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Abstract. This study aims to develop a cost-based high-performance concrete (HPC) mix optimization
system based on an integrated approach using artificial neural networks (ANNs) and genetic algorithms
(GA). ANNs are used to predict the three main properties of HPC, namely workability, strength and durability,
which are used to evaluate fitness and constraint violations in the GA process. Multilayer back-propagation
neural networks are trained using the results obtained from experiments and previous research. The
correlation between concrete components and its properties is established. GA is employed to arrive at an
optimal mix proportion of HPC by minimizing its total cost. A system prototype, called High Performance
Concrete Mix-Design System using Genetic Algorithm and Neural Networks (HPCGANN), was developed in
MATLAB. The architecture of the proposed system consists of three main parts: 1) User interface; 2)
ANNs prediction models software; and 3) GA engine software. The validation of the proposed system is
carried out by comparing the results obtained from the system with the trial batches. The results indicate
that the proposed system can be used to enable the design of HPC mix which corresponds to its required
performance. Furthermore, the proposed system takes into account the influence of the fluctuating unit
price of materials in order to achieve the lowest cost of concrete, which cannot be easily obtained by
traditional methods or trial-and-error techniques.

Keywords: genetic algorithm; artificial neural networks; high performance concrete; minimum cost; opti-
mization.

1. Introduction

The selection of HPC mix proportions is the process of choosing suitable concrete ingredients and

determining their relative quantities with the object of producing as economically as possible

concrete of certain required properties, namely workability, strength, and durability (Metha and

Aïtcin 1990). Traditional HPC mixture proportion algorithms are based on a generalization of

previous experience, available as tables or empirical formulas. Due to the uncertainty of concrete
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ingredients, such as fine and coarse aggregates, cement, chemical and mineral admixtures, traditional

HPC mixture proportion algorithms are a trial and error process, which results in the waste of

materials, laborers and time (Ji et al. 2006).

The main problem for HPC mix proportion design lies in establishing analytical relationships

between the mix composition and the properties of concrete. Several researchers have suggested

mathematical models to describe the relationship between components and materials behavior.

Unfortunately, rational and easy-to-use equations are not yet available in design codes to accurately

predict the properties of HPC. Furthermore, with the aforementioned models, the evaluation of the

effects of each parameter on properties of concrete is almost impossible.

In recent years, there has been interest in a class of computing devices known as artificial neural

networks (ANNs) that operate in a manner analogous to biological nervous systems. The neural

network modeling approach is simpler and more direct thantraditional statistical methods, particularly

when modeling nonlinear multivariate interrelationships (Yeh 2006). The main advantage of ANNs

is that one does not have to explicitly assume a model form, which is a prerequisite in the

parametric approach. Indeed, in ANNs a relationship of possibly complicated shape between input

and output variables is generated by the data points themselves. In response to the complex

interaction between concrete behaviors and concrete mix proportions, many researchers have applied

neural networks to predict various properties of concrete. Most of the research has focused on two

basic properties, namely compressive strength and workability of HPC (Kasperkiewicz et al. 1995, Öztaş
et al. 2006, Yeh 1999, 2006). Unfortunately, during this study there is no research has been found

on modeling the durability of HPC using neural networks. Due to the complex nature of material

behavior of concrete, in this study ANNs are used to predict strength, workability and durability.

The key components in designing an HPC mix-proportion are not only the concrete properties, but

also the cost of concrete in order to derive the optimum ingredients. Therefore, optimization

techniques are usually employed. However, the optimum design of HPC is a very complicated issue

because the most economical solution is subjected to various constraints.

Genetic Algorithms (GA) are an intelligent search method which can be applied to solve complex

optimization problems in achieving the optimum solution to overcoming these restraints. A search

procedure comprises natural selection, quick exploration and information collection in a search

space. In contrast to most classical optimization methods, a GA requires no gradient information

and involves procedures which can search for multiple optima rather than a single or local optimum.

These characteristics make GA a powerful tool for solving optimization problems (Cheng and Li

1997, Goldberg 1989, Holland 1992, Nanakorn and Meesomklin 2001). GA has been applied to

various kinds of problems and is considered to be an ideal tool for solvingoptimization problems

(Lim et al. 2004, Nanakorn and Meesomklin 2001, Powell and Skolnick 1993).

Recently, Yeh (1999) applied neural networks incorporated with nonlinear programming to design

the optimum mix proportions of HPC. Unfortunately, the aspect of durability of HPC has been

overlooked. Integrating ANNs and GA, it is possible to apply analytical methods to search for the

optimum mix proportion of HPC which corresponds to required performance and lowest cost.

The objective of this study is to develop an integrated approach using artificial neural networks

(ANNs) and genetic algorithms (GA) for cost optimization of HPC mix proportion. In the present

work, ANNs are used to predict the three main properties of HPC, namely workability, strength and

durability, which are further used to evaluate fitness and constraint violations in the GA process. To

achieve the objective, the following steps are taken:

1. Develop a database of HPC
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2. Develop ANNs for predicting strength, slump and durability by using experimental data from

the database

3. Develop the GA engine software by applying the static penalty function technique for

optimization of HPC mix proportions

4. Incorporate the ANNs prediction software as a constraint evaluator into the GA engine software

5. Validate the proposed system by comparing the system’s results with the results from trial mixes

2. Development of a database of HPC

The first step in developing the proposed system is to obtain accurate and reliable training and testing

samples. Unfortunately, most of the data from previous research only emphasize strength and

workability. The lack of data for durability of HPC is the main problem in the data collection process.

Durability is the fundamental property of HPC based on its impermeability and it is widely

accepted that the ability of concrete to resist the ingress of chloride ions can result in a significantly

more durable concrete (Bentz 2007, Graybeal and Tanesi 2007). The ASTM C 1202-97 Standard

Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration is

used extensively in the concrete industry for assessing concrete quality and is now being included in

concrete specification documents (Bentz 2007). The test approximates the amount of electrical

current that is passed through a cylindrical concrete specimen when a 60 V dc potential difference

is applied across the specimen for a period of 6 h.

Traditionally, producing HPC has required high consumption of cement with low to intermediate

replacement of pozzolan, resulting in a product that isn’t environmentally friendly and which is of

low durability. To improve this process, experiments were especially designed according to the

concept of environmental friendliness together with the technique of high performance concrete

production proposed by Metha and Aïtcin (1990).

Rigorous experimental programs were conducted in the laboratory to investigate the influence of

using different pozzolanic materials, cement content and water-to-binder (W/B) ratios on

workability, compressive strength and durability of HPC. The target 28 day compressive strength of

HPC mixtures was designed in the range of 40-150 MPa, and the workability of concrete expressed

in terms of slump was kept constant at 10-15 cm by varying the dosage of superplasticizer. In this

experiment, a new type of superplasticizer called polycarboxylic ether (PCE) polymer was used in

order to achieve the required workability, compressive strength and durability of concrete. Two

types of pozzolanic materials were used, namely pulverized fly ash and condensed silica fume. The

cementitious materials were varied from 400-600 kg/m3 with W/B ranging from 0.2 to 0.4. Control

specimens without using pozzolanic materials of concrete were also cast and tested.

In total, 55 mixtures were made and the specimens were tested for their properties. The durability

of each mix was experimentally investigated by measuring the total charge passed through the

concrete in accordance with ASTM C1202-97. To improve and expand the range of prediction, a

database of HPC was produced by combining the experimental data together with the culled data

from previous research (Feng et al. 2002, Lim et al. 2004, Nimityongskul et al. 2003, Shi 2004,

Sirivivatnanon and Cao 1998, Tahir 1998, Wee et al. 1999, Zhao et al. 1998) based on similar types

of materials as follows; 1) ordinary Portland cement; 2) class F fly ash; 3) condensed silica fume; 4)

modified polycarboxylic ethers (PCE) or naphthalene formaldehyde condensate (NF); 5) natural

river sand (2.7 ≤ F.M. ≤ 3.1); and 6) crushed lime stone (10 mm ≤ Max, size ≤ 19 mm).
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3. ANNs for prediction of HPC properties

3.1. ANNs Design and learning process

Based on the database achieved previously, ANNs were developed, trained and tested by using

201, 181 and 90 data sets to predict compressive strength, initial slump and durability, respectively.

Table 1 illustrates the general details of the concrete evaluation in this study. To test the reliability

of the models, 20% of the data sets were randomly selected as test sets, while the remaining 80% of

the samples were used to train the network. The outputs of the networks were 28 day compressive

strength, initial slump and the total charge passed in accordance with ASTM C1202. Based on the

charge that passed through the sample, a qualitative rating was made of the concrete’s permeability,

as illustrated in Table 2.

In this study, the input parameters are considered as the proportions of concrete mixture. Although

each component is described using only single term, these terms actually represent a variety of

types. For example, a fly ash and cement can be classified in several types and composed of

different chemical compositions. Apart from the component types, the properties of concrete are

influence by the mixing proportion and mixing preparation technique. However, each mixture in the

database is almost never described with all of the important details indicated; thus the prediction of

Table 1  Ranges of constituents and concrete properties for training the networks

Component

Data set of 
Compressive strength

Data set of
Workability

Data set of
Durability

Min
(kg/m3)

Max
(kg/m3)

Min
(kg/m3)

Max
(kg/m3)

Min
(kg/m3)

Max
(kg/m3)

Ordinary Portland cement 140 708 180 708 135 611
Fly ash 0 270 0 225 0 275
Silica fume 0 208 0 208 0 110
Water 111 270 108 207 120 220
Superplasticizer#1 (NF) 0 36.5 0 36.5 0 17.3
Superplasticizer#2 (PCE) 0 20.5 0 20.5
Coarse aggregate 909 1270 894 1280 895 1167
Fine aggregate 310 834 489 1017 536 914
W/B 0.16 0.7 0.16 0.7 0.17 0.67

Initial slump 55 mm 245 mm
 (28 day) 23 MPa 127 MPa

RCPT (28 day) 14 coulombs 5900 coulombs

Table 2 Chloride ion penetrability based on charge passed (ASTM C1202-97)

Charge Passed (coulombs) Chloride Ion Penetrability

>4,000 High
2,000-4,000 Moderate
1,000-2,000 Low

100-1,000 Very Low
<100 Negligible

f c′
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concrete properties from the available data is a highly uncertain task (Kasperkiewicz et.al. 1995).

Hence, in this study, the concrete properties can be a function of cement content (C, kg/m3), fly ash

content (F, kg/m3), silica fume content (SF, kg/m3), water content (W), water to binder ratio (W/B),

type and dosage of superplasticizer (NF or PCE, kg/m3), coarse aggregate content (CA, kg/m3), and

fine aggregate content (FA, kg/m3).

3.2. Performance of ANNs 

In this study, the neural networks were developed and performed under MATLAB programming.

The learning algorithm used was gradient descent with adaptive learning rate back-propagation. The

error incurred during the learning process was expressed in terms of mean-squared-error (MSE).

A parametric study was carried out in this study, numbers of input neurons and numbers of hidden

layers with various numbers of neurons in each layer were determined to achieve the most appropriate

architecture of the trained network. After a number of trials, the best network architecture that

minimizes the MSE of training data was selected as illustrated in Fig. 1. Fig. 1(a) and (b) show the

Fig. 1 Proposed neural networks architecture for (a) initial slump, (b) compressive strength, and (c) durability
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architecture of the neural networks for predicting the initial slump and compressive strength,

respectively. The proposed networks consisted of nine input variables and one output variable. Fig. 1(c)

illustrates the architecture of neural networks for predicting the durability of concrete in terms of total

charges passed. The network consisted of eight input variables and one output variable.

The statistical parameters of ANNs for predicting the HPC properties of training and testing sets

are illustrated in Table 3. All statistical values in Table 3 demonstrated that the proposed ANNs

models were appropriate and capable of accurately predicting the properties of HPC. The results

also indicated that the proposed models were successful in learning the relationships between the

different inputs and the output parameters.

4. GA process for optimum design of HPC mix proportions

In the optimal design of HPC mix proportions, a single objective (cost of concrete) was applied in

this study. The task is to search for a combination of mix-proportions based on minimum cost of

objective function subjected to various constraints. Since GA is directly applicable only to

unconstrained optimization, it is necessary to use some additional methods for handling constraints

by GA. The most popular in the GA community to handle constraints is to use penalty functions

that penalize unfeasible solutions by reducing their fitness values in proportion to their degrees of

constraints violation (Michalewicz et al. 1996, Smith and Coit 1997). In this research, a static

penalty function was incorporated into the objective function to transform the constrained objective

function into an unconstrained one. There were six constraints which were considered in this

problem, namely available range of ingredients, required slump, required strength, required

durability, rational ratio and absolute volume constraint. Recently, Kuri Morales and Quezada

(1998) developed a static penalty approach to solve the constrained optimization problem. In this

method, individuals were evaluated using the following formula:

(1)

where  is the overall objective function,  is the vector of solutions,  is the objective

function, F is the feasible region, n is the number of non-violated constraints and m is the total

number of constraints. Constraints can be equality or inequality. K is a large positive constant, and

K should guarantee that an unfeasible individual must be graded worse than a feasible individual.

Kuri Morales and Quezada (1998) introduced this constant as 1×109.

eval x( )

f x( ) if  x F∈

K
K

m
----
⎝ ⎠
⎛ ⎞

i 1=

n

∑– otherwise

⎩
⎪
⎨
⎪
⎧

=

eval x( ) x f x( )

Table 3 Statistical parameters of ANNs models

Statistical 
parameters

 model Slump model Durability model

Training set Testing set Training set Testing set Training set Testing set

RMSE 5.4 MPa 4.6 MPa 9.8 mm 12.7 mm 68 c* 112 c*
MAPE 3.96% 4.50% 5.99% 5.19% 6.40% 13.55%
R2 0.9960 0.9977 0.9970 0.9950 0.9963 0.9814

*c = coulombs

f c′
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4.1. Objective/fitness function

Fitness is a quality value, which is a measure of the reproductive efficiency of living creatures

according to the principle of survival of the fittest. In GA, fitness is used to allocate reproductive

trials and thus is some measure of goodness to be maximized. This means that strings with higher

fitness value will have higher probability of being selected as parents. Therefore, the objective

function minimization problem has to be transformed into the fitness function maximization

problem. In the optimal design of HPC mix proportions, cost of concrete was considered as the

objective function f(x), which was given by the following relationship:

f(x) = (CcWc+CfWf+CsfWsf+CwWw+CnfWnf+CpceWpce+CcaWca+CfaWfa) (2)

Subjected to

(3)

(k = 1 to total number of ingredients)

and (4)

(i = 1 to number of constraints)

if 

if 

where gi(x) is inequality constraint i, gi
a is allowable value of constraint gi, ci is the static penalty

value, f(x) is the cost function, Cc, Cf, Csf, Cw, Cnf, Cpce, Cca, and Cfa are the cost per unit weight of

cement, fly ash, silica fume, water, sulphonate naphthalene formaldehyde condensate, modified

polycarboxylic ethers, coarse aggregate and fine aggregate, respectively, Wc, Wf, Wsf, Ww, Wnf, Wpce,

Wca, and Wfa are the total weight per 1 m3 of cement, fly ash, silica fume, water, sulphonate

naphthalene formaldehyde condensate, modified polycarboxylic ethers, coarse aggregate and fine

aggregate, respectively. Wi is total weight of each ingredient per 1 m3 of concrete having upper

bound  and lower bound . Based on the database used in this study, the lower and upper

limited of each constituent material is shown in Table 4. Then, the equivalent unconstrained

objective function can be expressed as:

F(x) = CcWc+CfWf+CsfWsf+CwWw+CspWsp+CcaWca+CfaWfa+ (5)

Now Eq. (5) has to be converted into fitness values. For minimization problems, the fitness

function should be an inverse of the cost function. Therefore the fitness of an individual population

can be written as:

Fitness=1/{(CcWc+CfWf+CsfWsf+CwWw+CspWsp+CcaWca+CfaWfa)+ } (6)

4.2. Constraints of HPC mix-design

There were five constraints of HPC mix-design which were considered in this study, namely

W k

l
Wk W k

u≤ ≤

gi x( ) 1
gi

gi

a
-----–⎝ ⎠

⎛ ⎞=

gi x( ) 0 then  ci< K

m
----=

gi x( ) 0  then  ci≥ 0=

W k

u( ) W k

l( )

ci∑

ci∑



260 Rattapoohm Parichatprecha and Pichai Nimityongskul

required compressive strength, required initial slump, required durability, lower and upper limit of

ingredients and absolute volume. The upper and lower limits of ingredients are shown in Eq. (3).

The compressive strength, initial slump, durability, and absolute volume constraints can be

expressed as

(7)

(8)

(9)

(Wc/Gc+Wf /Gf + Wsf / Gsf+Ww / Gw+Wsp / Wsp+Wfa / Gfa+Wca /Gca)/1000=1.000 (10)

where  is the predicted 28 day compressive strength, slump is the predicted slump, and Q is the

predicted total charge passed at 28 days.  is the required 28 day compressive strength, slumpR is

the required initial slump and QR is the required total charge passed at 28 days. Gc, Gf, Gsf, Gw, Gsp,

Gfa, and Gca are the specific gravity of cement, fly ash, silica fume, water, superplasticizers, fine

aggregate and coarse aggregate, respectively.

5. Integration of ANNs with GA for cost optimization of HPC mix proportions

5.1. The architecture of the HPCGANN system

The prototype of the proposed system called High Performance Concrete Mix Design System

Using Genetic Algorithm and Neural Networks (HPCGANN) was developed by applying a genetic

algorithm (GA) optimization base with the static penalty function technique and employing artificial

neural networks (ANNs) as constraints evaluators. The proposed system was developed using

MATLAB programming. The architecture of the proposed system consisted of three main parts: 1)

User interface; 2) ANNs prediction models software; and 3) GA engine software. The relationships

among those parts are shown in Fig. 2.

f c
′ f cR′≥

slump slumpR≥

Q QR≥

f c
′

f cR′

Table 4 Range and limitation of constituents covered in this proposed method

Component
Available range and rational ratio constraints

Min (kg/m3) Max (kg/m3)

Ordinary Portland cement 180 610
Fly ash 0 220
Silica fume 0 110
Water 110 220
Superplasticizer#1 (NF) 0 17.5
Superplasticizer#2 (PCE) 0 17.5
Coarse aggregate (10 mm ≤ Max, size ≤ 19 mm) 800 1200
Fine aggregate (2.7 ≤ F, M ≤ 3.1) 550 850
W/B 0.17 0.6
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5.2. GA Engine software for optimum design of HPC mix proportions

In this study, the genetic algorithm program from Hock et al. (1996) was modified. Fitness

function (Eq. 6) and constrained equations (Eqs. 7-9) were used to determine the optimal mix

proportions of HPC for the required compressive strength, workability and durability. To obtain

these, the trained ANNs described in the previous section were integrated with GA to predict the

properties of each HPC mix used in the evaluation of fitness function in the optimization process.

Fig. 3 illustrates the flow diagrams of GA engine software for optimal design of HPC mix

proportions. The inputs of the system were as follows: 1) required initial slump; 2) required

compressive strength; 3) required chloride ion permeability in accordance with AASHTO 277 or

ASTM C1202; 4) unit prices of materials; 5) specific gravity of each material; 6) type of pozzolans

(fly ash, silica fume or blended fly ash and silica fume); and 7) type of superplasticizers (NF or

PCE). Fig. 4 shows the user interface of the proposed system.

After introducing the input parameters, the integrated ANN-GA process was performed. The

outputs of the system were as follows: 1) proportion of materials per 1 m3 of concrete; 2) best

fitness value; 3) concrete cost; 4) predicted compressive strength; 5) predicted initial slump; and 6)

predicted chloride ion permeability, as shown in Fig. 5.

To find the minimum cost of mix proportions which were subjected to these constraints, the initial

populations composed of C, F, SF, W, PCE, NF, FA and CA were created randomly from search

space based on available range constraints and each variable was represented by 18-bit string. Then

the fitness and penalty functions were performed. The genetic operators, namely selection, crossover

and mutation, would result in an improved of the solution through the fitness values. The higher the

fitness values the better the final solution. At the end of the final generation, the repeating process

was terminated and the optimum solution is obtained.

Fig. 2 Architecture of HPCGANN system
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Fig. 3 Flow diagram of GA engine software for optimal design of HPC mix proportions 
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5.3. GA parameters

The genetic algorithm consists of many parameters which influenced its efficiency. Each of these

parameters needs to be specified before a genetic optimization search can start. The following

genetic parameters were enumerated in this study:

1) GA crossover type: simple crossover

2) Mutation probability: 0.03

3) Crossover probability: 0.6

4) Selection function: roulette wheel selection

Fig. 4 User interface of HPCGANN system

Fig. 5 Output of HPCGANN system
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5) Termination criteria: Generation = 200

6. Illustrative problems and system validation

To validate the system, two groups of ten samples, namely HPC with normal to high strength (40

MPa< <80 MPa) and high to very-high strength (80 MPa< <125 MPa), were investigated. Input

data consisted of required initial slump, required compressive strength, required chloride ion

permeability in accordance with ASTM C1202, unit prices of materials, specific gravity of each

material, type of pozzolans and type of superplasticizers as shown in Tables 4-6. Unit prices of

materials used in this study were based on the average price inthe Thai market as shown in Table 5.

Table 6 shows the requirement constraints of each sample for HPC mix designs of 40-80 MPa and

80-125 MPa, respectively. These tests and observation on the designed mixes were performed in the

laboratory by using a laboratory trial batch. Materials for the test samples were selected based on

the abovementioned guidelines are as follows:

1) The Portland cement used was OPC (ASTM type I).

2) The fly ash used was class F fly ash for design of 40-80 MPa compressive strength.

f c′ f c′

Table 5 Unit prices and specific gravity of components

Component Unit price (Baht/kg) Specific gravity

Ordinary Portland cement 2.5 3.15
Fly ash 0.55 2.20
Silica fume 30.00 2.10
Water 0.04 1.00
Superplasticizer#1 (NF) 32.00 1.15
Superplasticizer#2 (PCE) 120.00 1.10
Coarse aggregate 0.25 2.65
Fine aggregate 0.15 2.55

Remark : 1 US$ is approximately equivalent to 35 baht.

Table 6 Required concrete properties and types of superplasticizers and pozzolans used

Mix. No.
Required slump

(mm)
Required 

(MPa)
Required Q
(coulombs)

Type of SP Type of Pozzolan

1 150 40 1000 NF F
2 150 50 1000 NF F
3 150 60 1000 NF F
4 150 70 1000 NF F
5 150 70 1000 PCE F
6 100 80 500 PCE Blended F & SF
7 100 80 500 PCE SF
8 100 90 500 NF SF
9 100 100 500 NF SF
10 100 110 500 NF SF

f c′
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3) Condensed silica fume was used for design of 80-125 MPa compressive strength.

4) Water was ordinary tap water.

5) The two types of chemical admixtures used were naphthalene formaldehyde condensate (NF)

and poly-carboxylic ether (PCE) superplasticizer

6) The coarse aggregate was crushed limestone with the max size of 19 mm.

7) The fine aggregate was natural river sand with fineness modulus of 3.0.

Mixing was carried out in a laboratory pan mixer with a capacity of 70 liters. All specimens were

cured in clean water at room temperature until testing. The workability of the fresh concrete was

measured by using slump test in accordance with ASTM C 143. Compressive strengths at 28 days

were obtained using a 150 mm cube. Durability of concrete was assessed by measuring the total

charge passed at 28 days in accordance with ASTM C1202-92. Each quoted strength and charge

passed value was the average of the three and two samples, respectively.

7. Discussion of the results obtained from the proposed system

Fig. 6 shows the optimization histories of the illustrative samples. The results of mix proportions

computed by the system are illustrated in Table 7. For the results of 40-80 MPa concrete,

intermediate to high volume replacement of fly ash was selected with low cement consumption in

each mix. The compressive strength and durability of 40-80 MPa concrete were controlled by low

W/B and cement content, whereas the slumps were kept in the range of requirements by dosage of

superplasticizers and fly ash. Cost of concrete was mostly controlled by the proportion of cement

and superplasticizer. For the results of 80-125 MPa concrete, 5-20% of condensed silica fume

replacement was selected with high cement consumption. The compressive strength and durability

Fig. 6 Optimization histories of cost of concrete for the illustrative samples
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of 80-110 MPa concrete were controlled by very low W/B incorporated with the pozzolanic reaction

and filler effect from condensed silica fume, whereas the slumps were kept in the range of

requirements by higher dosages of superplasticizers. The cost of concrete was mostly controlled by

the proportion of silica fume and superplasticizers. Fig. 7 shows the relationships of percentage

error of predicted and measured values with various mix designations. The percentage error of

predicted and measured values of slump and compressive strength were found to be ±15% and

±10%, respectively. The predicted durability of concrete was within the range of measured values

illustrated in Table 8. Based on the results obtained from Tables 7-8 and Fig. 7, it can be concluded

that the proposed system was successful in design of HPC mix proportions from the viewpoint of

workability, compressive strength, durability and economy.

Table 7 Mix proportion results from proposed system

Component
Mix designation

Mix.1 Mix.2 Mix.3 Mix.4 Mix.5 Mix.6 Mix.7 Mix.8 Mix.9 Mix.10

OPC (kg/m3) 258 258 277 312 367 448 406 431 422 450
Fly ash (kg/m3) 220 220 114 150 176 130 0 0 0 0
Silica fume (kg/m3) 0 0 0 0 0 10 20 20 20 20
Water (kg/m3) 139 124 112 112 141 131 112 116 111 110
NF (kg/m3) 1.32 1.36 1.34 1.35 0 0 5.03 5.0 6.6 11.0
PCE (kg/m3) 0 0 0 0 2.54 2.02 0 0 0 0
Fine aggregate (kg/m3) 650 653 650 654 702 677 728 806 672 663
coarse aggregate (kg/m3) 910 945 1093 1036 917 955 1128 1015 1150 1146
W/B 0.29 0.26 0.29 0.24 0.26 0.22 0.26 0.26 0.25 0.23

Predicted slump (mm) 152 151 155 159 160 159 155 187 158 132
Predicted f'c (Mpa) 49 53 60.1 70.2 70.1 80.0 88.7 90.1 100.0 110.1
Predicted Q (coulombs) 201 177 812 416 178 285 125 77 149 120
Cost (Thai baht) 1139 1148 1173 1268 1660 2082 2172 2219 2321 2468

Fig. 7 Percentage errors of predicted and measured values
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8. Conclusions

This paper presented an integrated approach using artificial neural networks (ANNs) and genetic

algorithms (GA) for cost optimization of HPC mix proportion. In the present work, ANNs were

used to predict the three main properties of HPC, namely workability, strength, and durability,

which were further used in the evaluation of fitness and constraint violations by the GA process. A

system prototype, called High Performance Concrete Mix-Design System using Genetic Algorithm

and Neural Networks (HPCGANN), was developed using MATLAB. The system serves as a tool in

a performance and cost based design of high performance concrete mix proportion. Experimental

investigations were carried out to validate the proposed method by comparing the predicted

performance with tested results from trial batches. Based on the results obtained in the present

study, the following conclusions can be drawn.
● The results indicate that the ANNs software in the proposed system can be used very efficiently

to predict the initial slump, compressive strength and durability of high performance concrete

across a wide range of mix proportion parameters.
● Using the trained ANNs integrated with GA can enable the design of HPC mix which

corresponds to its required performance. Furthermore, the proposed system takes into account

the influence of fluctuating unit prices of materials in order to achieve the lowest cost of

concrete, which cannot be easily obtained by traditional methods or trial-and-error techniques.
● Although the capability of the proposed system was limited to the data located within the

available range of training data in the ANNs software, the available range of the system could

be easily expanded by retraining the neural networks with additional data from trial mixes.
● The proposed system was proven to be an effective mix design of near optimal mix proportions

with reasonable accuracy. Furthermore, using the proposed technique can save time, reduce trial

mixes, reduce waste materials and decrease cost for high performance concrete production.
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