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1. Introduction 
 

Concrete which is a composite material is one of the 
most important construction materials. Compressive 
strength is a commonly used parameter for the assessment 
of concrete quality. Although destructive methods of 
compressive strength determination in which cube or 
cylindrical samples prepared from fresh concrete or core 
samples extracted from structural concrete members are the 
most accurate ways, they have their own shortcomings. 

Cube or cylindrical samples casted from fresh concrete 
may not be identical to in-situ concrete because of curing 
and placement differences. Coring process is time 
consuming, uneconomical and this process may damage the 
structural member (Neville 1993, Mehta and Monterio 
2006). Because of these disadvantages of destructive test 
methods, nondestructive test methods are also preferred. 
Schmidt hammer test in which surface hardness is indirectly 
measured is widely used for compressive strength 
estimation and it has the advantage of being economical, 
fast and non-destructive 

However this test only reflects the surface properties of 
concrete and it may not accurately estimate the internal 
strength (Mehta and Monterio 2006, Erdal and Simsek 
2006, Aydin and Saribiyik 2010). 
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Another popular nondestructive test method for the 

determination of compressive strength of concrete is the 
pulse velocity test. In this method the velocity of sound 
waves transmitted though the concrete specimen is 
measured. This velocity is dependent on the dynamic 
stiffness of the concrete (Kewalramani and Gupta 2006, 
Solis-Carcano and Moreno 2008, Mielentz 2008, Trtnik et 
al. 2009, Antonaci et al. 2010, Breysse 2012). 

Accurate prediction of concrete compressive strength is 
an important issue. Development of prediction models for 
this issue leads to saving time, costs, equipment and allow 
making a successful mixture. In this section a brief 
literature review about the use of statistical and machine 
learning techniques for facing this problem is aimed. 
Researchers firstly have employed classical regression 
techniques for this purpose (Galan 1967, Domone and 
Soutsos 1994, Yeh 1998). 

In addition to these popular non-destructive test 
methods, a relatively new technique called as Windsor 
probe penetration test is also utilized for the estimation of 
compressive strength. In this method, compressive strength 
is indirectly estimated using the penetration of a probe in to 
the concrete which is charged with explosives. Lesser the 
depth of penetration of the probe means the higher the 
compressive strength of concrete (Mehta and Monterio 
2006, Windsor Probe Test System Inc. 1994, Erdal 2002, 
Baykan et al. 2017). 

Many empirical equations (i.e., Single-variable, multi-
variable) based on regression technique in which the results 
of nondestructive tests are used, were developed for the 
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estimation of compressive strength of concrete. Users of 
nondestructive tests are facing with the problem of choosing 
the empirical equation which has the highest estimation 
performance (Ramyar and Kol 1996, Kheder 1998, Qasrawi 
2000, Erdal 2009). 

Empirical modeling using regression can have 
remarkable disadvantages. For performing regression 
analyses, the structure of the model should be pre-defined 
by a linear or nonlinear equation (Mousavi et al. 2010). To 
choose optimum equation form is a challenging task.  

Predicting a real value, which is known as regression, is 
one of the most common problem among the machine 
learning community. For this reason, machine learning 
algorithms are used to control response of a system for 
predicting a numeric or real-valued target feature. Many 
real-life problems can be solved as regression problems, 
and evaluated using machine learning approaches to 
develop predictive models (Tufekci 2014).  

Machine learning regression techniques are useful to 
develop predictive models but their use requires insight into 
the learning problem formulation, selection of appropriate 
learning methods, and evaluation of modeling results to 
achieve the stated goal of the modeling activity. This paper 
compares the predictive accuracy of twelve selected 
machine learning regression techniques using performance 
statics. The selected machine learning techniques are (i) 
Functions (i.e., Linear Regression, Simple Linear 
Regression, Multilayer Perceptron, Support Vector 
Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear 
NN Search, KStar, Locally Weighted Learning) (iii) Tree-
Based Learning Algorithms (i.e., Decision Stump, Model 
Trees Regression, Random Forest, Random Forest, Reduced 
Error Pruning Tree). Functions contain algorithms, which 
are based on the mathematical models. Lazy-learning 
algorithms delay dealing with training data until a query is 
answered. They store the training data in memory and find 
relevant data in the database to answer a particular query. 
Tree-based learning algorithms are used for making 
predictions via a tree structure. Leaves of the tree structures 
illustrate classifications and branches of the tree structures 
denote conjunctions of features. The detailed description of 
machine learning regression approaches and the study 
approach are presented in the following sections. 

Over the last years, machine learning has attracted much 
attention in academic fields for handling civil engineering 
problems. The machine learning techniques are powerful 
tools for prediction models with numerous applications 
including Artificial Neural Networks (ANNs), Support 
Vector Machines (SVMs), Linear Regression Analysis, and 
others. ANNs are the most widely used machine learning 
technique in order to address the prediction of concrete 
strength among them (Yeh 2007).   

Recent researches are performed for the usability of 
ANN in the civil engineering and especially for the concrete 
technology. Hola and Schabowicz (2005) utilized ANN’s 
for the determination of concrete compressive strength. 
They suggested that ANN has a good predictive capacity. 
Topcu and Saridemir (2008) used ANN and Fuzzy Logic for 
the determination of compressive strength of fly ash added 
concretes. Topcu and Saridemir (2008) concluded that both 
ANN and Fuzzy Logic methods have high predictive 

performance. Altun et al. (2008) used ANN and multiple 
linear regression techniques for the estimation of 
compressive strength of steel fiber reinforced concrete, their 
findings then multiple linear regression technique. Subasi 
(2009) developed on ANN for the estimation of mechanical 
properties of fly ash added cement paste and concluded that 
ANN has better performance than multiple linear regression 
technique. 

Atici (2011) applied multiple regression analysis and an 
ANN to predict the concrete compressive strength. The 
obtained results indicated that the ANN models performed 
better than multiple regression analysis models. Saridemir 
et al. (2009) proposed an ANN and fuzzy logic models for 
prediction of long-term effects of ground granulated blast 
furnace slag on concrete compressive strength under wet 
curing conditions. Rajasekaran and Amalraj (2002) and 
Rajasekaran et al. (2002) developed prediction models for 
the strength of concrete mixes using sequential learning 
neural network (SLNN). Rajasekaran and Lavanya (2007) 
employed wavelet neural network (WNN) method to assess 
the compressive strength. Sobhani et al. (2010) used 
regression model, ANNs, and adaptive fuzzy and neural 
systems to predict the compressive strength of slump-free 
concrete. Lee (2003) developed single and multiple ANN 
architectures for predicting of concrete strength, while Dias 
and Pooliyadda (2001) utilized back propagation NNs for 
predicting the strength and slump of concrete. 

Genetic programming (GP) is another branch of the 
machine learning methods. There have been some efforts 
aiming to apply GP to civil engineering issues. GPs have 
been utilized to derive simplified models for civil 
engineering problems. Mousavi et al. (2010) have recently 
derived prediction model for the compressive strength of 
concrete mixes using a combined algorithm of GP and 
orthogonal least squares (OLS), called GP/OLS. They 
formulated the compressive strength in terms of ratio of 
water and superplasticizer summation to binder, coarse to 
fine aggregate content and age of specimens. 

In the field of civil engineering, some authors have 
focused on hybridizing prediction techniques. Many of 
them have reported on hybrid techniques which are able to 
predict the compressive strength to a high degree of 
accuracy (Cheng 2012).  

Fazel Zarandi et al. (2008) proposed a fuzzy polynomial 
neural network (FPNN) that combined fuzzy neural 
networks (FNNs) and polynomial neural networks (PNNs) 
to predict the compressive strength, while Yeh and Lien 
(2009) applied a genetic operation tree (GOT), which 
combines an operation tree and a genetic algorithm to 
automatically produce self-organized equations for the 
prediction. Another research applied by Cheng and Wu 
(2009) was The Evolutionary Support Vector Machine 
Inference Model (ESIM), one hybridization technique, uses 
a fast messy Genetic Algorithm (fmGA) and SVM to search 
simultaneously for the best SVM parameters within an 
optimized legal model. Gupta et al. (2006) applied a neural-
fuzzy inference system for predicting the compressive 
strength. 

The rest of this article is organized into four additional 
sections. In Section 2, the experimental study is presented 
briefly; the Section 3 is devoted to methods; in the 4th  
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Table 1 Amount of materials used for fresh concrete 
production (1m³) 

Material Amount 

Crashed coarse aggregate (16-25 mm) 334 kg 

Crushed medium aggregate (4-16 mm) 632 kg 

Crushed fine aggregate (0-4 mm) 761 kg 

Cement (PC 42.5) 426 kg 

Tap water 190 lt 

 

Fig. 1 Compaction of concrete with vibrating screed 
 
 

Section findings are summarized. Lastly, the 5th section 
includes the conclusions and final assessments. 
 
 
2. Experimental studies 
 

Experimental studies consist of sample preparation, 
curing, application of nondestructive tests, coring, 
compressive strength determination by destructive tests 
stages. 

Table 1, presents the grain size distributions of 
aggregate, cement and tap water amount for 1 m³ fresh 
concrete. 

Concrete mix was prepared according to C 20 type 
concrete, slump of fresh concrete was about 20 cm, and the 
thickness of the concrete was 15 cm. Prior to concrete 
placement a polyethylene membrane was laid to the bottom 
surface in order to apply vacuum properly and to prevent 
fractures due to ground surface. After the placement of fresh 
concrete to formworks, compaction was achieved using a 
vibrating screed (Fig. 1). 

Soon after the compaction stage, vacuum sheet was 
placed to concrete surface. Duration of vacuum application 
was 34 min to first formwork, 17 min to second formwork. 
Vacuum was not applied to third formwork. 

After 28 day period, a total of 100 core samples having 
75 mm diameter were extracted according to ASTM C 42/C 
42M (1999) (Fig. 2). Length to diameter ratio of core 
samples was about 2. 

Compressive strength values of core samples were 
determined using a stress/or strain controlled compression 
machine according to ASTM C 39 (2001). Windsor probe 
penetration tests (ASTM C803, 1999) (Fig. 3), Schmidt 
hammer tests (ASTM C805, 1997) were performed directly 
on concrete slabs prior to coring. Whereas pulse velocity 
tests (ASTM C597, 1998) were performed on core samples. 
The test results are demonstrated in Table 2. 

Fig. 2 Extraction of core samples for testing 
 

Fig. 3 Penetrated probe 
 

Table 2 The compressive strength values of concrete 
determined by different methods 

Method 
Number 

of sample
Mean 

(N/mm2) 
Std. Dev. Min. Max.

Windsor probe 
penetration test

20 32.56 5.1656 23.73 38.93

Schmidt hammer 
test 

20 35.65 3.0515 29.90 43.10

Pulse velocity 
tests 

20 32.94 1.6757 30.31 35.80

 
 
3. Machine learning regression methods 
 

Machine learning (ML) regression algorithms predict an 
unknown dependency between the inputs and output from a 
dataset (Tufekci 2014). Table 3, shows a list of the ML 
regression methods, which are used in this study. Most of 
these regression methods have been commonly used for 
modeling many real-life regression problems. These 
methods are divided into three categories such as Functions, 
Lazy-learning Algorithms, and Tree-based Learning 
Algorithms, stated by The Waikato Environment for 
Knowledge Analysis (WEKA) platform. In this study 
version 3.7.11 of WEKA was used. All the machine learning 
regression algorithms are used with their default parameter 
settings, as defined in WEKA 3.7.11, to reduce the danger 
of over fitting due to excessive parameter tuning. Functions 
contain algorithms, which are based on the mathematical 
models. Lazy-learning algorithms hold-up handling with 
training data until a query is answered. These algorithms 
accumulate the training data in memory and find related 
data in the database to answer a particular query. Tree-based 
learning algorithms are used for making predictions via a  
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Table 3 Regression methods used in this study 

Categories Method Abbreviation 

Functions 

Linear Regression LR 

Simple Linear Regression SLR 

Multilayer Perceptron MLP 

Support Vector Regression SMOreg 

Lazy-learning 
algorithms 

IBk Linear NN Search IBk 

KStar K* 

Locally Weighted Learning LWL 

Tree-based 
learning 

algorithms 

DecisionStump DecisionStump

Model Trees Regression M5P 

RandomForest RandomForest 

RandomTree RandomTree 

Reduced Error Pruning Tree REPTree 

 
 

tree structure. Leaves of the tree structures exemplify 
classifications and branches of the tree structures indicate 
conjunctions of features. The brief summary of the 
methods, used in this study, are presented in Table 3. 
 

3.1 Linear Regression (LR) 
 

The LR presents a mathematical model of the 
relationship between a dependent variable and one or more 
independent variables. LR handles with the weighted 
instances to form a prediction model. If there is some linear 
dependency among the data, LR may create a best 
predictive model, which is a linear regression equation to 
predict the outputs (x) for a set of input attributes a1, 
a2,…,ak. In Eq. (1), w0, w1,…,wk, are the weights 
respectively of each input attribute, where w1 is the weight 
of a1 and a0 is always considered as the constant 1. An 
equation takes the form 

kk awawawwx  ...22110  (1)

The weights must be selected to minimize the difference 
between the actual and predicted output values. In Eq. (2), 
the predicted output value for the first instance of a training 
dataset is obtained as  





k

j
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0
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After the predicted outputs for all instances are obtained, 
the weights are reassigned so as to minimize the sum of 
squared differences between the actual and predicted 
outcome as in Eq. (3) (Witten and Frank 2005, Erdal 2013). 
So the aim of the weight update process is to minimize the 
sum of the squared differences between the observed output 
for the Ith

 training instances (X(i)) and the predicted outcome 
for that training instance calculated from the linear 
regression equation (Erdal 2013).  
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3.2 Simple Linear Regression (SLR) 

The SLR generates a regression model, which has 
lowest squared error as the final model among each 
parameter of the model. This model fits straight models 
between each input attribute (a1 and a0) and output (x) as in 
Eq. (4), in which the values of w and w0, which are the 
weight of a1 and a0, are predicted by the method of least 
squares. In Eq. (4), a0 is assumed as the constant 1. 

10 wawx   (4)

The predictive model is selected by minimizing the 
squared error, which is the difference between the actual 
values and the predicted values (Ekinci et al. 2011). 
 

3.3 Multi-Layer Perceptron (MLP) 
 

The MLP is a feed forward artificial neural network 
(ANN) model that consists of neurons with substantially 
weighted interconnections, where signals always travel to 
the direction of the output layer. These neurons are mapped 
as sets of input data onto a set of suitable outputs with 
hidden layers (Erdal et al. 2013). The input signals are sent 
by the input layer to the hidden layer without carrying out 
any operations. Then the hidden and output layers multiply 
the input signals by a set of weights, and either 
linearly/nonlinearly transforms results into output values. 
The connection between units in following layers has an 
associated weight. These weights are optimized to compute 
reasonable accuracy of prediction. A typical MLP with one 
hidden layer can be mathematically defined in Eqs. (5)-(9) 
as below (Haykin 1999, Erdal 2015): 

j

N

i
ijij aaXu

input

0
1

 


 (5)

Eq. (5) defines summing products of the inputs (Xi) and 
weight vectors (aij) and a bias term of hidden layer (a0j). In 
Eq. (6), the outputs of hidden layer (Zj) are obtained as 
transforming this sum, that is defined in Eq. (5), by using 
transfer function (activation function) g. 

)( jj ugZ   (6)

The most commonly used transfer function is sigmoid 
function, that is defined in Eq. (7) for input x. The hidden 
and output layers are based on this sigmoid function. 

)1(

1
)()(

xe
xsigmoidxg


  (7)

Eq. (8) defines summing products of hidden layer’s 
outputs (Zj) and weight vectors (bjk) and bias term of output 
layer (b0k). 

k

N

j
jkjk bbZv

hidden

0
1

 


 (8)

In Eq. (9), the outputs of the output layer (Yk) are 
obtained by transforming this sum, that is calculated in Eq. 
(8), using sigmoid function g, which is defined in Eq. (7) 
(Betrie 2013, Namli et al. 2016). 

)( kk vgY   (9)
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3.4 Support Vector Regression (SMOreg) 
 

The basic idea in Support Vector Regression (SMOreg) 
is to map the input data x into a higher dimensional feature 
space by nonlinear mapping to solve a linear regression 
problem in this feature space (Wang and Xu 2004). This 
transformation (mapping) can be done using a kernel 
function. The most common kernel functions are linear 
kernel, polynomial kernel, Gaussian (RBF) kernel, and 
sigmoid (MLP) kernel (Erdal and Karakurt 2013). In 
SMOreg method, the regression function is approximated 
by the following function (10) 





I

i
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1

)(  (10)

where  I

ii x 1)(   are the features of inputs,  I

iiw 1  and b 

are coefficients. The coefficients are predicted by 
minimizing the regularized risk function 
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where If |d−y|≥ε then Lε(d,y)=|d−y|−ε, otherwise Lε(d,y)=0
 and ε is a prescribed parameter (Ekinci et al. 2011, Yaprakli 

and Erdal 2015, Turkan et al. 2016). 
 

3.5 IBk Linear NN Search (IBk) 
 

The IBk instance-based learning that works as a k-
nearest-neighbor classifier, which is the most commonly 
used instance-based or lazy method for both classification 
and regression problems. In this paper, it is used for a 
regression problem. The main assumption behind this 
algorithm is that the closest instances to the query point 
have similar target values to the query. The algorithm 
normalizes attributes by default and can do distance 
weighting. A variety of different search algorithms are used 
to speed up the task of finding the nearest neighbors (Jiawei 
and Kamber 2001).  
 

3.6 KStar (K*) 
 

KStar method is also an instance-based classifier used 
for regression (Cleary and Trigg 1995). The KStar 
algorithm uses entropic measure, based on probability of 
transforming instance into another by randomly choosing 
between all possible transformations. Using entropy as 
appraise of distance has numerous utility. A consistency of 
approach in real, symbolic, missing value attributes makes 
it important. An instance based algorithm made for 
symbolic attributes fail in features of real value thus lacking 
in incorporated theoretical base. Approaches successful in 
feature of real values are thus in an ad-hoc fashion are made 
to handle symbolic attributes. Handling of missing values 
by classifiers poses a similar problem. Usually missing 
values treated as a separate value, thought as maximally 
different, substitute for average value, otherwise simply 
ignore them. Entropy based classifier is a solution for these 
issues (Painuli 2014). 
 

3.7 Locally Weighted Learning (LWL) 
 

The LWL uses an instance-based algorithm, assigns 
instance weights. This algorithm can perform both 
classification and regression (Jiawei and Kamber 2001). In 
this paper, it is used for a regression problem. The basic 
idea of the LWL is that any non-linearity can be 
approximated by a linear model, if the output surface is 
smooth. Therefore, instead of looking for a complex global 
model, it is easy to approximate non-linear functions by 
using simple local models (Arif et al. 2001). 

 
3.8 DecisionStump 

 
DecisionStump, constructs one-level binary decision 

trees for datasets with a categorical or numeric class, 
handling with missing values by treating them as a separate 
value and extending a third branch from the stump (Erdal 
and Karahanoglu 2016). It makes (1) regression based on 
mean-squared errors or (2) classification based on entropy 
depending on the data type to be predicted (Csépe et al. 
2014). It also finds a single attribute that provides the best 
discrimination between the classes and then bases future 
predictions on this attribute (Iba 1992).   
 

3.9 Model Trees Regression (M5P) 
 

The M5P is a regression-based decision tree algorithm, 
which constructs a model tree using the M5 algorithm. For 
a given instance, the tree is traversed from top to bottom 
until a leaf node is reached. At each node in the tree, a 
decision is taken to follow a particular branch based on a 
test condition on the attribute associated with that node 
(Erdal 2013). Because each leaf nodes contains a linear 
regression model to obtain the predicted output, the tree is 
called a model tree (Wang and Witten 1997). An M5 tree is 
formed using a divide-and-conquer method. At each interior 
node, a test condition is selected that splits the instances 
into subsets based on the test outcome. An M5 tree can be 
complex. To simplify the tree without losing its basic 
functionality, it may be pruned. Starting from the bottom of 
the tree, the error is calculated for the linear model at each 
node. If the error is less than the model subtree owned by 
the node, then the subtree for this node is pruned. The major 
advantage of M5P over regression trees is that M5P are 
much smaller than regression trees, the decision strength is 
clear, and the regression functions do not normally involve 
many variables (Ekinci et al. 2011). 
 

3.10 RandomForest 
 

RandomForest built random forests by bagging 
ensembles of random trees (Erdal and Karahanoglu 2016). 
Namely, It build several individual classification trees using 
random samples of the data (i.e., bagging) and then vote for 
the most popular class (Breiman 2001). It is a hybrid of the 
Bagging algorithm and the random subspace method, and 
uses decision trees as the base classifier. 
 

3.11 RandomTree 
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Table 4 Procedures considered estimating internal validity 
of predictive models 

Evaluation 
Procedure 

% Method 
Training 
sample 

Test sample 
Estimated 

performance
Repetitions

CV5 20% 
k-fold 
cross 

validation

80% of 
original 

Independent 
20% of 
original 

Test 5 

CV10 10% 
k-fold 
cross 

validation

90% of 
original 

Independent 
10% of 
original 

Test 10 

SS10 10% 
Split 

sample 
validation

90% of 
original 

Independent 
10% of 
original 

Average 
(test) 

1 

SS20 20% 
Split 

sample 
validation

80% of 
original 

Independent 
20% of 
original 

Average 
(test) 

1 

 
 

RandomTree is also known isa regression-based 
decision tree algo-rithm. Trees that are built by RTree 
consider Krandomly selected attributes at each node 
(without pruning). Furthermore, it has an option to allow 
estimation of class probabilities (or target mean inthe 
regression case) based on a hold-out set (backfitting) (Erdal 
and Karahanoglu 2016). 
 

3.12 Reduced Error Pruning Tree (REPTree) 
 

The REPTree algorithm generates a regression tree 
using the node statistics such as information gain or 
variance reduction measured in the top-down phase, and 
prunes it using reduced-error pruning (Portnoy and Koenker 
1997). Optimized for speed, it only sorts values for numeric 
attributes once and it handles with missing values by 
splitting instances into small pieces. One can set the 
minimum number of instances per each leaf, maximum tree 
depth, minimum proportion of training set variance for a 
split (numeric classes only), and number of folds for 
pruning (Erdal and Karahanoglu 2016).  
 
 
4. Results and discussion 
 

4.1 Evaluation process 
 

Four evaluation processes (10-fold cross validation, 5-
fold cross validation, 10% split sample validation & 20% 
split sample validation) were used to examine the predictive 
models. A common way to measure the predictive 
performance on a test set is by means of a “split sample”, in 
which a subsample of the observation data is withheld from 
training and used to measure the accuracy of prediction. In 
k-fold cross-validation, the data are divided into k subsets of 
equal size. The regression technique is then applied k times, 
each time leaving out one of the subsets and using that 
subset to compute the prediction accuracy. Predictive 
performance is quantified by calculating model evaluation 
measures on the predicted values for cross-validation. Four 
internal validation procedures were evaluated estimate test 
performance more accurately (Table 4). Split-sample 
methods were referred to as the split-10% and split 20% 
methods, where 10% or 20% of the sample were kept as an 

independent evaluation part for the proposed regression 
models that were estimated on 90% or 80% of the sample, 
respectively. The split was made once and at random. 
Cross-validation was performed with 10% or 20% of the 
data consecutively serving as a test part. Models were 
estimated on one part of the data (90% or 80%, 
respectively) and tested on the independent part. The 
average performance was calculated over 10 or 5 
repetitions, respectively. 
 

4.2 Performance statistics  
 

Twelve machine learning models proposed in this study 
were evaluated by using the five performance statistics (i.e., 
coefficient of determination (R2), mean absolute error 
(MAE), root mean squared error (RMSE), relative absolute 
error (RAE) and root relative squared error (RRSE)) were 
calculated to investigate the statistical relation between 
original data and predicted data with highest preference for 
MAE, RMSE, RAE and RRSE closest to zero, whereas for 
R2 closest to unity (Aydogmus et al. 2015, Aydogmus et al. 
2015, Demirdogen et al. 2017). 

Coefficient of determination (R2) 
2

2222

2

)()()()(

))((.




















  

yyyy

yyyyn
R  (12)

where y=actual value; y′=predicted value; and n=number of 
data samples. 

Root mean squared error (RMSE) 

n

yy
RMSE  


2)(  (13)

Mean absolute error (MAE): 
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4.3 Empirical results 
 
The results of twelve machine learning models are 

summarized in Tables 5-9. A goodness-of-fit indicator as R2 

can be a good complement on the predictive performance 
measures and can provide important information for end-
users more interested in showing the relationships present in 
the data, rather than developing good machine learning  
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models. The R2 static is summarized for each model in 
Table 5. In our study we attempt to simulate a naive user of 
machine learning who is not an expert in machine learning 
algorithms and does not know which parameters to tune to 
improve results. We believe that this is a more realistic 
scenario than those considered in other papers (and it also 
counteracts overfitting to the dataset at hand). 

 

 

 
 

The performance of all eleven predictors except 
Decisionstump is relatively close, with the R2 values 
ranging between 0.9088 and 0.8530.The best performance 
based on R2, is obtained by the MLP and KStar, followed 
LR and M5P with same accuracy, respectively. REPTree, 
RandomTree and DecisionStump are scoring worse for this 
indicator. Clearly, the decision stump model yields the  

Table 5 R2 statics of predictive models 

Machine learning Model 
R2 descriptive statistics 

CV5 CV10 SS10 SS20 mean std dev var 

Functions 

LR 0.9029 0.9065 0.8123 0.9019 0.8809 0.0458 0.0016

SLR 0.8810 0.8783 0.7218 0.8896 0.8427 0.0807 0.0049
MLP 0.9082 0.9021 0.8688 0.9088 0.8970 0.0190 0.0003

SMOreg 0.9044 0.9054 0.8709 0.8974 0.8945 0.0162 0.0002

Lazy-learning 
algorithms 

IBk 0.8957 0.8976 0.8482 0.8701 0.8779 0.0234 0.0004
KStar 0.9069 0.9027 0.8030 0.8860 0.8747 0.0486 0.0018

LWL 0.8823 0.8774 0.6249 0.6838 0.7671 0.1324 0.0132

Tree-based learning 
algorithms 

DecisionStump 0.6244 0.6103 0.3588 0.6921 0.5714 0.1461 0.0160
M5P 0.9029 0.9065 0.8879 0.9019 0.8998 0.0082 0.0000

RandomForest 0.8987 0.8847 0.8310 0.8972 0.8779 0.0319 0.0008
RandomTree 0.8530 0.8048 0.7903 0.8414 0.8224 0.0297 0.0007

REPTree 0.8523 0.8543 0.7665 0.8352 0.8271 0.0413 0.0013

Table 6 MAE statics of predictive models 

Machine 
learning 

Model 
MAE descriptive statistics 

CV5 CV10 SS10 SS20 mean std dev var 

Functions 

LR 0.5262 0.5083 0.6907 0.5219 0.5618 0.0863 0.0056 

SLR 0.5700 0.5767 0.8872 0.5651 0.6498 0.1584 0.0188 
MLP 0.5059 0.5124 0.5811 0.5152 0.5287 0.0352 0.0009 

SMOreg 0.5404 0.5313 1.1949 0.8415 0.7770 0.3137 0.0738 

Lazy-learning 
algorithms 

IBk 0.5312 0.5233 1.0840 0.7535 0.7230 0.2633 0.0520 
KStar 0.5451 0.5497 0.7702 0.6095 0.6186 0.1052 0.0083 

LWL 0.5906 0.5908 0.9906 0.8641 0.7590 0.2011 0.0303 

Tree-based 
learning algorithms 

DecisionStump 1.0136 1.0438 1.3805 0.9577 1.0989 0.1911 0.0274 

M5P 0.5262 0.5083 0.6242 0.5219 0.5452 0.0532 0.0021 
RandomForest 0.5599 0.5983 0.8744 0.5555 0.6470 0.1528 0.0175 

RandomTree 0.6379 0.7333 0.7617 0.7075 0.7101 0.0530 0.0021 
REPTree 0.6252 0.6461 0.8518 0.7152 0.7096 0.1023 0.0079 

Table 7 RMSE statics of predictive models 

Machine 
learning 

Model 
RMSE descriptive statistics 

CV5 CV10 SS10 SS20 mean std dev var 

Functions 

LR 0.6695 0.6571 0.9673 0.7075 0.7504 0.1462 0.0160 
SLR 0.7410 0.7496 1.1833 0.7342 0.8520 0.2209 0.0366 
MLP 0.6513 0.6723 0.7953 0.6808 0.6999 0.0648 0.0031 

SMOreg 0.6918 0.6830 1.4038 1.0455 0.9560 0.3430 0.0882 

Lazy-learning 
algorithms 

IBk 0.7073 0.6957 1.4056 1.0152 0.9560 0.3343 0.0838 
KStar 0.7051 0.7184 1.0362 0.8048 0.8161 0.1532 0.0176 
LWL 0.7368 0.7523 1.3422 1.2398 1.0178 0.3183 0.0760 

Tree-based 
learning 

algorithms 

DecisionStump 1.3192 1.3470 1.7794 1.2682 1.4285 0.2362 0.0419 
M5P 0.6695 0.6571 0.8210 0.7075 0.7138 0.0746 0.0042 

RandomForest 0.6846 0.7303 1.1454 0.7137 0.8185 0.2188 0.0359 
RandomTree 0.8354 0.9629 1.0189 0.9102 0.9319 0.0781 0.0046 

REPTree 0.8308 0.8208 1.0907 0.9230 0.9163 0.1250 0.0117 
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Table 10 Best evaluation processes 

Machine 
learning 

Model R2 MAE RMSE RAE RRSE

Functions 

LR CV10 CV10 CV10 CV10 CV10
SLR SS20 SS20 SS20 SS20 SS20
MLP SS20 CV5 CV5 CV5 SS20

SMOreg CV10 CV10 CV10 CV10 CV10

Lazy-
learning 

algorithms 

IBk CV10 CV10 CV10 CV10 CV10
KStar CV5 CV5 CV5 CV5 CV5
LWL CV5 CV5 CV5 CV5 CV5

Tree-based 
learning 

algorithms 

DecisionStump SS20 SS20 SS20 SS20 SS20
M5P CV10 CV10 CV10 CV10 CV10

RandomForest CV5 SS20 CV5 SS20 SS20
RandomTree CV5 CV5 CV5 CV5 CV5

REPTree CV10 CV5 CV10 CV5 CV10

 
 

worst accuracy. This is expected because it only uses one 
attribute in the data for prediction.As measures for 
accuracy, MAE, RMSE, RAE and RRSE are calculated of 
every regression methods. 

To check the validity of the comparisons between the 
regression models, MAE, RMSE, RAE and RRSE were 
also calculated. The obtained results were almost identical 

 

 
 

to R2 results. Tables 6-9, demonstrated that MLP, LR and 
M5P produce the lowest MAE, RMSE, RAE and RRSE, 
respectively.  

Four evaluation processes (10-fold cross validation, 5-
fold cross validation, 10% split sample validation & 20% 
split sample validation) were used to evaluate the predictive 
models. Table 10, summarized the best evaluation process 
according to performance statics. The best results of LR, 
SLR, SMOreg, IBk, KStar, LWL, DecisionStump, M5P and 
RandomTree are obtained by using same evaluation 
process, individually. On the other hand, MLP, 
RandomForest and REPTree yields the best results of 
performance statics using different evaluation processes. 

The accuracy of the proposed machine learning models 
is assessed graphically with box-plots. Box plots are useful 
for identifying outliers and for comparing distributions. In a 
prediction problem, the distribution of the actual and 
predicted values demonstates the prediction performance of 
the utilized methods. So, the actual and predicted strength 
distributions of the models are depicted with box plots 
presented in Figs. 4-7. The boxes indicate the interquartile 
ranges (5th and 95th percentile of actual and predicted 
data), dots indicate values outside the range and the 
horizontal line within each boxes indicate the median 
values.  

Table 8 RAE statics of predictive models 

Machine 
learning 

Model 
RAE (%) descriptive statistics 

CV5 CV10 SS10 SS20 mean std dev var 

Functions 

LR 28.20% 27.26% 36.60% 27.63% 29.92% 4.47% 0.15%
SLR 30.54% 30.93% 47.02% 29.92% 34.60% 8.29% 0.52%

MLP 27.11% 27.48% 30.79% 27.27% 28.16% 1.76% 0.02%
SMOreg 28.96% 28.49% 63.32% 44.55% 41.33% 16.45% 2.03%

Lazy-learning 
algorithms 

IBk 28.47% 28.06% 57.44% 39.89% 38.47% 13.79% 1.43%

KStar 29.21% 29.48% 40.81% 32.27% 32.94% 5.43% 0.22%
LWL 31.65% 31.67% 52.50% 45.74% 40.39% 10.45% 0.82%

Tree-based 
learning 

algorithms 

DecisionStump 54.32% 55.98% 73.16% 50.70% 58.54% 9.99% 0.75%
M5P 28.20% 27.30% 33.08% 27.63% 29.05% 2.71% 0.06%

RandomForest 30.01% 32.09% 46.34% 29.41% 34.46% 8.00% 0.48%
RandomTree 34.19% 39.33% 40.36% 37.45% 37.83% 2.71% 0.06%

REPTree 33.51% 34.65% 45.14% 37.86% 37.79% 5.23% 0.21%

Table 9 RRSE statics of predictive models 

Machine 
learning 

Model 
RRSE (%) descriptive statistics 

CV5 CV10 SS10 SS20 mean std dev var 

Functions 

LR 31.00% 30.39% 44.29% 31.21% 34.22% 6.72% 0.34%

SLR 34.31% 34.67% 54.18% 32.38% 38.89% 10.24% 0.79%
MLP 30.16% 31.10% 36.41% 30.03% 31.92% 3.03% 0.07%

SMOreg 32.03% 31.59% 64.27% 46.11% 43.50% 15.40% 1.78%

Lazy-learning 
algorithms 

IBk 32.75% 32.18% 64.36% 44.77% 43.51% 15.06% 1.70%

KStar 32.65% 33.23% 47.44% 35.50% 37.20% 6.94% 0.36%
LWL 34.12% 34.79% 61.45% 54.68% 46.26% 13.91% 1.45%

Tree-based 
learning 

algorithms 

DecisionStump 61.08% 62.30% 81.47% 55.93% 65.20% 11.19% 0.94%

M5P 31.00% 30.39% 37.59% 31.21% 32.55% 3.38% 0.09%
RandomForest 31.70% 33.78% 52.44% 31.48% 37.35% 10.12% 0.77%

RandomTree 38.68% 44.54% 46.65% 40.14% 42.50% 3.72% 0.10%
REPTree 38.47% 37.96% 49.94% 40.71% 41.77% 5.57% 0.23%
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Fig. 4 Box plots of actual strength  and predicted strength
distributions of the predictive models for 5-fold cross 
validation evaluation process 

 

Fig. 5 Box plots of actual strength and predicted strength
distributions of the predictive models for 10-fold cross 
validation evaluation process 
 

Fig. 6 Box plots of actual strength and predicted strength
distributions of the predictive models for 10% split sample
validation evaluation process 
 

Fig. 7 Box plots of actual strength and predicted strength 
distributions of the predictive models for 20% split sample 
validation evaluation process 
 
 
5. Conclusions 
 

In literature, there are many previously suggested single 
and multi variable equations used for the prediction of 
compressive strength of concrete utilizing nondestructive 
test results. 

In this paper, machine learning techniques have been 
explored to develop models that predict the compressive 
strength of concrete using experimental data.  

To the best our knowledge, it is the first so 
comprehensive comparative study that handles the concrete 
compressive strength prediction problem via twelve 
different algorithms. 

In this study, twelve artificial intelligence (AI) models 
compared for predicting the concrete compressive strength. 
These models can be divided into three categories (i) 
Functions (i.e., Linear Regression, Simple Linear 
Regression, Multilayer Perceptron, Support Vector 
Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear 
NN Search, KStar, Locally Weighted Learning) (iii) Tree-
Based Learning Algorithms (i.e., Decision Stump, Model 
Trees Regression, Random Forest, Random Tree, Reduced 
Error Pruning Tree).  

Four evaluation processes 4 validation implements (i.e., 
10-fold cross validation, 5-fold cross validation, 10% split 
sample validation & 20% split sample validation) are used 
to examine the predictive models. 

The study shows that the methods are quite successful in 
the prediction of the compressive strength of concrete and 
the predicted values are very close to the real 
measurements. 

 Clearly, the multilayer perceptron model was found to 
be the best and the decision stump technique was found to 
be the poorest performing predictive model.  

It’s obtained that prediction success of multilayer 
perceptron has been found more satisfactory than the 
other’s. It is concluded that the multilayer perceptron can be 
used effectively as an alternative method by researchers and 
the investors for predicting the compressive strength of 
concrete. 

While there are many pros and cons of each approach, 

415



 
Hamit Erdal, Mürsel Erdal, Osman Şimşek and Halil İbrahim Erdal 

 

here we only deal with the accuracy aspect through an 
experimental study. The other considerations, though very 
important, are outside the scope of this research.  
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