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Abstract. The compressive strength of concrete is a commonly used criterion in producing concrete.
However, the test on the compressive strength is complicated and time-consuming. More importantly,
since the test is usually performed 28 days after the placement of the concrete at the construction site, it
is too late to make improvements if unsatisfactory test results are incurred. Therefore, an accurate and
practical strength estimation method that can be used before the placement of concrete is highly desirable.
In this study, the estimation of the concrete strength is performed using support vector regression (SVR)
based on the mix proportion data from two ready-mixed concrete companies. The estimation performance
of the SVR is then compared with that of neural network (NN). The SVR method has been found to be
very efficient in estimation accuracy as well as computation time, and very practical in terms of training
rather than the explicit regression analyses and the NN techniques. 

Keywords: concrete strength; strength prediction; support vector regression (SVR); concrete mix propor-
tion data; kernel function.

1 Introduction

Concrete is one of the most widely-used materials in the construction industry. Traditionally,

concrete has been fabricated from several well-defined components: cement, water, fine, and coarse

aggregates, etc. In concrete mix design and quality control, the strength of concrete is a very
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important property. The strength parameters of concrete include compressive, tensile, flexural, shear,

bond strength, and so on, but most concrete elements are designed on the basis of the compressive

strength of the material.

The mix design of concrete targets its 28-day compressive strength which is based on a standard

uniaxial compression test and is accepted conventionally as a general index of concrete strength.

However, concrete testing procedures require special equipment and are time-consuming;

furthermore, experimental errors are inevitable. A typical test performed 28 days after concrete

placement may be too late to make improvements if the test results do not satisfy the required

criterion. Therefore, accurate and realistic strength estimation, which can be performed before the

placement of concrete, is highly desirable. 

For many years, researchers have proposed various methods for predicting concrete strength.

Conventional methods are generally based upon statistical analyses, in which many linear and

nonlinear regression equations have been constructed to model such prediction problems (Snell, et

al. 1989, Popovics 1998). However, those traditional models have been developed with a fixed

equation form based on a limited number of data and parameters. As an alternative, a standard

multi-layered feed-forward neural network with a back propagation algorithm (neural network, NN)

has been utilized to predict the compressive strength of concrete (Lee 2003, Kim, et al. 2004, Oztas,

et al. 2006, Ji and Lin 2006). Various types of data have been used as the input to the neural

network, e.g. mix proportions, temperature and humidity history, measurement data such as slump,

air content, concrete temperature, etc. NN has the advantage of being able to effectively consider

various inputs without using the explicit form of complicated equations as in conventional

regression analyses. Also, it can easily adapt new data to the prediction model through a re-training

process. However, NN also has its shortcomings, i.e., it requires much effort to determine the

network’s architecture and much computation time in training the network (Madan 2005). 

Recently, the support vector machine (SVM) has been applied to various pattern recognition

applications such as text classification and image recognition (Vapnik 1995, Ye, et al. 2005), and

has been extended to regression analysis (Mukherjee, et al. 1997, Muller, et al. 1997, Yu, et al.

2006, Zhang, et al. 2006). In this study, the support vector machine for regression (support vector

regression, SVR) is applied to predict concrete compressive strength. Training and test patterns for

the SVR are based on actual mix proportions of two ready-mixed concrete companies. To

investigate the performance of the SVR in estimation accuracy and computation time, the predicted

results by several SVRs with different kernel functions are compared with those of the NN with

various transfer functions.

2. Support vector machine

The foundations of Support Vector Machines (SVM) have been developed by Vapnik (1995). The

formulation is based on the Structural Risk Minimization (SRM) principle. The SVM is typically

used to describe classification problems with support vector methods, and this theory is extended to

the domain of regression problem. In this paper, Support Vector Regression (SVR) is used to predict

the compressive strengths of concrete. Linear and nonlinear SVR are briefly described in Sections

2.1 and 2.2, respectively. More details on the theory of the SVM are well described in the reference

by Vapnik (1995, 1999a).
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2.1. Linear support vector regression

Assume that a set of training data  is given. Here, n is the number of training

data, and xi and yi are the i
th input training pattern and corresponding target output respectively. 

The linear SVR finds a linear regression function as 

(1)

where · denotes the inner product, w and b are the parameters of the function, and x is the test

pattern in a normalized form. The structural risk minimization principle can be realized by

minimizing the empirical risk  defined as Eq. (2), and the empirical risk can be described

by the ε -insensitive loss function  defined as Eq. (3) (Stitson, et al. 1996). 

(2)

(3)

Lε is the ε -insensitive loss function, or the tolerance error between the target output (yi) and the

estimated output values ( ) in optimization process, and xi is a training pattern. The problem

of finding w and b to reduce the empirical risk with respect to an ε -insensitive loss function is

equivalent to the convex optimization problem that minimizes the margin (w) and slack variables

( ) as 

(4)

where the first term ( ) is the margin and is derived in Appendix A; the parameter C is a

positive constant. 

To solve the above optimization problem, one has to find a saddle point of the Lagrange function

described as

(5)
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(KKT) conditions 

(6a)

(6b)

(6c)

(6d)

where parameter w of Eq. (6a) is relevant to parameter w of Eq. (1). Then, substituting Eq. (6) into

the Lagrange function (5), the dual form of the optimization function maximizing with respect to

Lagrange multiplier , and  becomes

(7)

where  and  are Lagrange multipliers and are calculated by a standard quadratic programming

(QP) (Arora 1989, Bazaraa, et al. 1993), and  is the inner product of two training patterns xi
and xj. Finally, substituting Eq. (6a) into Eq. (1), the linear regression function can be expressed as 

(8)

where Lagrange multipliers are subject to constraints . The parameter vectors of the

regression function w and b are calculated as 

(9)

where xr and xs are any support vectors.
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2.2. Nonlinear support vector regression

Since most real world problems are complex, the linear SVR has limited application. As an

alternative, nonlinear SVR has been utilized. It is a simple combination of a mapping from the input

data to a higher dimensional feature space and the linear SVR algorithm. The input training pattern

xi is transformed into feature space (ϕ(xi)) by a nonlinear function (Aizerman, et al. 1964). Then,

the optimization algorithm is applied in the same way as the linear SVR. Accordingly, the SVR for

a nonlinear case is expressed as 

(10)

where w and b are the parameter vectors of the function and ϕ(x) is the mapping function from the

input features to a higher dimensional feature space. 

Fig. 1 shows the schematic diagram of the nonlinear SVR with the ε -insensitive loss function.

Solid points are the support vectors obtained from the training data, which have the largest margin

from the decision boundary. The plot on the right hand side shows the ε -insensitive loss function

which has an error tolerance ε, and the lower and upper bounds calculated by a slack variable

( ). 

Following the same procedures as in Section 2.1, the nonlinear SVR can be expressed as 

(11)

Inner product  in Eq. (11) requires complex computation in the feature space. Based

on the Mercer’s condition (Vapnik 1999b), this inner product can be replaced by a simple arithmetic

computation in input space using a kernel function . Therefore, Eq. (11) can

be rewritten as 
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 (12)

There are various kernel functions such as linear, polynomial, radial basis function, sigmoid kernel, etc.

In this study, the following four kernel functions are utilized. 

1. Linear kernel function: 

(13a)

2. Polynomial kernel function: 

(13b)

3. Gaussian Radial Basis function: 

 

(13c)

4. Exponential Gaussian Radial Basis function: 

(13d)

where xi and x are the training and test patterns, respectively, d is a dimension of the input vector,

and σ is a the global basis function width. Finally, the nonlinear SVR function is expressed as 

(14)

where

(15)

where xr and xs are any support vectors, SVs is the number of support vectors, and Lagrange

multipliers are subject to constraints . 

3. Estimation of concrete strength using SVR

3.1. Overview of estimation of concrete strength using SVR and NN
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mixed concrete suppliers base their own mix proportions on codes, experiments, and experience as well.

In this study, the SVR for estimating the concrete strength is applied using the actual mix proportion

data provided by two concrete companies. The material properties of concrete are shown in Table 1. 

Table 1 Material properties of concrete (Kim, et al. 2004)

Properties of material
Experiment data

Company A Company B

Specific gravity

Cement 3.14 3.15

Natural sand (s1) 2.59 2.58

Crushed sand (s2) 2.51 -

Coarse aggregate 2.64 2.63

Fineness modulus

Natural sand (s1) 3.30 2.70

Crushed sand (s2) 2.25 -

Coarse aggregate 6.53 6.60

Admixtures Air-entraining admixtures AE water-reducing (Standard)

Table 2 Samples of mix proportions of Company A for training

Specified 
strength 
(MPa)

Slump
(cm)

W/C 
weight
ratio
(%)

Fine 
aggregate 
percentage 

(%)

Unit water 
content
(kN/m3)

Unit 
cement 
content
(kN/m3) 

Unit fine aggregate 
content (kN/m3)

Unit coarse 
aggregate 
content
(kN/m3)

Admixture 
(%)Natural 

sand (s1)
 

Crushed 
sand (s2)

 

9.80  8 84.9 50.4 1.77 2.09 3.65 5.47 9.22 0.64

11.76 10 76.9 49.2 1.79 2.33 3.51 5.27 9.32 0.72

13.72 12 69.9 48.2 1.81 2.61 3.39 5.08 9.35 0.80

13.72 21 69.9 50.0 2.00 2.87 3.37 5.07 8.67 0.88

15.68 10 64.2 46.6 1.75 2.73 3.28 4.93 9.67 0.84

15.68 15 64.2 47.6 1.86 2.90 3.27 4.92 9.26 0.89

17.64  5 59.4 44.7 1.64 2.75 3.19 4.80 10.17 0.84

17.64 12 59.4 46.1 1.78 3.00 3.19 4.79 9.59 0.92

17.64 18 59.4 47.3 1.91 3.21 3.19 4.77 9.11 0.98

20.58 12 53.5 44.9 1.76 3.29 3.08 4.62 9.70 1.01

20.58 18 53.5 46.1 1.89 3.54 3.07 4.60 9.19 1.08

23.52  8 48.6 43.1 1.67 3.43 2.98 4.47 10.09 1.05

23.52 12 48.5 43.9 1.75 3.61 2.97 4.46 9.75 1.10

26.46 10 44.2 42.7 1.70 3.83 2.88 4.32 9.94 1.17

26.46 18 44.3 44.3 1.86 4.20 2.86 4.29 9.23 1.29

29.40 10 40.9 42.0 1.69 4.13 2.80 4.19 9.93 1.26

29.40 15 40.9 43.0 1.79 4.38 2.78 4.17 9.47 1.34

34.30 10 35.7 40.9 1.68 4.69 2.66 3.98 9.85 1.44

34.30 18 35.7 42.5 1.83 5.14 2.63 3.94 9.12 1.57

37.24 18 33.4 42.1 1.83 5.46 2.56 3.84 9.04 167

39.20 15 32.1 41.2 1.76 5.50 2.53 3.79 9.26 1.68
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In all mixtures, normal Portland cement is used. The maximum size of aggregates is 25 mm. The

range of compressive strengths in training patterns is defined from 9.8 to 39.2 MPa with a step size

of 0.98 Mpa (a total of 31 strengths). There are 7 independent samples with the slump values of 5,

8, 10, 12, 15, 18, and 21 cm in each group (strength). Therefore, companies A and B each have a

total of 217 input and output pairs as training and test patterns. Five out of the 7 samples are

randomly selected as training patterns, and the rest are used for testing, i.e., for each company, there

are 155 training patterns and 62 test patterns in all.

Eight (for Company B) and nine (for Company A) parameters e.g. water-cement ratio, fine

aggregate percentage, unit water content, unit cement content, unit fine aggregate content, unit

coarse aggregate content, admixtures, and slump, are used as the input set for SVR; while the

specified compressive strength is defined as the output to be estimated. Slump can also be used as

the output to be estimated, but in this study, only the compressive strength is used for this purpose.

A mixture of natural sand (s1) and crushed sand (s2) is used in Company A as fine aggregates, so

Company A has an additional parameter for fine aggregate content. Examples of the specified

concrete mix proportions of two companies for training are shown in Tables 2 and 3.

Fig. 2 shows the implementation procedures of SVR for strength estimation. First, all the input

data of training and test patterns, and output data (concrete strengths) are normalized to 0.1~0.9 to

Table 3 Samples of mix proportions of Company B for training

Specified 
Strength 
(MPa)

Slump
(cm)

W/C 
weight 
ratio
(%)

Fine 
aggregate 
percentage 

(%)

Unit 
water 
content
(kN/m3)

Unit 
cement 
content
(kN/m3)

Unit fine aggregate 
content (kN/m3)

Unit coarse 
aggregate 
content
(kN/m3)

Admixture 
(%)Natural 

sand (s1)
Crushed 
sand (s2)

9.80 8 82.0 54.8 1.69 2.07 10.19 - 8.58 1.06

11.76 10 73.8 53.1 1.71 2.33 9.75 - 8.77 1.19

13.72 12 66.3 51.4 1.72 2.58 9.32 - 8.97 1.32

13.72 21 66.9 50.6 1.86 2.80 8.89 - 8.84 1.43

15.68 10 63.0 50.9 1.68 2.66 9.23 - 9.08 1.36

15.68 15 63.0 50.4 1.76 2.79 8.98 - 9.01 1.43

17.64 5 59.0 50.5 1.59 2.71 9.25 - 9.25 1.39

17.64 12 59.0 49.8 1.71 2.91 8.90 - 9.14 1.49

17.64 18 58.0 49.2 1.80 3.09 8.59 - 9.05 1.58

20.58 12 53.0 48.6 1.70 3.22 8.57 - 9.24 1.65

20.58 18 53.0 48.0 1.78 3.39 8.29 - 9.15 1.73

23.52 8 49.0 48.2 1.62 3.32 8.56 - 9.37 1.70

23.52 12 49.0 47.8 1.69 3.46 8.35 - 9.29 1.77

26.46 10 45.0 47.3 1.65 3.65 8.23 - 9.35 1.86

26.46 18 45.0 46.5 1.77 3.92 7.84 - 9.19 2.00

29.4 10 42.0 46.6 1.64 3.92 8.02 - 9.37 2.00

29.4 15 42.0 46.1 1.72 4.12 7.76 - 9.25 2.10

34.3 10 37.0 45.7 1.63 4.40 7.69 - 9.32 2.25

34.3 18 37.0 44.9 1.75 4.74 7.29 - 9.11 2.42

37.24 18 34.7 44.4 1.75 5.08 7.09 - 9.05 2.59

39.20 15 33.0 44.4 1.71 5.14 7.11 - 9.08 2.62
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give an equal weighting factor before implementing the data (Steps 1 and 2). Then, training patterns

are transformed into feature space using the kernel function (K( · )) (Step 3). The mapped training

patterns and outputs are optimized by the quadratic programming, resulting in the Lagrange

multipliers α and α* (Step 4). After transforming the test patterns (Steps 5, 6 and 7), the normalized

concrete strengths are calculated by Eq. (14) (Step 8), and are recovered by the scaling factor used

in the data normalization stage (Step 9). An explanation of the step-by-step procedure of SVR

applied to a simple example is provided in Appendix B.

A problem regarding the choice of two parameters (C and ε) for SVR has been studied by several

researchers (Cherkassky and Mulier 1998, Cherkassky and Ma 2004). The parameter C controls the

smoothness or flatness of the approximation function. A large value of C indicates that the objective

is only to minimize the empirical risk, which makes the learning machine more complex. On the

other hand, a smaller C value may cause the errors to be excessively tolerated yielding a learning

machine with poor approximation (Yu, et al. 2006). In this paper, an SVR model is constructed with

C=10 and ε =0.004, following the empirical values by Yu, et al. (2006). 

In this study, the following are employed: Neural Network Toolbox in Matlab is utilized for

comparative studies; a standard multi-layered feed-forward neural network with a back propagation

algorithm is incorporated; the number of hidden layer is one; the number of neurons in the network

is 9-5-1 for Company A and 8-5-1 for Company B; and the learning rate is 0.95. Most common

combinations of transfer functions, the equations of which are given in Table 4, are utilized to

investigate the general performance of NN. More details on the theoretical background of NN are

described in the reference by Kim, et al.(2004).

Fig. 2 Implementation procedure of nonlinear SVR
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3.2. Estimation results by SVR and NN

To investigate the performance of the SVR in estimation accuracy and computation time, the

predicted results produced by several SVRs with different kernel functions described in Eq. (13)

(where d and σ values are assumed to be 2 for simple kernel functions) are compared with those by

Table 4 Transfer function and its equation used for NN

Transfer function Equation

Linear function (L) f(ν)=ν

Logistic function (LF)

Hyperbolic tangent function(HTF) f(ν)= a thanh(bv)

*Note: a and b are constants, and ν represents local field.

f ν( )
1

1 av–( )exp+
------------------------------=

Table 5 Error of estimation results of NN according to transfer function

Layer
Company A Company B

hidden output

HTF LF

HTF L

LF HTF

LF L

*HTF: Hyperbolic tangent function, LF: Logistic function, L: Linear function

χ
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NNs with various transfer functions. This is because NN also has an advantage of being able to

effectively consider various inputs without using complicated equations in predicting the concrete

strength, in contrast to conventional regression analyses. 

The estimated results along with the corresponding computation time of SVRs and NNs for the

two companies’ data are shown in the Tables 5 and 7. Here, estimation errors are defined by the

root mean square (RMS) errors as 

(16)

where N is the number of test patterns and f and f denote the actual and predicted concrete

strengths, respectively.

As for the estimation results by NN, the NN with Hyperbolic tangent function and Logistic

function shows the best results in Company A; and the NN using Logistic and Linear transfer

function shows the best results in Company B. The learning of NN is performed until the mean

e
1

N
---- f f –( )

2

i 1=

N

∑=

Table 6 Variation of MSE with training iteration of NN

Layer
Company A Company B

hidden output

HTF LF

HTF L

LF HTF

LF L

* HTF: Hyperbolic tangent function, LF: Logistic function, L: Linear function
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square error (MSE) no longer decreases. The maximum training epochs for Company A and B are

8000 and 3000, respectively. Table 6 shows the process of convergence of MSE for the two

companies. In all cases, SVRs show more accurate estimation capability than NNs. In this example,

the SVR with the polynomial kernel function shows the best results among the SVRs with four

kernel functions. For the cases of Company B, the estimation errors by SVRs are found to be

remarkably smaller than those by NNs. As for the computation time, SVRs take less time than NNs

in all cases. It takes a longer time for the cases of Company A than the cases of Company B since

the complexity of the prediction model is closely related to the number of inputs (wherein as

mentioned earlier, Company A has an additional input parameter in the fine aggregate content).

Though the computation time may increase with the maximum training epoch, the estimation

performance may not be satisfied. When the maximum training epoch for Company B is increased

to 8000, the estimation results are not improved much. 

The above results are represented by the following reason: SVR utilizes structural risk

minimization (SRM) principle which reduces an upper bound on the generalization error, while NN

employs traditional empirical risk minimization (ERM) which reduces the training error. In other

words, a global optimal solution can be found using SVR, while with NN there are none.

Furthermore, SVR is less complex than NN in choosing parameters. The values of the SVR

Table 7 Error of estimation results of SVR according to kernel function (σ=2)

Company A Company B

Linear

Polynomial

RBF

ERBF
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parameters (e.g. kernel function, the global basis function width σ, C, and ε) can be determined

easily (Cherkassky and Ma 2004, Yu et al. 2006). In NN however, results are defined by various

parameters (e.g. the number of hidden layers and neurons, the transfer function, iteration of training,

initial weight values), therefore requiring considerable efforts in order to construct a good NN

model.

5. Conclusions

This paper presents a promising support vector regression (SVR) technique for predicting the

compressive strength of concrete based on its mix proportion data. The performance of the proposed

method is verified by comparing the predicted strengths using the several SVRs with different

kernel functions with those by the neural networks (NNs) with various transfer functions. Both SVR

and NN methods show good estimation results. However, estimation results by SVRs produce

remarkably smaller estimation errors compared with those by NNs. Moreover, SVRs take lesser

time than NNs for computations in all cases. From these results, it can be concluded that the SVR

method can predict the compressive strength of concrete with higher estimation accuracy and in a

shorter computation time. 

It is expected that the present SVR method for predicting the concrete strength can contribute to

the maintenance of concrete quality for optimal mixtures. As the database containing influential

parameters on concrete strengths are well established over time, the SVR using the training data

obtained from this will become more effective and the resulting predictions more reliable.

Moreover, the SVR method can be utilized easily by field engineers since it does not require any

procedure to determine the explicit forms as in the regression analysis, or any knowledge on the

network’s architecture as in the NN techniques. 
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Appendix A

In the case of the SVM, the distance  of a point x from the hyperplane ( ) is 

(A.1)

The optimal hyperplane is given by maximizing the margin, M, subject to the constraint of

equation (A.2).

(A.2)

d w x,( ) w x b 0=+⋅

d w x,( )  w x⋅ b +

w w⋅
-----------------------=

yi w x b+⋅[ ] 1   ,≥ i 1 … n, ,=
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The margin is given by, 

(A.3)

where  (Gunn 1998).

Therefore, the optimization problem is one that minimizes

(A.4)

Appendix B

The step-by-step procedures for linear and nonlinear SVR are explained using a simple regression

problem. The only difference between linear and nonlinear SVR is that the latter uses the kernel

function. 

Problem definition

Find an SVR function same as  with two input parameters using the following

samples. 

The step-by-step procedure to find an SVR function

Step1: Prepare training patterns

Training patterns are shown in the problem definition. 

Step2: Normalize training samples 

Input and output data are normalized to have values between 0.1-0.9 using the following

equations. 

Input Output

X1 X2 Y

Training samples

0.1 0.3 1.1

0.2 0.5 1.9

0.4 0.1 1.1

0.5 0.6 2.8

Test sample 0.3 0.4 1.8

M d w x,( ) d w x,( )
x:y 1–={ }
lim

 w w b +⋅
w w⋅

------------------------
x:y 1={ }
lim

 w w b +⋅
w w⋅

------------------------
x:y 1–={ }
lim+=+

x:y 1={ }
lim= =

         
1

w w⋅
-----------  w x⋅ b +

x:y 1={ }
lim  w x⋅ b +

x:y 1–={ }
lim+( ) 2

w w⋅
-----------==

min min min min

min min

 w x⋅ b + 1=

Φ w( ) 1

2
--- w w⋅( )=

Y 2X1 3X2+=
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Step3: Transform training patterns into feature space 

For linear SVR, 

For nonlinear SVR using the following polynomial kernel function, 

Step4: Sovle QP problem

The object function for QP is described as 

(B.1)

where the Lagrange multiplier, 

.

In this example, γ and c are 8×1 column vectors; α* and α are 4×1 column vectors; K and H are
4×4 and 8×8 matrices, respectively; ε is a 4×1 column vector of constant values, 1×10−5; and LB,
and UB are 8×1 column vectors of constant values, 0 and 10, respectively.
Solving the QP problem, the Lagrange multiplier, γ, is obtained as follows (Arora 1989, Bazaraa

et al. 1993): 

For linear SVR, 

Input Output

X1 X2 Y

Training samples

0.10 0.42 0.10

0.30 0.74 0.48

0.70 0.10 0.10

0.90 0.90 0.90

Xi

Xi min
j

X i
th( )–

max
j

X i
jth( ) min

j
X i

jth( )–
-------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

0.8 0.1+    Y
Y min

j
Y i

th( )–

max
j

Y i
jth( ) min

j
Y i

jth( )–
-------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

0.8 0.1+×=,×=

K xi xj,( ) xi xj⋅

 0.19  0.34  0.11  0.47 

0.34  0.64  0.28  0.94

0.11  0.28  0.50  0.72

0.47  0.94  0.72  1.62

= =

K xi xj,( ) xi xj 1+⋅( )2
 1.41  1.80  1.24  2.16 

1.80  2.68  1.65  3.75

1.24  1.65  2.25  2.96

2.16  3.75  2.96  6.86

= =

min
γ

f r( ) 1

2
---γ

T
Hγ c

T
γ+=

LB γ UB≤ ≤

γ
α

*

α⎩ ⎭
⎨ ⎬
⎧ ⎫

; H K K–

K– K
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ε Y–

ε Y+
-----------

⎩ ⎭
⎨ ⎬
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,

      

For nonlinear SVR, 

Step 5: Prepare test pattern

A test pattern is shown in the problem definition. 

Step 6: Normalize test samples 

Input parameters of test data are also normalized to have a value between 0.1-0.9 following the

same transformation as described in Step 2. 

 

Step 7: Transform test patterns into feature space 

For linear SVR, 

For nonlinear SVR using the following polynomial kernel function, 

Step 8: Calculate test output

For linear SVR, 

where b calculated by Eq. (9) is −0.3176.

For nonlinear SVR using the following polynomial kernel function, 

Step 9: Recover actual output value 

Recover the actual output value of the normalized output using the following equation. 

α
*

 0<= 0 0 1.25  
T> α, <0.368= 0 0.882 0  

T>

β α
*

α < 0.368–=–= 0.882– 0 1.25  
T>

α
*

<0= 0.159 0 0.159  
T> α, <0.159= 0 0.159 0  

T>

β α
*

α < 0.159–=–= 0.159 0.159– 0.159  
T>

X1

test( )
X2

test( )
,[ ] 0.5  0.58[ ]=

K xi x
test( ),( ) xi x

test( )⋅ X1

test( )
 X2

test( )
[ ] X1 X2[ ]

T
= =

                  0.2936[=   0.5792  0.4080  0.9720]

K xi x
test( ),( ) xi x

test( )⋅ 1+( )
2

=

           0.2936 1+( )2  0.5792 1+( )2 0.4080 1+( )2  0.9720 1+( )2[ ]=

           1.67  2.49  1.98  3.89[ ]=

f x α
*
α, ,( ) αi

*
αi–( )K xi x

test( ),( ) b+

i 1=

n

∑=

        K xi x
test( ),( )β b 0.4294=+=

f x α
*
α, ,( ) αi

*
αi–( )K xi x

test( ),( )
i 1=

n

∑=

        K xi x
test( ),( )β 0.4336==
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For linear SVR, 

For nonlinear SVR using the following polynomial kernel function, 

The equation is Y=2X1+3X2 converted to  through data

normalization. Using the Lagrange multipliers for linear SVR obtained in Step 4, the parameter

vectors of the regression function w and b are calculated from Eq. (9) as 

It is noteworthy that the calculated linear SVR function is exactly the same as the normalized

equation. 
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