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Abstract. A simple analytical procedure to analyze reinforced concrete (RC) beams with cracked section
is proposed on the basis of the simplified moment-curvature relations of RC sections. Unlike previous
analytical models which result in overestimation of stiffness and underestimation of structural deformations
induced from assuming perfect-bond condition between steel and concrete, the proposed analytical pro-
cedure considers fixed-end rotation caused by anchorage. Furthermore, the proposed analytical procedure,
compared with previous numerical models, promotes effectiveness of analysis by reflecting several factors
which can influence nonlinearity of RC structure into the simplified moment-curvature relation. Finally,
correlation studies between analytical and experimental results are conducted to establish the applicability of
the proposed analytical procedure to the nonlinear analysis of RC structures.
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1. Introduction

Since the structural behavior of reinforced concrete (RC) structures represents complex features

according to the variation of numerous influencing factors including concrete cracking, nonlinear

properties of concrete, and yielding of reinforcing steel, an accurate prediction of nonlinear

responses in RC structures requires an exact consideration of these nonlinear effects. However, this

is time consuming and makes the nonlinear analysis of an entire structure impossible. Nevertheless,

in recent years, increasing need for the assessment of the strength and serviceability of existing

structures and newly designed critical structures has encouraged the application of nonlinear

analysis and, in advance, the development of advanced analytical methods capable of representing

the cracked behavior of RC structures under all possible loading conditions.

Material nonlinear analyses of RC beams that comprise the primary members of RC structures are

generally conducted by using one of two basically different approaches: (1) the layered section

approach (see Fig. 1); and (2) the modified stiffness approach (see Fig. 2). The former is based on

the idealized stress-strain relations for concrete and reinforcing steel in which a finite element is

divided into imaginary concrete and steel layers in a section (Kwak and Kim 2004). This approach

has been broadly used by many previous investigators (Park, et al. 1972, Taucer, et al. 1991, Kwak,

et al. 2006). However, application of this approach to large structures with many degrees of
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freedom has some limitations, because numerical integrations and prediction of material states must

be conducted through entire imaginary layers and stiffness of structures is usually overestimated

ignoring anchorage slip of main bar at the beam-column joint. The modified stiffness approach, the other

hand, is based on an overall simplified moment-curvature relation reflecting the various stages of

material behavior (Clough and Johnston 1966, Roufaiel and Meyer 1987, Takeda, et al. 1970). In

this approach, the stiffness is determined as the slope of the moment-curvature relation which is

constructed by section analysis and a nonlinear analysis of RC beams can be conducted based on

this moment-curvature relation. Therefore, this method, in comparison with layered section

approach, can reduce calculation time and storage space in nonlinear analysis of RC beam.

Nevertheless, this approach established to date still have limitations to simulate the structural

behavior of RC structures because of the exclusion of fixed-end rotation effect caused by the

anchorage-slip in beam-column joint.

To address these limitations, an improved nonlinear approach is introduced in this paper on the

basis of the simplified moment-curvature relation of RC sections, which is uniquely defined

according to the dimensions of the concrete section, the material properties of concrete and steel

and axial force. In addition, to simulate the concentrative deformation at the beam-column joint,

equivalent stiffness (EIeq) in the plastic hinge length is introduced in the finite element formulation.

Finally, validity of the proposed algorithm is established by comparing the analytical predictions

with experimental results and previous analytical studies.

Fig. 1 Layered section approach

Fig. 2 Modified stiffness approach
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2. Material models

To accomplish section analysis to define moment-curvature relation, material models for concrete

and steel must be defined previously. Many mathematical models for concrete are currently used in

the analysis of RC structures. Among these models, the monotonic envelope curve introduced by

Kent and Park and later extended by Scott, et al. (1982) is adopted in this study for a layered

section approach for its simplicity and computational efficiency. In this model, as shown in Fig.

3(a), the monotonic concrete stress-strain relation in the compression region is described by three

regions. However, the stress-strain relation in the tensile region is ignored in strength calculations in

this study, because concrete has low tensile strength, generally less than 20% of the compressive

strength, and it makes a negligibly small contribution to the strength and energy absorbtion capacity

of an cracked RC section. Reinforcing steel is modeled as a linear elastic, linear strain hardening

material with yield stress σy, as shown in Fig. 3(b). The reasons for this approximation are: (1)

computational convenience of the model; and (2) the behavior of RC members is greatly affected by

the yielding of reinforcing steel. It is, therefore, advisable to take advantage of the strain-hardening

behavior of steel in improving the numerical stability of the solution. More details for the material

models for concrete and steel can be found elsewhere (Kwak and Filippou 1990, Kwak and Kim

2001, Kwak and Kim 2002a, Kwak and Kim 2002b).

In contrast to the concrete and steel whose material properties are uniquely defined, the bond

stress-slip relation depends on the relative deformation of concrete and steel. As well known, the

relation between bond stress and slip depend on many factors including location, surface condition,

Fig. 3 Stress-strain relation

Fig. 4 Bond stress-slip relation
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and load step and so on. Therefore, it is practically impossible to establish a local bond stress-slip

relation. Concurrently, average bond stress-slip relation which is measured over equal to five bar

diameter is used. Moreover, the result is very sensitive to experimental error because the bond stress

is derived from the change in steel stress, and the bond-slip relation also depends on the position of

the bars, the surface condition of the bars, the loading stage, the boundary conditions and the

anchorage length of the bars. In spite of these difficulties, several experimental bond-stress slip

relations have been proposed (Ayoub and Filippou 1999, Eligehausen, et al. 1983, Hayashi and

Kokusho 1985, Monti, et al. 1997). In this study, the simple bilinear bond stress-slip model (Ayoub

and Filippou 1999) in Fig. 4 is adopted, and the parameters (u1= 0.1 cm, τ1= 14.85 Mpa) used in the

model are obtained from experimental studies. This model gives good approximation of the actual

behavior for cases that do not exhibit significant bond-slip and associated bond damage.

3. Basic moment-curvature relation

To ensure ductile behavior in practice, steel contents less than the balanced design value are

always used for flexural members. The typical moment-curvature relation for a lightly reinforced

concrete section with one top and one bottom layer of reinforcing steel (under-reinforced concrete

section) can be idealized to the trilinear relation shown in Fig. 5. The first stage is to the cracking

(point A in Fig. 5), the second to yield of the tension steel (point B in Fig. 5), and the third to the

limit of useful strain in the concrete.

Up to first cracking at the extreme tension fiber, the entire cross section is effective for the

applied internal moment, and the stress-strain relations for concrete and steel maintain linear

elasticity. If the dimensions of the concrete section and the steel areas and positions are given, the

cracking moment Mcr and the corresponding curvature φcr (point A in Fig. 5) can be calculated

using the requirements of strain compatibility and equilibrium of forces. However, in this paper, this

step can be abbreviated because only cracked section is dealt with.

The moment and curvature at first yield of the tensile steel (point B in Fig. 5) should also be

calculated using the defined stress-strain relations for concrete and steel. Based on normal force

equilibrium, a section analysis is carried out by first assuming that the tension steel reaches the

yielding point. With an assumed neutral axis depth, the internal tension T and compression C can be

calculated. Through successive iteration until the difference between the tensile force and compressive

Fig. 5 Typical moment-curvature relation of RC section
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force is less than the given tolerance, the moment and curvature at steel yielding are finally

determined. The connection from initial point to yield point gives the simplified basic moment-

curvature relation defined in this paper. In advance, the moment-curvature relation to the post-

yielding stage is approximated as a straight line which conserves same energy until ultimate point.

4. Modification of basic moment-curvature relation

4.1. Axial force effect

An axial force has an important effect on the moment-curvature relation of a RC section. Fig. 6

shows the moment-curvature relations corresponding to various levels of axial force. Up to reaching

the balanced axial force Pb, the yield moment of a section increases in proportion to the axial load

P and the failure curvature considerably decreases by the presence of the axial load. In particular,

the application of large seismic loads acting horizontally requires an RC column to resist a load

combination of a relatively small axial load and large moment. Generally, a load combination of (P,

M) will be located in a region upper-bounded by the axial load of 0.5Pb at a P − M interaction

diagram, where Pb is the balanced axial force(see Fig. 6).

To implement the axial force effect into a moment-curvature relation, a linear interpolation

between two boundary points of (0, ) and (0.5Pb, 0.5 Mb) is used on the basis of the assumption

that the moment capacity is linearly proportional to the applied axial load P until P reaches to 0.5

Pb (see Fig. 7). In reality, the axial force acting on an RC column continually changes when a frame

structure is subjected to horizontal load, because lateral drift accompanying the floor rotation will

occur. An accurate calculation of structural response may require taking into account this axial force

variation. Nevertheless, this effect is not considered in this paper because its variation is expected to

be very small in a real structure. Since most floor rotation will be prevented by a rigid floor and a

strong column-weak beam system, variation of axial force will be immaterial as compared with

axial force by dead load and super-imposed dead loads.

M y

B

Fig. 6 Axial force effect on moment-curvature relation
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4.2. Anchorage-slip effect

Since bond stresses in RC structures arise from changes in the steel stress along the length, the

influence of bonding becomes more pronounced in a cracked region. In a simplified analysis of RC

structures, complete compatibility of strains between concrete and steel is usually assumed, which

implies a perfect bond condition. However, this assumption is realistic only in regions where

negligible stress transfer between the two components takes place. In regions of high transfer

stresses along the interface between reinforcing steel and surrounding concrete, such as near cracks,

the bond stress is related to the relative displacement between reinforcing steel and concrete.

Therefore, the bond-slip effect must also be considered to simulate the structural behavior more

exactly. In this regard, many studies have been carried out to simulate this effect based on finite

element analysis (Ayoub and Filippou 1999, Monti, et al. 1997a, 1997b) and experimental results

(Eligehausen, et al. 1983, Hayashi and Kokusho 1985).

Two different elements, namely the bond-link element and the bond-zone element, have been

proposed to date for inclusion of the bond-slip effect in the finite element analysis of RC structures

(De Groot, et al. 1981, Ngo and Scordelis 1967). However, the use of these elements requires a

double node to represent the relative slip between reinforcing steel and concrete. In a beam structure

defined by both end nodes along the direction, it is impossible to use the double node at each end

node. To address this limitation in adopting the bond model, a numerical algorithm that includes the

bond-slip effect in the moment-curvature relation is proposed in this study.

Unlike the critical region located in the vicinity of the beam mid-span, as well as at the ends of

long-span beams, the behavior of the critical region at the beam-column joint of relatively short-

span beams may be greatly affected both by the shear and also by the details of anchoring the beam

reinforcement. In particular, slippage of the main bars from the anchorage zone (Δtotal in Fig. 8(a))

accompanies the rotation of the beam fixed-end, θFE. This cannot be simulated by any mechanical

model, and the rigid body deformation, which accounts for approximately 50% of the total

deformation (Saatcioglu and Ozcebe 1989), may increase as the deformation increases. This phenomenon

will be enlarged in the case of an under-reinforced concrete beam. Consequently, its exclusion may

Fig. 7 Modification of moment-curvature relation considering axial force effect
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lead to an over-estimation of both the stiffness and the energy absorption capacity of the structure.

Accordingly, to simulate the structural behavior more exactly, it is necessary to take into account the

fixed-end rotation caused by the anchorage slip.

The anchorage slip Δtotal at a beam-column joint can be divided into two slip components

according to the difference in the bond-slip behavior; Δaxial induced from pull-out of the anchored

reinforcement embedded through a column at beam-column joint and/or footing at column-footing

joint and Δbending accompanied by the enlargement of bending cracks at the end face of a beam.

Since Δaxial and Δbending are basically caused by the axial force and bending moment, respectively,

the anchorage slip Δtotal can be found by superposition of Δaxial and Δbending after separate calculation

of each slip component.

Δtotal= Δaxial + Δbending (1)

4.3. Calculation of bond-slip component Δaxial

A part of an RC member subjected to uniaxial tension is shown in Fig. 9. When the axial load Ph

is applied, the far ends represent a fully cracked state with a steel strain of εsl, which means there is

no load carrying by concrete. In advance, the tensile force Ph is transferred from the steel bar to the

concrete by bond stress, and the value of the bond stress is zero at the inner end of the transfer

length ld. This means that there is no bond-slip at the central position. Moreover, it can be assumed

that the strains in steel and concrete are equal to each other at x = 0, and the strain value corresponds

to εs0.

From the strain distribution, the local slip Δx can be defined as the total difference in elongation

between the reinforcement and the concrete matrix measured over the length to a distance x from

the mid-span.

(2)

where εsx and εcx are the strain distributions of steel and concrete, respectively (see Fig. 9).

On the basis of force equilibrium and the relation of Eq. (2) with the assumption that local bond

stress is linearly dependent on the local slip, the following well-known governing differential

equation for bond-slip can be obtained.

Δx εsx εcx–( ) xd
0

 x

∫=

Fig. 8 Rigid body deformation at the beam-column joint
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(3)

where η = Es/Ec, the steel ratio ρ = As/Ac, Σ0 is the perimeter of the steel bar, Eb is the slope of the

bond stress-slip relation, and E and A mean elastic modulus and sectional area, respectively.

The general solution of Eq. (3) is given by Δx = C1sinhk1x + C2coshk1x, where C1 and C2 are

constants that have to be determined from the boundary conditions. Focusing on the hooked

anchorage of reinforcing bars in Fig. 10, bond slip represents the maximum value at the point where

the bar enters the column at beam-column joint and/or footing at column-footing joint and slight

bond slip may also occur at the starting point of the straight portion in front of the hook. If the

bond-slip at the starting point of the straight portion in front of the hook is assumed to be Δ0, then

the constant C2 will be Δ0. In advance, as shown in Fig. 9(b), the strain difference at the column

face that represents the maximum value can be determined from dΔx/dx = εsx− εcx by substituting the

d
2Δx

dx
2

----------
EbΣ0 1 ηρ+( )

AsEs

-------------------------------Δx–
d
2Δx

dx
2

---------- k1

2Δx– 0= =

Fig. 9 Behavior of tension member

Fig. 10 Embedded steel in RC column
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anchorage length ld into x:

(4)

Since the concrete strain εc is negligibly small, compared with the steel strain, the other constant

C1 can be calculated as C1= (εsl − k1Δ0sinh(k1ld))/(k1cosh(k1ld)). Accordingly, the general solution is

finally determined, and the steel strain at x = 0 can be computed as:

 

(5)

The behavior of hooked bars in tension was studied experimentally by Soroushian, et al. (1988).

They proposed the following relation between the tensile force (Ph) and the slip Δ0 at the starting

point of the hook (x = 0) on the basis of experimental observations:

,  (6)

where the force term Ph is in kN, and the slip Δ0 and bar diameter db are in mm.

Now the slip of anchored reinforcement, Δaxial, can be calculated by substituting Δ0 determined

from Eqs. (5) and (6) into the general solution. The slip when the reinforcement yields at the

column face (x = ld) can finally be represented by

(7)

In the case of interior beam-column joint in which anchorage length ld is enough and/or beams at

both sides are bended symmetrically with respect to interior beam-column joint, Δaxial can be

assumed as zero. Therefore, it is necessary to calculate Δaxial and Eq. (7) can be simplified as

dΔ
dx
------ x ld=( ) k1C1 h k1ld( )cos k1Δ0 h k1ld( )sin+ εsl εcl–= =

εs0

dΔ
dx
------ x 0=( )

εsl

h k1ld( )cos
------------------------ Δ0k1 h k1ld( )tan–= =

Ph Esεs0As Phu

Δ0

2.54
----------

⎝ ⎠
⎛ ⎞

0.2

= = Phu 271 0.05db 0.25–( )=

Δaxial

εsy

k1

------ h k1ld( )tan
Δ0

h k1ld( )cos
------------------------+=

Fig. 11 Free body diagram for RC element
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(8)

4.4. Calculation of bond-slip component Δbending

Fig. 11 shows an infinitesimal beam element of length dx with axial force. If the linear bond

stress-slip relation is assumed as shown in Fig. 4, the variations of the axial force components of

steel located at the tension (dPs) and compression (dP's region can be represented by Kwak and

Kim (2002c):

(9)

(10)

where N is the number of steels, fb is the bond-stress at the steel interface and ( )' denotes the

properties of steel in the compression part (see Fig. 12). Since the longitudinal strains are directly

proportional to the distance from the neutral axis of zero strain, the variation of curvature φx

representing the gradient of the strain profile at the section is also the variation of strain.

Until the reinforcing steel reaches its yielding stress, the concrete strain at the extreme

compression fiber is not large enough to assume that the elastic modulus of concrete Ec is constant

across the concrete section. By ignoring the tensile force in the concrete, which makes a negligibly

small contribution after cracking, the variation of compression force of concrete in terms of

curvature φx can be determined as:

(11)

where b is the width of section, and c is the distance from the extreme compression fiber to the

neutral axis. Namely, the variation of curvature along the length can be expressed by

 on the basis of the force equilibrium condition,

dPc+ =dPs (see  Fig. 11)). The variation of concrete strain at the steel location can be simplified

in terms of curvature φx as .

When the bond-slip Δx at the steel-concrete interface is defined by the relative displacement

between reinforcing steel and concrete (Δ = us− uc), the first order and second order differential

equations of bond-slip lead to:

Δaxial

εsy

k1

------ h k1ld( )tan=

dPs fb dx Σ0⋅ ⋅ Eb Δ dx Σ0⋅ ⋅ ⋅ NAs Es dεs⋅ ⋅= = =

dP′s N′A′s E ′s dε ′s⋅ ⋅ N′A′s E ′s c d ′–( )dφx⋅= =

dPc Ec εd c Ad c∫ Ec
0

 c

∫ dφx y bdy⋅ ⋅ ⋅ Ec b dφx

1

2
---c

2⋅ ⋅ ⋅= = =

dφx  dx⁄ Eb Σ0 Δx ⋅ ⋅  Ec bc
2⋅ 2 A ′s E ′s c d ′–( )+⁄( )⁄=

dP ′s
dεc  dx⁄ d c–( ) dφx ⋅  dx⁄=

Fig. 12 Section geometry
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(12)

 (13)

where , , , .

Accordingly, the following governing differential equation for the bond-slip, which has the same

form for an axial member (see Eq. 3), is obtained.

(14)

The general solution to Eq. (14) is given by Δx = C3sinhk2x + C4coshk2x, in which C3 and C4 are

constants that have to be determined from the boundary conditions, and  means . For a

beam structure, it can be assumed that the steel and concrete strains at the end of a structure (x = 0)

are zero, because the bending moment by the applied lateral loads is zero. From the boundary

condition of , a constant C3 is consequently determined as zero. The

constant C4 can also be determined from the boundary condition of, dΔ/dx(x = l) = C4k2sinh(k2l) =

, where φl denotes the curvature at x = l and can be calculated on the basis of

the force equilibrium of  at the beam-column joint, in which Paxial is the

applied axial load. Finally, the bond-slip induced from the bending behavior, Δbending, is represented

by:

(15)

where λ = Paxial/Psl.

Since Eq. (15), however, includes an unknown variable γ(see Eq. (13)), the bond-slip is not

directly determined. This means that the introduction of a formula related to the bond-slip is

dΔx

dx
--------

dus

dx
-------

duc

dx
-------– εs εc–= =

d
2Δx

dx
2

-----------
dεx

dx
-------

dεc

dx
-------–

4Eb

Esds

---------- 1
1 α–

α 
2

2ηρ
---------- β α

d ′
d
-----–⎝ ⎠

⎛ ⎞+

---------------------------------------–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

Δx k1

2
1 γ–( )Δx= = =

η
Es

Ec

-----= ρ
NAs

bd
---------= β

N ′A ′s E ′s
NAsEs

---------------------= α
c

d
---=

d
2Δx

dx
2

----------- k2

2Δx– 0=

k2

2
k1

2
1 γ–( )

dΔ dx x 0=( )⁄ εs0= εc0– 0≅

εsl εcl– εsl d c–( )φl–=

Pcl
′ Psl′+ Psl Paxial+=

Δbending C4 h k2l( )cos
1 γ 1 λ+( )–( )εsy

k2 h k2l( )sin
-------------------------------------- h k2l( )cos

1 γ 1 λ+( )–( )εsy

k2 h k2l( )tan
-------------------------------------= = =

Fig. 13 Consideration of the equivalent stiffness
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required; a relation introduced by Gergely and Lutz (1973), being popularly used to determine the

allowable crack width of cracked RC structures, is adopted in this study:

(16)

where βc is the ratio of distances from the tension face and from the steel centroid to the neutral

axis, dc is the thickness of the concrete cover, and A is the concrete area surrounding one bar.

Because it can be assumed that crack width w is equivalent to two times the bond-slip at the

cracked location (0.5w = Δbending), the unknown variable γ can be determined from Eqs. (15) and (16)

with assumed βc, which has a recommended value of 1.2 in a beam without axial force. Then, the

neutral axis depth c is calculated from the relation of  in Eq.

(13). In advance, βc is recalculated and again compared with the assumed value, and these iterations

are repeated until the difference between βc assumed and calculated is less than the given tolerance.

Generally, the neutral axis depth c decreases with an increase of the bending moment acting on a

section. Nevertheless, a constant value of c determined on the basis of the yielding of reinforcing

steel at the beam-column joint (x = l) is assumed as a representative constant value along the entire

span length for the computational convenience, because the neutral axis depth maintains an almost

constant value from the initial cracking up to the yielding of reinforcing steel and the behavior of

the beam-column joint mainly affect the global behavior of the structures.

5. Calculation of equivalent stiffness

To account for the fixed-end rotation in this study, the reduced stiffness, EI, in the moment-

curvature relation for the elements located at the ends of the beam within the range of the plastic

hinge length Lp is used. Among the various empirical expressions have been proposed, in the case

of no axial load, the relatively simple equation of Lp= 0.25d+0.075z, proposed by Sawyer (1964),

can effectively be used, where d and z are the effective depth of a section and the distance from the

critical section to the point of contraflexure, respectively. However, since the plastic hinge length

increases in proportion to the applied axial load, it may be difficult to estimate the plastic hinge

length of an axially loaded member with only this simple equation. Accordingly, the plastic hinge

length of Lp= xh, proposed by Bayrak and Sheikh (1997), is introduced as an upper limit value,

where h is the section depth and x is an experimental parameter ranging from 0.9 to 1.0, and an

inequality condition of Lp ≤ d is designated in this paper for simplicity of analysis.

If a beam with rotational stiffness kθ at both ends is subjected to a horizontal force P, as shown in

Fig. 13(a), the corresponding horizontal drift Δ1 in which shear deformations are being neglected for

simplifying formulation can be obtained by

(17)

where the first term is the contribution by the bending deformation of the beam and the second term

by the end rotational stiffness kθ . This rotational stiffness can be determined on the basis of Δtotal

calculated by Δtotal = Δaxial+ Δbending.

, (18)

wmax 1.08βc fs dcA3 10
5–×  mm( )=

r 1 α–( ) α
2

2ηρ β α d ' d⁄–( )+⁄{ }⁄=

Δ1

PL
3

12EI
------------

PL
2

2kθ
---------+=

θfe

Δtotal

d c–
-----------= kθ

My

θfe y,

--------=
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where My is the moment and θfe,y is rigid body rotation at the beam-column joint when reinforcing

steels yield, respectively.

When the same force acts on a beam with reduced stiffness EIeq at both ends, as shown in  (b),

the horizontal deflection Δ2 can also be calculated by the moment area method.

(19)

From the equality condition of Δ1 ≡ Δ2, the equivalent stiffness EIeq can be determined by

(20)

where β = α(1 − 2α + 4/3α2), α = Lp/L.

The same derivation procedure for a cantilevered beam is applied and the equivalent stiffness EIeq
obtained in this case has the same form as Eq. (20) except the parameter β has the form of β = α(1 −

α + 1/3α2). The bending stiffness of elements located within the plastic hinge length Lp  from both

end faces of a member will be represented by EIeq instead of EI which is still used at the other

region. This means that the slope of moment-curvature relation is finally modified (see Fig. 14).

6. Solution algorithm

For the analysis of RC structures, Timoshenko beam theory was used in this study (Owen and

Hinton 1980). This theory is well established and widely used in the analysis of beams, and details

for the formulation of a beam element can be found elsewhere (Owen and Hinton 1980). In a

typical Timoshenko beam, it is usual to assume that normal to the neutral axis before deformation

remains straight, but this is not necessarily after deformation. In addition, the effects of shear

deformations are not taken into consideration in simulating nonlinear behavior since the normal

bending stresses reach a maximum at the extreme fibers, where the transverse shear stresses are at

their lowest value, and reach a minimum at mid-depth of the beam, where the transverse shear

stresses are highest. Thus, the interaction between transverse shear stresses and normal bending

stresses is relatively small and can be ignored. This means that the flexural rigidity EI is replaced

Δ2

P EIeqL2

3
2EIlp 4lp

2
6lpL2 3L2

3
+ +( )+{ }

12EIepEI
-------------------------------------------------------------------------------------=

1

EIeq

---------
1

β kθ L⋅ ⋅
-----------------=

1

EI
-----+

Fig. 14 Modification of monotonic envelope curve
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by that corresponding to the curvature calculated from the nodal displacements by φ = (θi− θj)/L,

whereas the shear rigidity of a beam element GA is assumed to be unchanged, where θi and θj

denote the rotational deformations at both end nodes, and L is the element length. Every nonlinear

analysis algorithm consists of four basic steps: formation of the current stiffness matrix, solution of

the equilibrium equations for the displacement increments, state determination of all elements in the

model, and a convergence check. Since the global stiffness matrix of the structure depends on the

displacement increments, the solution of equilibrium equations is typically accomplished with an

iterative method through the convergence check. The nonlinear solution scheme selected in this

study uses a tangent stiffness matrix at the beginning of each load step in combination with a

constant stiffness matrix during the subsequent correction phase; that is, the incremental-iterative

method.

All the remaining algorithms, from the construction of an element stiffness matrix to the iteration

at each load step, correspond with those used in a classical nonlinear analysis of RC structures.

More details can be found elsewhere (Ayoub and Filippou 1999, Chen 1982, Hayashi and Kokusho

1985, Monti, et al. 1997).

Table 1 Material and sectional properties used in application

SPECIMEN Ec (MPa) Es (MPa) fc (MPa) fy (MPa)  (Ast/bd)  (Asc/bd) P (kN)

BEAMR6 24,804 200,569 31 451 0.014 0.014 0

BEAMR4 22,785 200,569 30 451 0.014 0.007 0

BEAMS1 27,770 200,569 34 496 0.012 0.012 0

COLUMN1 23,975 200,569 26 496 0.012 0.012 178

COLUMN2 30,447 200,569 42 496 0.010 0.010 45

ρ ρ '

Fig. 15 Details of beam members (unit: cm)
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7. Numerical application

In order to establish the validity and applicability of the proposed moment-curvature relation,

correlation studies between analytical results and experimental studies are conducted. Among the

many experimental results available in the literature, five RC specimens are investigated and

discussed, as these specimens represent typical structural behaviors according to various effects such

as steel ratio, boundary condition, and application of axial force. These specimens are BEAMR6

and BEAMR4 experimented by Ma, et al. (1976), specimen 00.147 (BEAMS1) and 40.048

(COLUMN1) experimented by Wight and Sozen (1975), and specimen 1 (COLUMN2) experiment-

ed by Low and Moehle (1987). The material and sectional properties of each specimen are

summarized in Table 1.

The geometry and cross-sectional dimensions of the three beam members are presented in Fig. 15.

The first two specimens represent an isolated part of a girder near the exterior column connections,

and bending mechanism is largely responsible for the structural behavior. On the other hand, the last

specimen represent interior connection without hooked bar and the structural response of the this

specimen appears to be affected more by shear force than the other beam specimens because of its

Fig. 16 Load-deflection relation for beam members
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relatively small span to depth ratio. In these specimens, the plastic deformation is concentrated at

the end of a beam with narrow width, accompanying fixed-end rotation that occurs in addition to

elastic rotation at the cracking stage. To simulate more exact structural behavior with the beam

element formulated on the basis of the average deformation in an element, a separate consideration

of this region is required in the finite element modeling. This is necessary because the ultimate

capacity may be overestimated if the plastic hinge length is not precisely taken into consideration.

Since the calculated plastic hinge length Lp is determined as 20 cm for BEAMR6 and BEAMR4,

and 15 cm for BEAMS1, the specimens are modeled along the entire span with an element of

L = 10 cm except a right end element.

Fig. 16 compares the load deflection relations obtained by a layered section approach and the

proposed model with the experimental results of BEAMR6, BEAMR4 and BEAMS1. The layered

section approach gives very satisfactory predictions of the elastic behavior before initial cracking

and of the value of yielding moment itself, but the displacements corresponding to the yielding

moment are underestimated. This means that the layered section approach, which adopts a perfect

bond assumption, is limited in terms of describing the cracking behavior of RC beams that are

accompanied by a fixed-end rotation concentrated at the end of the beam. Larger differences from

the experimental data are also expected when a RC beam is subjected to severe dynamic loading,

such as seismic loads and wind loads because the slope of the subsequent inelastic unloading and

reloading curves will be overestimated. These results indirectly explain why the fixed-end rotation

Fig. 17 Details of column members (unit: cm)

Fig. 18 Load-deflection relation for column members
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effect must be considered.

In contrast, the introduced numerical model, which considers the fixed-end rotation effect

according to the aforementioned modification procedure, provides good agreement with experi-

mental results through the entire loading steps. The elastic stiffnesses before the initial cracking are

underestimated because the fixed-end rotation is taken into account by changing the average

bending stiffness EI without any further consideration of uncracked or cracked section states (see

Fig. 14). However, these differences at the elastic loading steps do not represent a remarkable

influence on the entire structural response ranging from initial cracking to large deformations after

yielding of steel. In spite of relatively accurate consideration of the fixed-end rotation effect in the

introduced numerical model, a slight difference between the analytical response and the experi-

mental data still exist, because the introduced numerical model does not reflect the stiffness

degradation caused by shear cracks accompanied with bending cracks. Nevertheless, the proposed

model can effectively be used in simulating the nonlinear response of RC beams.

The next two specimens, COLUMN1 and COLUMN2, are selected to demonstrate additional

effects by the axial load, and details of these specimens are presented in Fig. 17.

Since λ in Eq. (15) and βc in Eq. (16) represent the different values as the axial load acts

(λ =0.631, βc= 1.4 for COLUMN1, λ =0.484, βc= 1.24 for COLUMN2), Δbending calculated in Eq.

(15) will be changed, and RC columns show different slip behavior from that of RC beams. In

addition, the specimens are modeled along the entire span with an element of l = 5 cm on the basis

of the plastic hinge length, excluding a right end element.

The responses represented in Fig. 18 compare the load deflection relations obtained by the layered

section approach and the proposed model with the experimental results. The results of the present

study display very satisfactory agreement with the measured data. Meanwhile, the numerical results

not considering the axial force effect represent an underestimation of the stiffness and the ultimate

strength of RC columns. These differences will be enlarged as the magnitude of the axial load

increases. Finally, the proposed analytical method can also be effectively used to calculate the

nonlinear behavior of RC columns subject to axial load as well as RC beams without axial force.

8. Conclusions

This paper concentrates on the introduction of nonlinear analysis of RC beams and columns based

on simplified moment-curvature relations. Unlike most mathematical or mechanical models found in

the literature, the proposed model has taken into account fixed-end rotation caused by anchorage

slip at the fixed-end of a beam-column joint. Also, to consider axial force effect, the basic moment-

curvature relation of the section which is uniquely defined according to the dimensions of the

concrete section and the material properties of concrete and steel and axial force is modified. The

efficiency and reliability of the proposed model are demonstrated by comparison between

experimental data and numerical results. Additional consideration of the strength degradation under

cyclic loading beyond the yield strength should be required to estimate the exact damage level

undergone by a section after a certain number of cycles.

Correlation studies between analytical results and experimental values for the representative RC

beams and columns have yielded the following conclusions : (1) to accurately predict the structural

behavior of an RC beam-to-column sub-assemblage where the nonlinear response is concentrated, a

modification of the moment-curvature relation is strongly required to consider fixed end rotation
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caused by anchorage slip; (2) to effectively simulate axially loaded RC columns, additional

modification of the moment-curvature relation is strongly required; and finally (3) the proposed

model can be effectively used as an envelope curve in defining the hysteretic behavior of RC beams

and columns.
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