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Abstract The ultrasonic pulse velocity method has been widely used to evaluate the quality of
concrete and assess the structural integrity of concrete structures. But its use for predicting strength is
still limited since there are many variables affecting the relationship between strength and pulse
velocity of concrete. This study is focused on establishing a complicated correlation between known
input data, such as pulse velocity and mixture proportions of concrete, and a certain output (compressive
strength of concrete) using artificial neural networks (ANN). In addition, the results predicted by the
developed multilayer perceptrons (MLP) networks are compared with those by conventional regression
analysis. The result shows that the correlation between pulse velocity and compressive strength of
concrete at various ages can be well established by using ANN and the accuracy of the estimates
depends on the quality of the information used to train the network. Moreover, compared with the
conventional approach, the proposed method gives a better prediction, both in terms of coefficients of
determination and root-mean-square error.

Keywords: ultrasonic pulse velocity; concrete compressive strength; artificial neural network; multilayer
perceptrons.

1. Introduction

In engineering practice, compressive strength is the most important index to assess the quality of

concrete. This is because many properties of concrete, such as elastic modulus, water tightness or

impermeability, and resistance to weathering agents, are directly or indirectly related to strength and

thus can be deduced from the strength data. In view of this, various nondestructive testing (NDT)

methods have been developed to predict concrete compressive strength over the last decades.

Among them, the ultrasonic pulse velocity (UPV) method that has been used widely in laboratory

as well as in the field appears to be the most popular one. 

The UPV method is based on physical laws of elastic stress wave propagation in solids.
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Generally speaking, the advantages of the UPV method include easy operation and high

repeatability. Accordingly, it has served as an important NDT technique for concrete quality

control and quality assurance, as well as for deterioration evaluation of concrete. However, it

should be noted that the pulse velocity are influenced by many factors in concrete, but those

factors might have little influences on concrete strength (Sturrup, et al. 1984, Yun, et al. 1988,

Kheder 1998, Shikh 1998). To establish the relationships between strength and pulse velocity

of concrete, a number of experimental studies have been conducted since the 1950s (Andersen

and Nerenst 1952, Galan 1967, Chung and Law 1983, Popovics, et al. 1990, Phoon, et al.

1999, Liang and Wu 2002, Lin, et al. 2003, Kewalramani and Gupta 2006). And the results

show that a relationship with a wide variation will be acquired if the data of pulse velocity, υ,

and the compressive strength, , of concrete having different mixture proportions are pooled

together to analyze. However, a strength estimate made with the pulse velocity method is

reliable if a pre-established calibration curve is available (Jones and Gatfield 1955, Demirboga,

et al. 2004). 

Essentially, the compressive strength of concrete can be expressed as a nonlinear function of

mixture proportions, aggregate type, age of concrete, moisture content, pulse velocity, and others.

Theoretically, a multivariable nonlinear regression analysis can be performed to derive relationships

among the parameters involved, but it is practically difficult to apply the statistical approach in a

complex nonlinear system. By contrast, artificial neural networks (ANN) are a family of massively

parallel architectures that solve difficult problems via the cooperation of highly interconnected but

simple artificial neurons (Zurada 1992, Fausset 1994). Therefore, the approach is particularly

attractive for those problems where the solution algorithm is unknown or too complicated to solve

the problems directly. In fact, the methodology of ANN has been successfully applied in civil

engineering to model the structural behavior and properties of concrete materials such as strength,

durability, expansion, and constitutive modeling (Ghaboussi, et al. 1991, Tang, et al. 2003, Yeh

1999, Zhao and Ren 2002, Tang 2006, Hossain, et al. 2006).

Currently, the use of pulse velocity for evaluation of concrete strength was constrained by the fact

that a correlation between pulse velocity and compressive strength must be pre-established for a

particular concrete. The ANN computational tool is needed to break the constraint. The present

study uses UPV and mixture proportions of concrete specimen as predictive variables for prediction

of compressive strength of concrete at various ages. The specimen compositions vary widely in

aggregate content and water-cement ratio. Then different models including neural networks and

regression analysis for investigation on pulse velocity-strength relationship of concrete are

discussed. In addition, a comparative study between the neural network and regression analysis

models is also carried out. The results of the studies can help improve the application of pulse

velocity to evaluation of concrete strength.

2. Artificial neural network 

2.1. Architecture of MLP networks

The most commonly used ANN is probably the multilayer perceptrons (MLP) network. Fig. 1

shows a typical MLP network trained by back-propagation algorithm. It consists of an input layer,

an output layer, and one hidden layer, where X1, X2, …, XN are the N components of input vector X,

f c
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Wji and Wkj are the connection weights between neurons of different layers, θj is the bias assigned to

neuron j in the hidden layer, and θk is the bias assigned to neuron k in the output layer. Neurons in

the input layer represent the possible influential factors that affect the network outputs, while the

output layer contains one or more neurons that produce the network outputs. Layers between the

input and output layers are called hidden layers and contain a large number of hidden neurons. 

Fig. 2 shows a typical neuron selected from hidden or output layers of a neural network. Each

neuron forms a weighted sum 

 

(1)

of N inputs from previous layer, and a bias is θj added.

(2)

WjiXi

i 1=

N

∑

Uj WjiXi θj+

i 1=

N

∑=

Fig. 1 Architecture of a typical MLP network trained by back-propagation algorithm

Fig. 2 A typical neuron selected from hidden or output layers of a neural network
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where Wji is termed the weighted coefficient, and the subscript ji denotes that Wji is the connection

weight on the link from neuron i in the previous layer to neuron j in the current layer. Then the sum

becomes the input signal of the processing unit. Processing units process and pass the results

through an activation function F to obtain its output Yj as follows:

(3)

As the name of back-propagation algorithm indicates, propagation takes place in a feed-forward

manner from the input layer to the output layer when a set of input patterns is presented to the

network, and backward error propagation begins at the output layer using a learning mechanism to

adjust the weights and biases when errors propagate through the intermediate layers toward the

input layer. Taking the kth neuron in the output layer as an example (Fig. 1), the error E between

the calculated value Ok and the desired value Tk of output layer neurons may be defined as

(4)

where

(5)

2.2. Training algorithm of MLP networks

The learning mechanism of MLP networks with back-propagation algorithm is a generalized delta

rule that uses the gradient-descent method to minimize the error between the actual and the desired

output (Rumelhart, et al. 1986). From hidden to output, the modification of weights and biases are

represented respectively by the following expressions:

(6)

(7)

where

η = learning rate

δk=(Tk−Ok) (Uj)

And from input to hidden 

(8)

(9)

where

The training algorithm may be improved by adding momentum terms into Eq. (6) to Eq. (9). The

process of forward and backward propagation continues until the error is reduced to an acceptable

level.
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3. Experimental details

3.1. Materials

The test program started with materials selections. The selected ingredients included Type I

Portland cement, coarse aggregate with a maximum size of 12.7 mm, fine aggregate with a fineness

modulus of 3.12, and superplasticizer. The superplasticizer used is a special high molecular

superplasticized retardant conforming to ASTM C-494 Type F.

3.2. Mixture proportions and fabrication of specimens

The experimental work consists of two parts. Part 1 contains fifteen concrete mixture proportions

identified as N1 to N15 that were used to train the established ANN models. Details of the mixture

proportions are provided in Table 1. The water-cement ratio (W/C) ranges from 0.3 to 0.7. For all the

fifteen mixture proportions, the cement paste occupies 36% of the total concrete volume. Three volume

ratios of fine aggregate to total aggregate (S/A: Sand/Aggregate) are considered to be 30%, 45%, and 60%

for each water-cement ratio. After mixing, fifteen specimens were produced for each mixture proportion.

All the specimens were cast in 100×200 mm cylindrical steel molds and kept in their molds for about 24

hours in the laboratory and then de-molded. Three concrete cylinders were tested at an age of 1 day and all

other concrete cylinders were cured in water at 20oC and tested at ages of 3, 7, 14, and 28 days,

respectively. At each age, the pulse velocity and compressive strength of three specimens were measured

according to the specification of ASTM C597 (1998) and ASTM C39 (1998), respectively.

Part 2 contains nine concrete mixture proportions identified as N16 to N24 that were used to test

the validity of the established MLP network models. Details are provided in Table 2. Three

specimens were produced for each mixture proportion. A total of 108 concrete specimens were

prepared for tests at ages of 3, 7, 14, and 28 days, respectively.

3.3. Instrumentation and test procedures

Through a direct transmission (pitch-catch) mode as illustrated in Fig. 3, ultrasonic pulse velocities were

measured by a commercially available pulse meter with an associated transducer pair. The principle of

ultrasonic pulse velocity measurement involves sending an electro-acoustic pulse into concrete and

measuring the travel time for the pulse to propagate through the concrete. The pulse is generated by a

transmitter and received by a receiver. Knowing the path length, the measured travel time (∆t) can

be used to calculate the pulse velocity (υ) as follows: 

(10)

where D is the depth of the cylinder. The concrete surface must be prepared in advance for a proper

acoustic coupling. A small pressure is needed to ensure firm contact of the transducers against the

concrete surface. On the other hand, compression testing of cylindrical specimens was performed

using a servo-hydraulic material testing system. 

υ D t∆⁄=
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Table 1 Experimental data for training and verification sets

Mix
No.

W/C1 S/A2

(%)

Mixture proportion (kg/m3) Age
(Day)

Test Results Type of 
subsetCement Water FA3 CA4 SP5

υ
6 (m/sec) 7(MPa)

N1

0.7

30

354 248

501 1165

0.00

1 3315 3.7 training
3 3705 7.0 training
7 4010 11.4 training

14 4084 14.1 verification
28 4134 16.2 training

N2 45 752 915

1 3396 5.3 training
3 3772 10.1 training
7 4001 13.7 training

14 4104 18.5 verification
28 4164 21.5 training

N3 60 1002 666

1 3382 7.0 training
3 3771 14.1 verification
7 4037 20.8 training

14 4084 25.8 training
28 4141 29.3 training

N4

0.6

30

392 235

501 1165

0.98

1 3441 6.2 verification
3 3888 12.9 training
7 4155 18.5 verification

14 4240 22.0 training
28 4300 24.5 training

N5 45 752 915

1 3538 8.2 training
3 3847 17.1 verification
7 4158 22.7 verification

14 4219 27.9 verification
28 4245 29.7 training

N6 60 1002 666

1 3577 9.4 training
3 3855 18.0 verification
7 4142 25.2 training

14 4213 27.3 training
28 4279 34.7 training

N7

0.5

30

440 219

501 1165

2.20

1 3794 12.0 verification
3 4093 23.3 training
7 4336 27.9 training

14 4376 34.0 training

28 4450 36.1 training

N8 45 752 915

1 3803 14.0 training
3 4133 27.5 training
7 4295 37.0 training

14 4388 42.8 verification
28 4451 45.6 training

N9 60 1002 666

1 3719 13.1 training
3 4033 25.2 training
7 4221 34.2 training

14 4291 41.1 verification
28 4369 46.1 training

f 
c

′
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4. Artificial neural network analysis 

To investigate the correlation between pulse velocity and compressive strength development of

concrete, a commercially available software package, STATISTICA Neural Networks (SNN), was

used. Details on the establishment of neural network-based analysis models are described below.

Table 1 Experimental data for training and verification sets (Continued)

Mix
No.

W/C1 S/A2

(%)

Mixture proportion (kg/m3) Age
(Day)

Test Results Type of
 subsetCement Water FA3 CA4 SP5

υ
6(m/sec) 7(MPa)

N10

0.4

30

500 197

501 1165

4.99 

1 4050 23.4 training

3 4307 34.3 verification

7 4467 42.6 verification

14 4517 48.6 verification

28 4593 53.6 training

N11 45 752 915

1 4021 24.9 training

3 4290 39.0 training

7 4404 45.6 training

14 4481 50.0 verification

28 4563 53.7 verification

N12 60 1002 666

1 3984 24.6 training

3 4240 41.6 training

7 4322 44.9 verification

14 4453 51.3 verification

28 4498 55.5 verification

N13

0.3

30

578 169

501 1165

8.68 

1 4303 38.5 verification

3 4477 55.2 training

7 4546 58.1 training

14 4609 65.4 training

28 4706 67.3 training

N14 45 752 915

1 4222 41.6 verification

3 4452 56.1 training

7 4513 62.3 training

14 4593 65.4 training

28 4612 71.0 verification

N15 60 1002 666

1 4260 45.0 verification

3 4414 58.9 training

7 4494 62.8 training

14 4583 68.5 training

28 4629 74.2 verification

Notes: 1W/C=Water-cement ratio; 2S/A=Volume ratio of fine aggregate to total aggregate; 3FA=Fine Aggregate;
4CA=Coarse Aggregate; 5SP=Superplasticizer; 6υ=Ultrasonic pulse velocity; 7 =Compressive strength.

f 
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Table 2 Experimental data for test set

Mix
No.

W/C
S/A
(%)

Mixture proportion (kg/m3) Age
(Day)

Test Results Type of 
subsetCement Water FA CA SP υ (m/sec) (MPa)

N16

0.7

28

354 248

460 1175

0.00 

3 3919 13.7 

test

7 4190 18.8 

14 4252 20.7 

28 4340 22.6 

N17 36 592 1044

3 3896 13.7 

7 4187 19.3 

14 4268 23.8 

28 4317 23.4 

N18 44 723 914

3 3924 15.5 

7 4151 22.0 

14 4223 25.9 

28 4277 26.3 

N19 52 855 783

3 3994 17.2 

7 4213 23.8 

14 4299 27.2 

28 4371 30.5 

N20

0.6

28

392 235

460 1175

0.98 

3 4120 19.7 

7 4315 27.5 

14 4393 30.8 

28 4455 33.0 

N21 36 592 1044

3 4146 21.1 

7 4342 28.9 

14 4405 32.5 

28 4454 34.9 

N22 44 723 914

3 4101 23.1 

7 4291 31.7 

14 4363 36.0 

28 4407 38.2 

N23 0.5 52 441 218 855 783 2.20

3 4277 36.8 

7 4400 45.2 

14 4478 50.4 

28 4550 51.1 

N24 0.4 52 502 196 855 783 5.02

3 4375 47.5 

7 4470 50.8 

14 4534 59.0 

28 4600 59.2

f c
′
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4.1. Data set

The measurement results of concrete pulse velocity along with corresponding compressive

strength are listed in Table 1 and Table 2. Each value was the average of three concrete cylinders

for each mixture proportion at a specific age. Seventy-five experimental data listed in Table 1 are

used to train and verify the artificial neural network. Among them, 50 records are sampled

randomly as training examples, and the remaining 25 records are regarded as verifying examples.

On the other hand, thirty-six records given in Table 2 are used as testing examples to check the

generalization of the model developed by the current studies. 

4.2. System model 

Determining the network architecture is one of the most important tasks in the development of

MLP network models. It requires the selection of the input and output parameters which will restrict

the number of the input and output neurons of the network. In the study the compressive strength

development of concrete  is selected as the output variable. Because there are too many input

variables, a sensitivity analysis was carried out first to determine the impact of each input on the

neural network performance. In other words, all possible variables including ultrasonic pulse

velocity υ, dosage of cement C, dosage of water W, fine aggregate content FA, coarse aggregate

content CA, dosage of superplasticizer SP, and testing age of the concrete cylinders T are considered

in an initial development stage. In the study sensitivity provided by the SNN software package is

reported separately for training and verification subsets, and the results show that the consistency of

the sensitivity ratings between these two subsets is a good initial cross check on the reliability of

the sensitivity analysis. For MLP network with 3 layers the sensitivity analysis shows the following

sequence of importance of the variables: υ, CA, FA, W, C, SP, and T. It should be noted that the

f c
′

Fig. 3 Schematic diagram of pulse velocity testing circuit 
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least influence on the prediction of  is the variable T and this might be due to possible redundancy and

interdependence between υ and T.

Practically, a neural network with less input is usually preferable. Accordingly, several MLP

network models, which use a few parameters as the input variables, were also developed. However,

no specific guidelines exist on how to choose the number of hidden layer and neurons in the hidden

layer. Therefore, the numbers of hidden layer and neuron are determined through a trial-and-error

f c
′

Table 3 Architecture of ANN models

Model Inputs variables
Output 
variable

Number of neurons

Input 
layer

1st Hidden 
layer

2nd Hidden 
layer

Output 
layer

M3:1-2-1 υ 1 2 - 1

M3:2-1-1 υ, W 2 1 - 1

M3:3-3-1 υ, CA, W 3 3 - 1

M3:4-3-1 υ, CA, W, SP 4 3 - 1

M3:5-3-1 υ, CA, W, FA, T 5 3 - 1

M3:6-5-1 υ, CA, W, FA, SP, C 6 5 - 1

M3:7-6-1 υ, CA, W, FA, SP, C, T 7 6 - 1

M4:1-5-5-1 υ 1 5 5 1

M4:2-2-2-1 υ, W 2 2 2 1

M4:3-5-1-1 υ, CA, W 3 5 1 1

M4:4-8-5-1 υ, CA, W, SP 4 8 5 1

M4:5-13-7-1 υ, CA, W, C, SP 5 13 7 1

M4:6-20-7-1 υ, CA, W, FA, SP, C 6 20 7 1

M4:7-11-10-1 υ, CA, W, FA, SP, C, T 7 11 10 1

Table 4 Sensitivity analysis of variables

ANN Model
Ranking of variable

υ C W FA CA T SP

M3:1-2-1 1 - - - - - -

M3:2-1-1 1 -  2 - - - -

M3:3-3-1 1 - 2 - 3 - -

M3:4-3-1 1 - 2 - 4 - 3

M3:5-3-1 1 - 3 4 2 5 -

M3:6-5-1 1 5 2 6 4 - 3

M3:7-6-1 1 5 4 3 2 7 6

M4:1-5-5-1 1 - - - - - -

M4:2-2-2-1 1 - 2 - - - -

M4:3-5-1-1 1 - 2 3 - - -

M4:4-8-5-1 1 - 2 4 3 - -

M4:5-13-7-1 1 - 2 5 3 - 4

M4:6-20-7-1 1 6 2 4 3 - 5

M4:7-11-10-1 1 6 2 4 3 7 5

f c
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f c
′

f c
′

f c
′

f c
′
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′

f c
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f c
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process. After trials of different hidden layers and neurons, several models are considered for

predicting the compressive strength of concrete. The architecture of the developed MLP network

models is shown in Table 3. The first column in Table 3 denotes the neural network structure. For

example, M3:3-3-1 stands for the network model using MLP network with 3 layers, 3 input neurons

in the first layer, 1 hidden layer with 3 hidden neurons in the second layer, and 1 output neuron in

the third layer. Table 4 shows the results obtained from the sensitivity analysis of the models

proposed in Table 3. It reveals that the main variables having significant influence on the prediction

of v include υ, CA, W, and FA.

4.3. Training algorithm 

First, to avoid the slow rate of learning near the end points of the range, the input and output data

were normalized. Second, the learning rate was set at 0.1, and the momentum term was set at 0.3.

Afterward the network was initialized with randomly distributed weights and biases when training

neural networks in the present study. The network configuration was arrived after watching the

performance of different configurations for a fixed number of cycles. Then, learning parameters

were changed and learning processes were repeated. 

As stated previously, the data set is divided into three subsets including training, verification and

test. During the training process, all MLP network models use the same training, verification, and

test subsets. To reiterate, the MLP networks are trained by the training subset only. The verification

subset is used to check independently on the performance of the networks during training. The

deterioration in the verification errors indicats over-learning. If over-learning occurs, the SNN

software stops training the network, and restores it to the state with minimum verification error. The

verification error is also used by the SNN software to select the appropriate networks. However, if a

large number of networks are tested, a random sampling effect can be taken into account, and one

may get a network with a good verification error, but this does not guarantee its good generalization.

Therefore, a third subset (i.e. the test subset) is used to examine the network’s capability of

application to new cases and inspect its performance after training.

4.4. Validation of neural network

Theoretically, the performance of the developed MLP networks is measured in two aspects: one is the

root-mean-square error (RMSE) value (Dayhoff 1990), and the other is the coefficient of determination

(R2), which can be used as indices to evaluate how well the independent variables considered account for

the measured dependent variable and thus test the accuracy of the developed MLP networks. In principle,

the lower the RMSE value or the higher the R2 value is, the better the prediction will be.

Table 5 summarizes all the average RMSE and R2 values for different MLP networks. It can be

seen from Table 5 that the developed MLP network models have good performance in terms of the

RMSE and R2 values except those with one input variable. Although the S/A ratio of test subset is

different from training and verification subsets, the RMSE values of the verification and test subsets

are reasonably close. Hence it can be concluded that the network is likely to generalize well.

Besides, the R2 values are all greater than 0.90 for the verification and test subsets. These

demonstrate a close correlation between the independent variables and the measured dependent

variable. In other words, the results indicate the compressive strength of concrete can be fairly

accurately estimated using MLP networks.
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4.5. Neural network analysis results

The main objective of the developed MLP network models in this research is to establish the

correlation relationships between pulse velocity and compressive strength of concrete at various

ages. Essentially, both υ and  can be expressed as a nonlinear function of mixture proportions,

aggregate type and size, age of concrete, moisture content, and others. Moreover, according to the

sensitivity analysis (see Table 4), it is observed that the pulse velocity is the primary variable, which

has most influence on the prediction of compressive strength of concrete. Therefore, it seems to be

natural to predict concrete strength using pulse velocity. However, if the pulse velocity parameter is

used as the sole input variable, such as M3:1-2-1 and M4:1-5-5-1 models, the RMSE value is as

high as around 8 MPa for test subset as shown in Table 5.

Table 6 shows the ratio of the measured concrete strength  to the MLP networks predicted

strength  of each test sample. For M3:1-2-1 model, the average values of these ratios are 0.946,

0.831, 0.818, and 0.754 for concrete with ages at 3, 7, 14, and 28 days, respectively. This indicates

that the concrete strength cannot be accurately estimated by using υ as the only input variable.

Moreover, the pulse velocities of all the 111 samples given in Table 1 and 2 are adopted to predict

the concrete strength using M3:1-2-1 and M4:1-5-5-1 models. The measured concrete strength is

plotted against the predicted value as shown in Fig. 4 and the line of equality ( /  = 1) is also

drawn in the figure. It can be easily observed from Fig. 4 that the distribution of data points are

rather scattered. This reveals again that the use of pulse velocity (υ) as the only input variable

cannot have an accurate estimate of concrete strength.

By contrast, the results shown in Table 5 indicate that in addition to υ, inclusion of W and CA in

the model, such as M3:3-3-1 network, has positive effect upon the accuracy of  predictions.

Besides, using four to seven input variables, the compressive strength  can be accurately estimated.

Figs. 5(a)-5(f) show the comparison between the predicted and measured strength results for various
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Table 5 Summary of the RMSE and R2 values

ANN Model
Root-Mean-Square error (RMSE): MPa Coefficient of determination (R2)

Training set Verification set Test set Training set Verification set Test set

M3:1-2-1 5.944 5.704 7.927 0.9487 0.9500 0.9015

M3:2-1-1 3.767 4.456 3.315 0.9799 0.9696 0.9708

M3:3-3-1 1.670 2.301 1.678 0.9961 0.9924 0.9919

M3:4-3-1 1.816 2.135 1.599 0.9954 0.9933 0.9922

M3:5-3-1 2.000 1.932 1.739 0.9943 0.9943 0.9915

M3:6-5-1 1.766 2.156 1.677 0.9956 0.9931 0.9907

M3:7-6-1 1.822 1.981 1.681 0.9953 0.9949 0.9921

M4:1-5-5-1 5.975 5.692 8.058 0.9485 0.9500 0.9015

M4:2-2-2-1 3.672 4.621 3.204 0.9807 0.9673 0.9721

M4:3-5-1-1 1.831 2.117 1.774 0.9952 0.9934 0.9896

M4:4-8-5-1 2.019 1.929 1.894 0.9943 0.9944 0.9889

M4:5-13-7-1 1.890 1.809 1.841 0.9949 0.9952 0.9894

M4:6-20-7-1 1.831 1.936 1.713 0.9952 0.9944 0.9908

M4:7-11-10-1 1.706 2.004 1.755 0.9959 0.9939 0.9899
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input variables and it clearly shows that the less scatter of data around the line of equality confirms

the suitability of these models for prediction of the value of . 

4.6. Comparison with regression analysis model

There were a lot of expressions proposed by other authors for correlating the concrete

compressive strength with the measurements of pulse velocity in the literature. In the study, the

ultrasonic pulse velocity in concrete is adopted as independent variable and the compressive

strength is the dependent variable. The regression analysis was performed to find the best-fit curves

with different functions including exponential and power. In order to compare the neural networks

results with those predicted by the regression analysis models, the same 75 records listed in Table 1

(training and verification examples) are used to establish the relationship equations between the

pulse velocity and strength of concrete. Figs. 6(a) and (b) show the best-fit curves for exponential

and power functions, respectively. The equations obtained from regression analysis are as follows: 
● Exponential equation

=0.0055e0.002υ    (R2=0.9147) (11)

● Power equation

=7×10−29 × υ8.1698  (R2=0.9116) (12)

where  and υ represent compressive strength (MPa) and pulse velocity (m/sec) of concrete,

respectively. 

Subsequently, the 36 test data listed in Table 2 used in the neural network models are also adopted

to test the accuracy of the regression equations. For comparison purpose, the average  /  values

of the test results for regression models are listed in the last two columns of Table 6. Overall, the

developed network models have a much better performance than the regression models in terms of

the average  /  values and the corresponding coefficient of variation (COV). As an example,
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Fig. 4 Measured-versus-predicted strength by ANNs with one input variable
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Fig. 5 Measured-versus-predicted strength by ANNs with multi-variable input
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for test age of 28 days the average  /  value and its COV value of M3:7-6-1 model are 0.969

and 4.94%, respectively, while the average  /  value and its COV value of regression model

Reg-E are 0.782 and 14.66%, respectively. Figs. 7(a) and (b) show the data pairs of the measured

and the predicted strength values obtained from regression models with exponential and power

functions, respectively, and Figs. 7(c) and (d) are the data pairs obtained from the ANN models of

M3:3-3-1 and M3:5-3-1, respectively. Figs. 7(a) and (b) show that some data pairs of  and 

obtained from regression models are located far away from the line of equality as shown in Figs.

7(a) and (b). In contrast with the regression models, the ANN models have much better prediction

results and the difference between the predicted and measured strength values is within 10% as

shown in Figs. 7(c) and (d). All the results presented in Table 6 and Fig. 7 show that the developed

network models are powerful tools for predicting the strength of concrete at different ages.

In this section, the high flexibility of ANN models suitable for analyzing the complicated

relationship between the concrete strength and pulse velocity will be demonstrated. Fig. 8(a) shows

the distribution of the experimental data pairs of  and υ (marked as triangular symbols) and those

data pairs estimated by the exponential regression model (marked as cross symbols). In Fig. 8(a),

the estimated data pairs are distributed along a simple exponential curve conforming to Eq. (11) and

this simple curve, however, cannot provide a good prediction due to the scattered distribution of the

experimental data pairs. Fig. 8(b) shows the distribution of the experimental data pairs (also marked

as triangle symbols) and those data pairs estimated by the ANN M3:3-3-1 model (marked as

circular symbols). In Fig. 8(b), the distribution of the estimated data is highly matching with the

experimental data pairs. A comparison between Figs. 8(a) and (b) shows that the ANN model is

much more flexible than the traditional regression model and very suited for the problem with

multiple input variables. 

4.7. Computational simulation of strength versus pulse velocity of concrete

Having trained a reliable neural network, one can use it to make predictions on new data.

However, a major drawback of ANN application is a lack of its friendliness because neural
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Fig. 6 Correlations between compressive strength and UPV by regression models 
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Table 6 Measured and predicted concrete strength for test subset

Mix
No.

Test age
(Day)

Measured 
compressive 
strength 

(MPa)

Predicted compressive strength  (MPa)

ANN model Regression model

M3:
1-2-1

M3:
3-3-1

M3:
4-3-1

M3:
5-3-1

M3:
6-5-1

M3:
7-6-1

Reg-E Reg-P

N16 3 13.7 16.0 11.9 11.0 13.1 11.8 12.0 15.8 15.9 

N17 3 13.7 15.2 12.6 11.9 13.5 13.0 12.9 15.1 15.1 

N18 3 15.5 16.1 14.4 14.1 15.5 15.4 15.1 16.0 16.0 

N19 3 17.2 18.6 17.9 17.9 19.2 19.3 18.9 18.4 18.5 

N20 3 19.7 24.2 18.7 18.6 20.3 19.0 19.8 23.8 23.9 

N21 3 21.1 25.6 21.5 21.3 22.8 22.0 22.6 25.0 25.1 

N22 3 23.1 23.3 21.9 21.5 23.1 22.6 23.0 22.9 23.0 

N23 3 36.8 33.8 36.5 36.2 37.2 36.6 37.2 32.7 32.4 

N24 3 47.5 41.4 48.2 47.1 48.0 46.9 47.8 39.9 39.0 

Avg. of / 0.946 1.040 1.067 0.982 1.016 1.005 0.964 0.966 

COV of / 12.20% 5.83% 8.19% 4.69% 7.10% 6.76% 13.01% 13.95%

N16 7 18.8 28.1 18.6 18.7 20.3 18.7 19.2 27.4 27.4

N17 7 19.3 27.9 20.5 20.3 21.8 21.0 21.2 27.2 27.3

N18 7 22.0 25.9 21.3 20.9 22.4 22.2 22.1 25.3 25.4

N19 7 23.8 29.5 26.0 25.4 26.8 26.9 26.8 28.7 28.7

N20 7 27.5 36.6 25.6 26.5 27.3 25.7 26.9 35.3 34.9

N21 7 28.9 38.7 29.6 29.9 30.5 29.5 30.4 37.3 36.7

N22 7 31.7 34.8 30.0 29.6 30.6 30.0 30.7 33.6 33.3

N23 7 45.2 43.6 43.7 43.2 43.6 43.3 44.0 41.9 40.9

N24 7 50.8 50.3 54.4 53.3 54.0 52.9 54.0 48.3 46.5

Avg. of / 0.831 0.997 1.003 0.961 0.991 0.972 0.858 0.868 

COV of / 15.99% 5.74% 5.06% 6.01% 6.26% 5.37% 16.44% 17.61%

N16 14 20.7 32.0 20.5 20.9 22.2 20.5 21.1 31.1 30.9 

N17 14 23.8 33.1 23.4 23.4 24.5 23.6 24.0 32.1 31.9 

N18 14 25.9 30.1 24.0 23.6 24.9 24.7 24.7 29.3 29.2 

N19 14 27.2 35.4 29.9 29.0 30.2 30.2 30.3 34.2 33.8 

N20 14 30.8 43.0 28.9 30.3 30.4 28.7 30.0 41.3 40.3 

N21 14 32.5 44.0 32.6 33.0 33.2 32.1 33.2 42.4 41.3 

N22 14 36.0 40.4 33.6 33.1 33.8 33.2 34.1 38.9 38.2 

N23 14 50.4 51.1 48.6 48.0 47.9 47.8 48.8 49.1 47.2 

N24 14 59.0 57.0 58.7 57.5 58.2 57.1 58.7 55.1 52.2 

Avg. of / 0.818 1.021 1.023 0.996 1.025 1.002 0.847 0.867 

COV of / 16.23% 5.05% 4.90% 5.55% 5.31% 4.82% 16.34% 17.78%

N16 28 22.6 38.5 23.6 24.4 25.2 23.3 23.8 37.1 36.5 

N17 28 23.4 36.7 25.3 25.4 26.3 25.3 25.4 35.4 35.0 

N18 28 26.3 33.8 26.2 25.7 26.9 26.6 26.4 32.7 32.4 

N19 28 30.5 41.1 33.4 32.3 33.2 33.2 33.2 39.5 38.7 

N20 28 33.0 48.8 31.8 33.4 33.1 31.3 32.6 46.9 45.2 

N21 28 34.9 48.7 35.0 35.6 35.4 34.3 35.4 46.8 45.2 

N22 28 38.2 44.2 35.8 35.4 35.8 35.2 36.1 42.5 41.4 

N23 28 51.1 58.8 53.3 52.6 52.1 52.2 53.5 56.9 53.8 

N24 28 59.2 64.7 63.1 61.9 62.6 61.6 64.0 62.9 58.8 

Avg. of / 0.754 0.978 0.976 0.962 0.989 0.969 0.782 0.808 

COV of / 14.87% 5.30% 5.03% 5.78% 5.63% 4.94% 14.66% 16.12%
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Fig. 7 Comparison between regression analysis and ANN network models 

Fig. 8 Plotting of  versus υ f c′
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networks do not give explicit knowledge representation in the form of rules, or some other easily

interpretable forms. In fact, the trained model is implicit and hidden in the network structure as well

as the optimized weights between the nodes. In response to this disadvantage, computational

simulation of strength ( ) versus pulse velocity (υ) of concrete was performed using the trained

neural network M3: 7-6-1 model. 

The sensitivity analysis of the ANN M3: 7-6-1 model shows that CA (coarse aggregate content) is

the main influential factor of the relationship between  and υ of concrete. Therefore, it is feasible

to simulate the  versus υ relationship curves for concrete with a particular CA value. For

example, Fig. 9 shows two ANN simulated charts with six simulation curves of the relationship

between  and υ are proposed for concrete with CA values of 600, 700, 800, 900, 1000, and 1100

kg/m3. Also shown at the top of each chart are the cement content, water content, and SP content of

concrete mixture proportions. 

To verify the validity of the ANN simulated  versus υ relationship based on CA in concrete,

the measured compressive strengths of specimens having different mixture proportions named from

N16 to N22 as listed in Table 2 are compared to those obtained from the ANN charts with the same

cement content, water content, and SP content of concrete mixture proportions. According to the CA

of the specimen, the measured pulse velocity of each specimen can be used to predict its

compressive strength by using a linear interpolation between two suitable  versus υ curves. The

predicted strengths were compared with the measured values of concrete. Fig. 10 shows the

comparison results and all the results are between +10% and -10% of the line of equality. This

verifies that the ANN charts for concrete with a particular CA value can be properly used to predict

the compressive strength of concrete with a measured υ value. Accordingly, using a well developed

ANN model, hundreds of ANN simulated  versus υ curves of various mixture proportions could

be established. These ANN charts can serve as a tool to provide a rapid and reliable strength

determination for any proposed concrete mixtures with a measured υ value. 
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Fig. 9 ANN simulated  versus υ curves of concrete with different mixture proportionsf c
′
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5. Conclusions

This paper is focused on establishing a complicated correlation between known input data, such as

pulse velocity and mixture proportions of concrete, and a certain output (compressive strength of

concrete) using artificial neural networks (ANN). In addition, a comparative study between the

neural network and regression analyses has been conducted for establishing the relationships

between pulse velocity and strength development of concrete with age. Experimental studies were

carried out to evaluate these analytical models. 

The results obtained from the studies indicate that the neural networks with three and four layers were

successful in learning the relationship between the various input parameters and the single output

(compressive strength). The results of the test subset demonstrate that, although the model was not

trained for these data, the neural network was capable of generalizing the relationship and yielding

reasonably good predictions. Moreover, compared with the conventional approach, the proposed method

gives a better prediction both in terms of coefficients of determination and root-mean-square error. It is

also shown that the ANN model is much more flexible than the traditional regression model for

problems with multiple input variables. On the other hand, computational simulation results verify that

the developed ANN charts for concrete with a particular CA value can be properly used to predict the

compressive strength of concrete with a measured pulse velocity. This paper demonstrates that the ANN

computational tool is promising to break the long-term constraint encountered in the use of pulse

velocity for evaluating the strength of concrete with different mixture proportions.
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Notation

C = cement content; 

CA = coarse aggregate;

D = depth of the cylinder;

FA = fine aggregate;

= concrete compressive strength;

N = number of component of the input vector X;

Ok = calculated output of neuron k;

R2 = coefficient of determination; 

S = number of processing elements in the output layer;

SP = superplasticizer;

S/A = volume ratios of fine aggregate to total aggregate;

T = test age;

Tk = desired output of neuron k;

W = Water content;

W/C = water-cement ratio;

Wji = weighted coefficient between neurons of different layers;

X = input vector;

Xi = ith component of input vector X;

Yj = network output;

∆t = measured travel time; 

η = learning rate;

θj = bias assigned to neuron j in the hidden layer; 

θk = bias assigned to neuron k in the output layer; and

υ = pulse velocity

CC
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