herein F, M and S denote firm, medium and soft soil conditions, respectively. It is

considered loss of coherency between support excitations and wave passage and homogeneous soil

conditions ( ) where the bridge is supported on these soils.

7.2 Mean of maximum values of response components 

Mean of maximum values of horizontal deck responses calculated for different soil condition sets

γlm ω( )i 1 γlm ω( )w, 1 γlm ω( )s, 1≠ ≠ ≠

Table 2 Vibration period of the isolated and non-isolated bridges 

Period (sec)

Mode number 1 2 3 4 5

Non-isolated bridge 1.193 0.815 0.685 0.579 0.274

Isolated bridge with the SCFP 2.383 1.031 0.707 0.597 0.303

Isolated bridge with the DCFP 2.850 1.024 0.768 0.596 0.302

Fig. 4 The bridge system subjected to spatially varying earthquake ground motions for different soil conditions

Fig. 5 Mean of maximum bending moments of the deck of the isolated bridge with DCFP (FMSSMF)
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defined as FMSSMF, FMMMSS and SMFFMS are compared for quasi-static, dynamic and total

responses. Mean of maximum quasi-static, dynamic and total bending moments of deck of the non-

isolated and isolated bridges calculated for several defined above cases are compared in Figs. 5-7,

14-16 and 23-25. The bending moments of deck of the non-isolated and isolated bridge obtained for

the defined soil conditions set are larger than those of MMFFMM condition. The bending moments

of the deck of the isolated bridge are smaller almost four times than those of non-isolated bridge

with the SCFP and the DCFP. Due to seismic isolation of the bridge with the SCFP and DCFP, the

Fig. 6 Mean of maximum bending moments of the deck
of the isolated bridge with SCFP (FMSSMF)

Fig. 7 Mean of maximum bending moments of the deck
of the non-isolated bridge (FMSSMF)

Fig. 8 Mean of maximum shear forces of the deck of the isolated bridge with DCFP (FMSSMF)

Fig. 9 Mean of maximum shear forces of the deck of
the isolated bridge with SCFP (FMSSMF)

Fig. 10 Mean of maximum shear forces of the deck of
the non-isolated bridge (FMSSMF)
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bending moments are considerably decreased. Additionally, the changing of the local soil conditions

at the support points of the bridges affects response values of both the non-isolated and the isolated

bridges. Differences between the soil conditions at the bridge support are increased; the responses

on the deck are increased for the non-isolated bridge. But, the issue for the isolated bridge are not

the same as the non-isolated bridge, the responses on the isolated deck has little changes.

Mean of maximum shear forces of the deck of non-isolated and isolated bridge are given in Figs.

Fig. 11 Mean of maximum axial forces of the deck of the isolated bridge with DCFP (FMSSMF)

Fig. 12 Mean of maximum axial forces of the deck of
the isolated bridge with SCFP (FMSSMF)

Fig. 13 Mean of maximum axial forces of the deck of
the non-isolated bridge (FMSSMF)

Fig. 14 Mean of maximum bending moments of the deck of the isolated bridge with DCFP (FMMMSS)
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8-10, 17-19 and 26-28. These figures show that shear forces, which occur on the deck of bridge, are

significantly decreased by using isolation systems such as the SCFP and the DCFP bearings.

Therefore, it is obvious that isolation of bridges to severe ground motion is required. The similar

variation is also observed for the axial forces of deck of non-isolated and isolated bridges in Figs.

11-13, 20-22 and 29-31. The reduction of the deck axial forces obtained for the isolated model with

the SCFP and the DCFP is obvious, if the axial forces are compared with those obtained for the

Fig. 15 Mean of maximum bending moments of the deck
of the isolated bridge with SCFP (FMMMSS)

Fig. 16 Mean of maximum bending moments of the
deck of the non-isolated bridge (FMMMSS)

Fig. 17 Mean of maximum shear forces of the deck of the isolated bridge with DCFP (FMMMSS)

Fig. 18 Mean of maximum shear forces of the deck of
the isolated bridge with SCFP (FMMMSS)

Fig. 19 Mean of maximum shear forces of the deck of
the non-isolated bridge (FMMMSS)
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non-isolated bridge model. Significant reduction of the axial forces is provided at the connection

points between the deck and piers. However, at the nodal points located at the middle of the deck,

the axial forces obtained for the isolated bridge models with the SCFP and the DCFP are very close

to each other.

Fig. 20 Mean of maximum axial forces of the deck of the isolated bridge with DCFP (FMMMSS)

Fig. 21 Mean of maximum axial forces of the deck of
the isolated bridge with SCFP (FMMMSS)

Fig. 22 Mean of maximum axial forces of the deck of
the non-isolated bridge (FMMMSS)

Fig. 23 Mean of maximum bending moments of the deck of the isolated bridge with DCFP (SMFFMS)
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8. Conclusions

This study outlines an investigation of the stochastic response of an isolated bridge subjected to

spatially varying ground motion. The isolation devices are located at between the deck and piers as

the SCFP and the DCFP bearings. Filtered white noise ground motion is considered in the analyses.

The incoherence, the wave-passage and the site-response effects are taken into account in the

Fig. 24 Mean of maximum bending moments of the deck
of the isolated bridge with SCFP (SMFFMS)

Fig. 25 Mean of maximum bending moments of the deck
of the non-isolated bridge (SMFFMS)

Fig. 26 Mean of maximum shear forces of the deck of the isolated bridge with DCFP (SMFFMS)

Fig. 27 Mean of maximum shear forces of the deck
of the isolated bridge with SCFP (SMFFMS)

Fig. 28 Mean of maximum shear forces of the deck of
the non-isolated bridge (SMFFMS)
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spatially varying earthquake ground motion. The analyses are obtained for the selected the non-

isolated and the isolated bridges, separately. Mean of maximum values of responses of the non-

isolated and the isolated bridges are compared with each other for specialised cases of the soil

conditions. The conclusions can be written as:

1. The response values carried out for spatially varying ground motion model which includes the

three important effects of ground motion spatial variability are dominated by quasi-static and

dynamic components.

2. The response which includes the incoherence, the wave-passage and the site-response effects

obtained from the isolated bridge models with the SCFP and DCFP bearings induces large response

values compared to those of the non isolated bridge model.

3. Because of the complex nature of the problem, it is difficult to make general conclusions based

on this study of a single bridge model. However, as different bridge models show typically similar

structural dynamics, this study mainly implies that long span bridges are sensitive to spatial

variability of ground motion, and in the stochastic analysis of such type of engineering structures

the incoherence, wave-passage and site-response effects should be considered.

4. Existing study on the isolated and non-isolated bridge indicates that the results obtained for the

example bridge model are applicable to other bridges, as they exhibit some of the same structural

dynamics. It was followed that, although the response of other bridges to different earthquakes may

vary, the majority of the results presented in that study should still hold true because the bridge

Fig. 29 Mean of maximum axial forces of the deck of the isolated bridge with DCFP (SMFFMS)

Fig. 30 Mean of maximum axial forces of the deck of
the isolated bridge with SCFP (SMFFMS)

Fig. 31 Mean of maximum axial forces of the deck of
the non-isolated bridge (SMFFMS)
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models characterise the qualities of a typical bridge models. This may well be true for the results

obtained from this study which is also performed on the bridge. However, the verification of the

obtained results on additional bridge models should also be conducted.

5. The total response values of the non-isolated and isolated bridge carried out for the spatially

varying earthquake ground motion are dominated by quasi-static and dynamic components

6. The changing of the local soil conditions at the support points affects response values of the

non-isolated and isolated bridges. The more difference between the local soil conditions, the more

response values take place.

7. The response values of the isolated bridge subjected to spatially varying earthquake ground

motion are smaller almost four times than those of the non-isolated bridge. However, the response

values of the isolated bridge show similar variation with those of the non-isolated bridge along the

bridge length.

8. Usage of the DCFP bearings for seismically isolation of the bridge may reduce the response

values of the bridge in accordance with the usage of the SCFP bearings.

Lastly, the aim of this paper is to investigate the effectiveness of single and double concave friction

pendulum bearings on the stochastic response of isolated highway bridges when the spatially

varying ground motion is considered. 
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