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1. Introduction 
 

It is well recognized that concrete mixtures can be 

designed to provide a wide range of mechanical and 

durability properties to meet the design requirements of a 

structure. For designers, compressive strength is one of the 

most important engineering properties of concrete. In most 

cases, compressive strength requirements for concrete are at 

an age of 28 days. However, testing of the compressive 

strength of concrete specimens is often costly and time 

consuming. For example, to determine the compressive 

strength of concrete, it is necessary to process a large 

amount of testing samples (at least fifteen) (Ramin et al. 

2014, Ali 2015). In order to provide the time for concrete 

form removal, re-shoring to slab, project scheduling and 

quality control, it is necessary to predict the concrete 

strength based upon the early strength data (Gholamreza et 

al. 2016, Mohammed et al. 2016, Ahmed et al. 2018).  

On the other hand, concrete compressive strength is 

affected by many factors, such as quality of raw materials, 

water cement ratio, ratio of fine aggregate to coarse 

aggregates, age of concrete, compaction of concrete, 

temperature, relative humidity and curing of concrete. That 

is, the concrete compressive strength is a quite nonlinear 
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function that changes depend on the materials used in the 

concrete and the time. Although many researchers have 

proposed various traditional methods for predicting the 

concrete compressive strength, however, such traditional 

prediction models have been developed with a fixed 

equation form based on the limited number of data and 

parameters. With such limitations, concrete compressive 

strength prediction calls for new innovative methods such 

as artificial neural networks (ANNs), neuro-fuzzy (NF) 

networks, etc. The greatest advantage of ANNs over 

traditional modeling techniques is their ability to capture 

non-linear and complex interaction between variables of the 

system without having to assume the form of the 

relationship between input and output variables. Therefore, 

ANNs have been successfully used in predicting concrete 

compressive strength recently (e.g., Ni and Wang 2000, Lee 

2003, Hola and Schabowica 2005, Bilgehan 2011, Khan et 

al. 2013, Faruqi et al. 2015, Nikoo et al. 2015, Chopra et al. 

2016). However, the main disadvantages of the ANNs 

approach is the large complexity of the network structure, 

as it represents the knowledge in terms of a weight matrix 

together with biases which are not accessible to user. Fuzzy 

modeling being one of the most competent artificial 

intelligence subsystem, can deal with complicated and ill-

defined systems in a flexible and consistent way (Bhoopal 

et al. 2012). Therefore, an adaptive neuro-fuzzy inference 

system (ANFIS) is developed for the prediction of concrete 

compressive strength in this study. The training of fuzzy 

system was performed by a hybrid method of gradient 
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descent method and least squares algorithm, and the 

subtractive clustering algorithm (SCA) was utilized for 

optimizing the number of fuzzy rules. In addition, we also 

compared the prediction performances of ANFIS, back-

propagation neural network model and a statistics model.  

 

 

2. Materials and method  
 

2.1 Adaptive neuro-fuzzy inference system (ANFIS) 
 

2.1.1 Structure of ANFIS 
The ANFIS is a fuzzy Sugeno model implemented in the 

framework of adaptive neural networks (Jang 1993). ANFIS 

combines both the neural network adaptive capabilities and 

the fuzzy logic qualitative approach and it is considered as a 

good universal approximation, predictor, interpolator and 

estimator (Djavareshkian and Esmaeili 2013). To briefly 

illustrate the ANFIS architecture, two fuzzy if-then rules 

based on Takagi-Sugeno-Kang type fuzzy model (Takagi 

and Sugeno 1985) are considered:  

Rule 1: If x is A1 and y is B1, then 1 1 1 1f p x q x r     

Rule 2: If x is A2 and y is B2, then 2 2 2 2f p x q x r    

where A1, A2, B1, and B2 are defined as membership 

functions for inputs x and y, respectively; p1, q1, r1, p2, q2, 

and r2 are the output function parameters. In the following, 

the five-layer ANFIS comprising two fuzzy rules is 

described as follows (Jang 1993): 

Layer 1: every node i in this layer is an adaptive node 

with a node function 
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adopt any fuzzy membership function (MF). In this study, 

the bell-shaped MFs defined below are used 
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where ai, bi, ci  are the premise parameters of the 

membership function, governing the bell-shaped functions 

accordingly.  

Layer 2: the outputs of this layer can be given by 

   2, 1,2
i ii i A BO w x y i      (3) 

where wi 
indicates the firing strength of a rule.  

Layer 3: every node in this layer computes the 

normalized firing strength as 

3,

1 2

1, 2i
i i

w
O w i

w w
  


 (4) 

where 
iw
 

is referred to as the normalized firing strengths.  

Layer 4: all nodes in this layer are adaptive. The output 

of each node is simply the product of normalized firing 

strength and a first-order polynomial 

 4,i i i i i i iO w f w p x q y r              (5)  

where pi, qi 
and ri 

are parameters of the consequent part of 

rule i.  

Layer 5: this layer has only one node, and the overall 

output of the model is given by 
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i ii
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w f
O w f

w
 





            (6)  

It can be observed that the ANFIS has two sets of 

adjustable parameters, namely the premise and consequent 

parameters. During the training process, the premise 

parameters in the first layer and the consequent parameters 

in the fourth layer are tuned until the desired response of the 

FIS is achieved. When the premise parameters are not fixed, 

the search space becomes larger and the convergence of the 

training becomes slower. A hybrid algorithm combining the 

least squares method and the gradient descent method is 

employed in this study to solve this problem. The least 

squares method is used to optimize the consequent 

parameters with the premise parameters fixed, while the 

gradient descent method is used to adjust optimally the 

premise parameters corresponding to the fuzzy sets in the 

input domain. When the premise parameter values of the 

MFs are fixed, the output of the ANFIS can be written as a 

linear combination of the consequent parameters 

     

     

1 1 1 1 1 1

2 2 2 2 2 2

f w x p w y q w r

w x p w y q w r

  

  
        (7)  

where p1, q1, r1 , p2, q2, and r2 are consequent parameters.  

 

2.1.2 Subtractive clustering algorithm (SCA) 
One of the important tasks to design a fuzzy system is to 

determine the number of rules. There are two approaches to 

generate initial fuzzy rules: manually and automatically. 

The manual approach forces designers to spend much time 

on tuning fuzzy rules. In many cases the expert’s 

knowledge is fault and may contain uncertainty, so that the 

manual approach is difficult to generate suitable rules. 

Subtractive clustering is a method that can be used to define 

MFs and to automatically generate rules. The subtractive 

clustering algorithm is based on a measure of the density of 

data points in which a data point with many neighboring 

points has the potential to be the cluster center.  

Considering a collection of n data points {x1,x2,…,xn} in 

an M dimensional space. Each data point is a candidate for 

cluster centers; a density measure at data point xi is defined 

as 

2
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(8) 

where ||·|| denotes the Euclidean distance, and ra 
is a 

positive constant representing a neighborhood radius. The 

potential of a data point to be a cluster center is when it has 

a high density value, which means that more data points are 

closer to it.  
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Let xc1 be the first cluster center and Dc1 the potential 

value. The potential value for each data point is defined as 

2
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(9) 

where rb 
is a positive constant that defines a neighborhood 

that has measurable reductions in density. The constant rb is 

normally larger than ra 
to prevent closely spaced cluster 

centers; generally rb is equal to 1.5 ra. After the density for 

each data point is recalculated, the next cluster center xc2 is 

selected and all of the densities for data points are 

recalculated again. This process is repeated until 

1ck cD D  (10) 

where Dck 
is the potential value of the k

th
 cluster center; ε is 

a small fraction and is an important factor that will affect 

the result. Chiu (1994) suggested ε=0.15. 

 

2.2 Back propagation (BP) neural network 
 

In artificial neural networks, BP neural network is one 

of the powerful tools for prediction of nonlinearities. It 

mainly consists of three layers: input layer, hidden layer, 

and output layer. The neighboring layers are fully 

interconnected by weights. That is, each neuron in the input 

layer is connected to all of the neurons in the first hidden 

layer. Each of the neurons in the first hidden layer is 

connected to each output neuron. Further, each of the 

neurons in the input layer is connected to each output 

neuron. 

 

2.3 Statistical analysis 
 

In this study, concrete compressive strength is 

considered to be the outcome of seven parameters i.e., 

cement (C), blast furnace slag (BFS), fly ash (F), water (W), 

superplasticizer (S), coarse aggregate (CA), and fine 

aggregate (FA). To generate multivariate relation based on 

the main data (425 datasets), the MS Excel was used and 

the obtained regression equation is  

95.66 0.1688 0.1441 0.1059

0.065 0.1107 0.0403 0.0537

cf C BFS F

W S CA FA

       

       
 (11) 

 

2.4 Performance evaluation 
 

To validate and compare the acquired results from the 

ANFIS, BP, and that of the statistical method (Eq. (11)), 

three statistical indexes are used, that is, root mean squared 

error (RMSE), mean absolute error (MAE) and coefficient of 

determination (R
2
) (Roshani et al. 2015, Zadeh et al. 2016). 
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Table 1 Statistics analysis of datasets (data from Yeh 1998) 

Variable Maximum Minimum Average 

Cement (kg/m3) 540 102 265.44 

Blast Furnace Slag (kg/m3) 359.4 0 86.29 

Fly Ash (kg/m3) 200.1 0 62.79 

Water (kg/m3) 247 121.8 183.06 

Superplasticizer (kg/m3) 32.2 0 6.99 

Coarse Aggregate (kg/m3) 1145 801 956.06 

Fine Aggregate (kg/m3) 992.6 594 764.38 

28-day CCS (MPa) 81.75 8.54 36.75 

 

 
Fig. 1 ANFIS model structure 
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where yi, ŷi 
and iy~  are the predicted, actual and averaged 

actual output of the network, respectively, and n is the total 

number of patterns. 

 

 

3. Case study 
 

3.1 Datasets 
 

In this study, the following seven factors, such as the 

cement, blast furnace slag, fly ash, water, superplasticizer, 

coarse aggregate, and fine aggregate were taken into 

account as the input parameters of the models of ANFIS, 

BP, and Eq. (11). The 28-day concrete compressive strength 

(CCS) is the output of ANFIS, BP, and Eq. (11). The 

database used in this study was taken from Yeh (1998) and 

the total number of datasets is 425. The first 340 of the total 

data were used to train the ANFIS model, whereas the 

remaining 85 of the data were used to verify the accuracy 

and the effectiveness of the trained ANFIS model (as shown 

in Table 1). 

 

3.2 Results and discussion 
 

The ANFIS model structure consists of 7 inputs, 16  
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Table 2 Different parameter types and their values used for 

training ANFIS 

ANFIS parameter type ANFIS (SCA) 

Number of fuzzy rules 16 

Number of nodes 266 

Number of linear parameters 128 

Number of nonlinear parameters 224 

Total number of parameters 352 

Number of training data pairs 340 

Number of checking data pairs 85 

 

 
Fig. 2 Membership functions of the cement 

 

 
Fig. 3 Membership functions of the blast furnace slag 
 

 
Fig. 4 Membership functions of the fly ash 

 

 

input membership functions (MFs), 16 output membership 

functions (MFs) and 1 output, as shown in Fig. 1. Different 

parameter types and their values used for training ANFIS 

are shown in Table 2. The final Gaussian-shaped MFs of the 

input parameters after training are shown in Figs. 2-8, 

respectively. 

Notice that all the inputs and outputs in Figs. 2-8 have 

exactly 16 MFs. The 16 MFs represent the 16 clusters that 

were identified by subcluster. By default, the first 

membership function (the red curve as shown in Figs. 2-8) 

would be selected in the membership function editor. For 

example, the parameters of the first membership function 

named in1cluster1 (the red curve as shown in Fig. 2) are 

[77.43 325], where 77.43 represents the spread coefficient 

of the Gaussian curve and 325 represents the center of the 

Gaussian curve. In1cluster1 captures the position and 

influence of the first cluster for the input variable cement. 

Similarly, the position and influence of other clusters for the  

 
Fig. 5 Membership functions of the water 

 

 
Fig. 6 Membership functions of the superplasticizer 

 

 
Fig. 7 Membership functions of the coarse aggregate 
 

 

Fig. 8 Membership functions of the fine aggregate 

 

 

input variables are captured by the other MFs. The 

parameters of the first membership functions in Figs. 3-8 

are [63.53 0.0], [35.36 0.0], [22.13 184], [5.692 0.0], [60.81 

1063], [70.46 783], respectively.  

In addition, there are 16 rules generated based on 

ANFIS modeling and they are listed as follows: 

1. If cement is in1cluster1, and blast furnace slag is  

in2cluster1, and fly ash is in3cluster1, and water is 

in4cluster1, and superplasticizer is in5cluster1, and 

coarse aggregate is in6cluster1, and fine aggregate is 

inin7cluster1, then out1 is out1cluster1 (1); 

2. If cement is in1cluster2, and blast furnace slag is  

in2cluster2, and fly ash is in3cluster2, and water is 

in4cluster2, and superplasticizer is in5cluster2, and 

coarse aggregate is in6cluster2, and fine aggregate is in 

in7cluster2, then out1 is out1cluster2 (1); 

3. If cement is in1cluster3, and blast furnace slag is  

in2cluster3, and fly ash is in3cluster3, and water is 

in4cluster3, and superplasticizer is in5cluster3, and 

coarse aggregate is in6cluster3, and fine aggregate is in 
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in7cluster3, then out1 is out1cluster3 (1); 

4. If cement is in1cluster4, and blast furnace slag is  
in2cluster4, and fly ash is in3cluster4, and water is 
in4cluster4, and superplasticizer is in5cluster4, and 
coarse aggregate is in6cluster4, and fine aggregate is in 
in7cluster4, then out1 is out1cluster4 (1); 
5. If cement is in1cluster5, and blast furnace slag is  

in2cluster5, and fly ash is in3cluster5, and water is 

in4cluster5, and superplasticizer is in5cluster5, and 

coarse aggregate is in6cluster5, and fine aggregate is in 

in7cluster5, then out1 is out1cluster5 (1); 

6. If cement is in1cluster6, and blast furnace slag is  

in2cluster6, and fly ash is in3cluster6, and water is 

in4cluster6, and superplasticizer is in5cluster6, and 

coarse aggregate is in6cluster6, and fine aggregate is in 

in7cluster6, then out1 is out1cluster6 (1); 

7. If cement is in1cluster7, and blast furnace slag is  

in2cluster7, and fly ash is in3cluster7, and water is 

in4cluster7, and superplasticizer is in5cluster7, and 

coarse aggregate is in6cluster7, and fine aggregate is in 

in7cluster7, then out1 is out1cluster7 (1); 

8. If cement is in1cluster8, and blast furnace slag is  

in2cluster8, and fly ash is in3cluster8, and water is 

in4cluster8, and superplasticizer is in5cluster8, and 

coarse aggregate is in6cluster8, and fine aggregate is in 

in7cluster8, then out1 is out1cluster8 (1); 

9. If cement is in1cluster9, and blast furnace slag is  

in2cluster9, and fly ash is in3cluster9, and water is 

in4cluster9, and superplasticizer is in5cluster9, and 

coarse aggregate is in6cluster9, and fine aggregate is in 

in7cluster9, then out1 is out1cluster9 (1); 

10. If cement is in1cluster10, and blast furnace slag  

is in2cluster10, and fly ash is in3cluster10, and water is 

in4cluster10, and superplasticizer is in5cluster10, and 

coarse aggregate is in6cluster10, and fine aggregate is in 

in7cluster10, then out1 is out1cluster10 (1); 

11. If cement is in1cluster11, and blast furnace slag  

is in2cluster11, and fly ash is in3cluster11, and water is 

in4cluster11, and superplasticizer is in5cluster11, and 

coarse aggregate is in6cluster11, and fine aggregate is in 

in7cluster11, then out1 is out1cluster11 (1); 

12. If cement is in1cluster12, and blast furnace slag  

is in2cluster12, and fly ash is in3cluster12, and water is 

in4cluster12, and superplasticizer is in5cluster12, and 

coarse aggregate is in6cluster12, and fine aggregate is in 

in7cluster12, then out1 is out1cluster12 (1); 

13. If cement is in1cluster13, and blast furnace slag  

is in2cluster13, and fly ash is in3cluster13, and water is 

in4cluster13, and superplasticizer is in5cluster13, and 

coarse aggregate is in6cluster13, and fine aggregate is in 

in7cluster13, then out1 is out1cluster13 (1); 

14. If cement is in1cluster14, and blast furnace slag  

is in2cluster14, and fly ash is in3cluster14, and water is 

in4cluster14, and superplasticizer is in5cluster14, and 

coarse aggregate is in6cluster14, and fine aggregate is in 

in7cluster14, then out1 is out1cluster14 (1); 

15. If cement is in1cluster15, and blast furnace slag  

is in2cluster15, and fly ash is in3cluster15, and water is 

in4cluster15, and superplasticizer is in5cluster15, and 

coarse aggregate is in6cluster15, and fine aggregate is in 

in7cluster15, then out1 is out1cluster15 (1); 

 

Fig. 9 Graphical illustration of fuzzy model application 

 

 
(a) Training samples 

 
(b) Testing samples 

Fig. 10 Comparison between the forecasted and 

experimental results 

 

 

16 If cement is in1cluster16, and blast furnace slag  

is in2cluster16, and fly ash is in3cluster16, and water is 

in4cluster16, and superplasticizer is in5cluster16, and 

coarse aggregate is in6cluster16, and fine aggregate is in 

in7cluster16, then out1 is out1cluster16 (1); 

The developed fuzzy model can provide a precise 

evaluation of concrete compressive strength once we enter 

proper input data. Fig. 9 shows a model application in 

MATLAB environment. When input parameters are 

cement=359 kg/m
3
, blast furnace slag=19 kg/m

3
, fly 

ash=141 kg/m
3
, water=154kg/m

3
, superplasticizer=10.9 

kg/m
3
, coarse aggregate=942 kg/m

3
, fine aggregate=801 

kg/m
3
, the 28-day CCS (Out 1) would be 61.206MPa (Fig. 

9). Since the model has the ability of interpolating input 

parameters, that is, if we take any value between the 

minimum and the maximum of the dataset, the proposed 

ANFIS model is capable of predicting the 28-day CCS.  

To evaluate the performance of the proposed ANFIS 

method, a comparison between the experimental results and 

the predictions by the BP model, the ANFIS model, and 

statistical method (Eq. (11)) are made and shown in Fig. 10 

and Table 3, respectively. It should be noted that it is very  
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Table 3 Performance comparison among different models 

Models 
MAE R2 RMSE 

Training Testing Training Testing Training Testing 

ANFIS 1.0616 1.3492 0.9939 0.9887 1.6607 1.8758 

BP 3.4499 2.6992 0.9341 0.9505 5.4396 3.9084 

Eq. (11) 5.4433 4.4901 0.8741 0.8989 7.3333 5.6335 

 

 

important to select the number of hidden layers and the 

number of neurons in various layers before using the BP 

neural network. The number of neurons in input and output 

layers is usually dictated by the nature of the problem. In 

this study, there are 7 parameters including the cement, 

blast furnace slag, fly ash, water, superplasticizer, coarse 

aggregate, and fine aggregate were taken into account as the 

input parameters, therefore, the number of neurons in input 

layers is 7. As mentioned, the main objective of this paper 

is to predict the 28-day CCS, so the number of neurons in 

output layer is 1 and one hidden layer BP neural network is 

adopted herein. For the number of neurons in hidden layer, 

the main strategy is to use as few hidden layer neurons as 

possible, because each unit adds to the loads on the CPU 

during simulations. If the network fails to converge to a 

solution, it means that more hidden neurons are required. If 

it does converge we might try for fewer hidden neurons. 

Based on this idea the number of hidden neurons were 

determined by trial and found suitable network with 10 

neurons in hidden layer. Thus, the structure of BP neural 

network is designed as 7-10-1. Many kinds of transfer 

functions have been proposed in literature and one of the 

most popular hidden layer transfer functions is the tangent 

sigmoid function, therefore, the tangent sigmoid transfer 

function is employed in the hidden layer herein. Because 

the pureline transfer function is sufficient for BP neural 

network to approximate almost any complex function, 

therefore, it is employed in the output layer in this study. 

As shown in Table 3, the performance of ANFIS model 

is superior to those of BP and statistics method (Eq. (11)). 

For example, the RMSE of ANFIS, BP and Eq. (11) for 

training and testing are 1.6607 and 1.8758, 5.4396 and 

3.9084, 7.3333 and 5.6335, respectively. The MAE of 

ANFIS, BP and Eq. (11) for training and testing are 1.0616 

and 1.3492, 3.4499 and 2.6992, 5.4433 and 4.4901, 

respectively. Whereas the R
2
 of ANFIS, BP and Eq. (11) for 

training and testing are 0.9939 and 0.9887, 0.9341 and 

0.9505, 0.8741 and 0.8989, respectively. Clearly, the 

smaller the RMSE and MAE values and the bigger the R
2
 

values, the better the prediction accuracy and vice versa. 

However, different from the BP model and statistics 

method, the ANFIS model has the fuzzy logic capabilities to 

interpret in terms of linguistic variables, while this 

capability lacks in the BP model and statistics method. 

These results indicate that the ANFIS is a valid tool to 

predict the concrete compressive strength.  

 

 

4. Conclusions 
 

In this study, the adaptive neuro-fuzzy inference system 

(ANFIS) is developed for the prediction of 28-day concrete 

compressive strength. The training of fuzzy system was 

performed by a hybrid method of gradient descent method 

and least squares method and the subtractive clustering 

algorithm was utilized for optimizing the number of fuzzy 

rules. In addition, we compared the prediction performances 

of ANFIS, BP model, and a statistics method. The results 

confirmed that the developed fuzzy model, ANFIS, can 

provide a precise evaluation of concrete compressive 

strength if proper input data are provided. Moreover, the 

ANFIS model has the ability of interpolating input 

parameters and the predictions can be made in various 

conditions. Therefore, ANFIS may be one of the most 

competent artificial intelligence subsystems to evaluate the 

concrete compressive strength.  
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