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1. Introduction 
 

Fiber-reinforced composites are extensively used in 

various fields of modern engineering due to their particular 

structural advantages. Comprehensive understanding of the 

mechanical behavior of composite plate is crucial to assure 

the integrity of these structures during their service life. A 

reasonable number of studies have been conducted on 

predicting optimum laminate configurations for enhancing 

the load capacity of composite structures. Stability study is 

important in engineering practice. Due to significance of 

buckling and stability, there are so many researchers around 

the world who are working on different structures such as 

beams, shells and plates under various loading 

combinations (Lee and Reddy 2010, Piovan et al. 2012).  

Due to the recent developments on buckling behavior of 

nano-composite structures, Mosallaie et al. (2012) have 

studied the electro-thermo-mechanical torsional buckling 

response of a piezoelectric polymeric cylindrical shell 

reinforced by double walled boron nitride nanotubes 

(BNNTs) with an elastic core. Later, Mosallaie et al. (2013) 

and Ghorbanpour et al. (2014) improved their stability 

studies by considering nonlinear buckling response of 

embedded piezoelectric cylindrical shell reinforced by 

BNNT under electro-thermo-mechanical loadings.  

Reddy (1984), using finite element analyses, 

investigated the effect of transverse shear deformation on 

deflection and stresses of laminated composite plates 

subjected to uniformly distributed load. Ferreira et al.  
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(2003) studied composite plates using higher-order shear 

deformation theory and a finite point formulation based on 

the multiquadric radial basis function method. 

An analytic solution for static behaviors of 

antisymmetric angle-ply composite and sandwich plates has 

been presented by Swaminathan and Ragounadin (2004). 

The nonlinear bending behavior of simply supported 

functionally graded (FG) nanocomposite plates reinforced 

by single-walled carbon nanotubes (SWCNTs) was studied 

by Shen (2009). Transverse uniform or sinusoidal load in 

thermal environments was considered. A rectangular 

laminated composite thick plate resting on nonlinear two-

parameter elastic foundation with cubic nonlinearity was 

analyzed by Baltacıoğlu et al. (2011).  

They applied first-order shear deformation theory 

(FSDT), for the plate formulation and illustrated the effects 

of foundation as well as geometric parameters of the plate 

on displacements considering the nonlinear parameters. 

Jafari et al. (2012) studied on the mechanical buckling of a 

FG nanocomposite rectangular plate reinforced by aligned 

and straight SWCNTs subjected to uniaxial and biaxial in-

plane loadings. Because of the excellent mechanical, 

physical and electronic properties of CNTs (Salvetat and 

Rubio 2002), CNTs are considered to be the best candidates 

for the reinforcement of polymer composites (Esawi and 

Farag 2007, Fiedler et al. 2006). In microelectromechanical 

systems (MEMS) and nanoelectromechanical systems 

(NEMS) carbon-nanotube reinforced composite (CNTRC) 

are extensively used. 

Stability of such structures is important. Due to 

randomly distribution of nano tubes as reinforcement the 

resulting mechanical, thermal, or physical properties of 

particle reinforced composites are traditionally considered 

to be uniform spatially at the macroscopic level. Buckling  
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Fig. 1 Geometry of the CNTRC microplate resting on an 

orthotropic elastomeric temperature-dependent foundation 

 

 

analysis of variable angle tow, variable thickness panels 

considering transverse shear effects have been developed by 

Groh and Weaver (2014). The idea of investigating the 

effects of two-dimensional fiber orientations with their 

associated doubly curved topologies was proposed. 

Dynamic buckling analysis of delaminated composite plates 

using semi-analytical finite strip method was carried out by 

Ovesy et al. (2015). Nonuniform distribution of the 

reinforcement phase in functionally (FGM) graded 

materials, in which the micro structural details are spatially 

varied, have been considered by Ghorbanpour et al. (2011, 

2012a). 

Microstructural management of nanocomposite plate 

can be employed to improve buckling behavior of FGM 

structures. The buckling behavior of thick plates has 

attracted considerable attention in recent years. An exact 

solution for the buckling response of rectangular Mindlin 

plates resting on elastic foundation subjected to uniformly 

and linearly distributed in-plane loadings has been 

investigated by Akhavan et al. (2009). Stability of 

homogeneous plate resting on elastic foundation was 

presented by Morozov and Tovstik (2010). Nonlinear 

vibration, bending and post buckling response of SWCNTs 

resting on a two-parameter elastomeric foundation in the 

presence of thermal environments was studied by Shen and 

Zhang (2011). 

The buckling behavior of heated functionally graded 

material (FGM) annular plates on an elastic foundation was 

studied analytically by Kiani and Eslami (2013). A 

conventional Pasternak-type elastic foundation is assumed 

to be in contact with plate during deformation. Sinusoidal 

shear deformation theory was employed by Huu and Thuc 

(2013) for bending, buckling, and vibration analysis of FG 

plates. This theory accounts for the sinusoidal distribution 

of transverse shear stress, and satisfies the free transverse 

shear stress conditions on the top and bottom surfaces of the 

plate without using shear correction factor. Mosallaie et al. 

(2015) have investigated temperature-dependent nonlocal 

buckling response of microplates rested on elastomeric 

medium. Their results are illustrated for different boundary 

conditions versus nonlocal parameter. 

In the present study, nonlinear stability of non- 

axisymmetric functionally graded SWCNT-reinforced 

polymer based plates considering temperature-dependent 

properties rested on elastomeric foundation has been 

studied. The heat conduction problem was solved and the 

obtained temperature distribution was considered in 

governing equation. For CNTRC plate, a uniform 

distribution (UD) and four types of FG distribution 

involving the non-axisymmetric type of FG patterns 

(NAFG) of SWCNT reinforcements are assumed. The 

mixture rule is used to obtain the equivalent material 

properties of FG-CNTRC plate. The nonlinear governing 

equations are derived using Hamilton’s principal and 

Mindlin orthotropic plate theory. The nonlinear buckling 

load of the FG-CNTRC polymeric microplate is obtained by 

applying generalized differential quadrature method 

(GDQM). The results are presented for the buckling load 

versus plate length considering the effects of, elastomeric 

medium, aspect ratio, temperature gradient, boundary 

conditions, orientation of foundation orthotropy.  

 

 

2. Mixture model of CNT-reinforced polymeric 
composite microplate 
 

As shown in Fig. 1, a CNTRC microplate with length a, 

width b and thickness h is considered. The CNTRC plate is 

rested an orthotropic elastomeric temperature-dependent 

medium which is simulated by KW, Gξ and Gη 

corresponding to Winkler foundation parameter, shear 

foundation parameters in ξ and η directions, respectively. 

Based on the distribution of CNTs in the polymer matrix, 

five types of CNTRC plates are considered.  

These are designated by UD for uniform, FGA, FGO, 

FGX for three symmetrical middle layer types of FG 

distributions and NAFG for a non-axisymmetric 

functionally graded distribution. Eqs. (1)-(5) are 

mathematical representation of all previous mentioned 

distributions. In order to obtain the equivalent material 

properties of two-phase nano composites (i.e., polymer as 

matrix and CNT as reinforcement), the rule of mixture is 

applied by Esawi and Farag (2007). 

The uniform and four types of FG distributions of the 

CNTs along the thickness direction of the CNTRC plates 

take the following forms 
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where wCNT, ρm and ρCNT are the mass fraction of the CNT, 

the densities of the matrix and CNT, respectively. Similarly, 

the thermal expansion coefficients in the longitudinal and 

transverse directions respectively (α11 and α22), Poisson’s 

ratio (v12) and the density (ρ) of the CNTRC plates can be 

determined as (Mosallaie et al. 2015) 

*

12 12 ,CNT r m mV V     (7) 

* ,CNT r m mV V     (8) 

*

11 11 ,CNT r m mV V     (9) 

    ,11 1112221222   mmmrCNTr VV  (10) 

where vr12 and vm are Poisson’s ratios of the CNT and 

matrix, respectively. In addition, αr11, αr22 and αm are the 

thermal expansion coefficients of the CNT and matrix, 

respectively. It should be noted that v12 is assumed as 

constant over the thickness of the FG-CNTRC plates. 

 

 

3. Heat conduction problem 
 

Assume a FG-CNTRC polymeric microplate where the 

temperature at the up and down surfaces are Tu and Td, 

respectively. The governing equation for the steady-state 

one-dimensional Fourier heat conduction equation, in the 

absence of heat source, becomes 

( ) 0 / 2 / 2

/ 2
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(11) 

where K=K(z), is the thermal conductivity. Similar to the 

coefficients of elastic moduli and thermal expansion, the 

coefficient of heat conduction is also assumed as a function 

of variable z coordinate based on the volume content of the 

constituent. 

  CNT r m m
K z V K V K *

,  (12) 

Eq. (11) can be solved by using a polynomial power 

series expansion given as: (Fiorenzo 2015) 
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where HT is the number of series’ terms, which, for the case 

of non-uniform temperature rise, is obtained from a 

convergence study. Temperature is obtained as function of 

V
*

CNT which is dependent on z coordinate. J is defined as 

follows 
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4. Constitutive equations for CNTRC polymeric 

microplate 
 

4.1 Orthotropic stress-strain relations 
 

The constitutive equation for stresses σ and strains ε 

matrix in thermal environment may be written as follows 
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(15) 

where Cij(i, j=1,2,…,6) denotes temperature-dependent 

elastic coefficients which are dependent on z direction and 

temperature. Note that Cij and αxx, αyy may be obtained using 

rule of mixture (i.e., Eqs. (1)-(10)). 

 

4.2 Nonlinear mindlin plate theory 
 

Displacement field according Mindlin plate theory, can 

be represented as (Reddy (1984)) 
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(16) 

where (ux, uy, uz) denote the displacement components at an 

arbitrary point (x,y,z) in the plate, and (u,v,w) are the 

displacement of a material point at (x,y) on the mid-plane 

(i.e., z=0) of the plate along the x-, y-, and z-directions, 

respectively;
 
the rotations of the normal to the mid-plane 

about x- and y-directions are expressed by ψx(x,y) and 

ψy(x,y), respectively.  

Considering nonlinear von Kármán strains associated 

with displacement field, which was mentioned on Eq. (16), 

can be expressed as 
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(21) 

where (εxx, εyy) are representing the normal strain 

components and (γyz, γxz, γxy) are the shear strain 

components. 

 

4.3 Energy equations 
 

The energy method is employed to obtain the 
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equilibrium equations. The total potential energy, V, of the 

CNTRC plate is the sum of strain energy, U, and the work 

done by the elasomeric medium, W. 

 

4.3.1 Strain energy 
The total strain energy can be obtained integrating the 

strain energy density over the entire volume of the 

microplate as 

 
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where, A is surface element. 

Substituting stresses from Eq. (15) and strains from Eqs. 

(17)-(21) into Eq. (22) and integrating with respect to z 

yields 
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where the stress resultant-displacement relations can be 

written as 
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in which, K is the shear correction coefficient.  

 

4.3.2 External work 
The external work due to orthotropic temperature-

dependent elastomeric medium and a uniform load on upper 

surface of the CNTRC microplate can be written as 

0

a

W P w x y dx  ( , ) ,  (26) 

Where P is related to orthotropic elastomeric medium. 

Orthotropic elastomeric foundation can be expressed as 

(Shen 2009, Kutlu and Omurtag 2012) 
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where angle θ describes the local ξ direction of orthotropic 

foundation with respect to the global x-axis of the plate as 

shown in Fig. 1. Since the elastomeric medium is relatively 

soft, the foundation stiffness Kw may be expressed by (Shen 

2009, Kutlu and Omurtag 2012) 
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where Es, vs, Hs are Young’s modulus, Poisson’s ratio and 

depth of the foundation, respectively. In this paper, Es is 

assumed to be temperature-dependent while vs is assumed 

to be a constant (Swaminathan and Ragounadin 2004). 

 

 

5. Governing equations 
 

The governing equations can be derived by Hamilton’s 

principal as follows 
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Substituting Eqs. (23) and (26) into Eq. (33) yields the 

following governing equations 
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Substituting Eq. (15) and Eqs. (17)-(21) into Eqs. (24) 

and (25), the stress resultant-displacement relations can be 

obtained as follows 
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Furthermore,  T
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T

xx NN ,  and  T
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T

xx MM ,  are thermal 

force and thermal moment resultants, respectively, and are 

given by 
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Substituting Eqs. (39)-(51) into Eqs. (34)-(38), the 

governing equations can be written as follows 
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The CNTRC microplates are considered with three 

kinds of boundary conditions: all edges simply supported 

(SSSS) or clamped (CCCC), and two opposite edges simply 

supported and the other two clamped (SCSC). The 

boundary conditions are given as follows 
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6. Generalized differential quadrature method 

 
Several numerical methods such as finite element 

method (FEM), finite difference method (FDM) and 
GDQM can be employed to solve the boundary value 
problem. Hence, GDQM is used as a weighted linear sum of 
the function values at all discrete points chosen in the 
solution domain of the spatial variable. GDQM is more 
efficient than the other solution methods. It is more accurate 
for lower number of grid points (Shu 1999, Ghorbanpour et 
al. 2012b). GDQM is a powerful method, the essence of 
which is to approximate the partial derivative of a function 
with respect to a spatial coordinate at a given discrete point, 
as a weighted linear sum of the function values at all 
discrete points chosen in the solution domain of the spatial 
variable. GDQM can easily satisfy a variety of boundary 
conditions and require much less formulation and 

programming effort. Recently, GDQM has been extended to 
handle irregular geometries. 

In recent years the GDQM has become increasingly 

popular in the numerical solution of problems in 

engineering and physical science. In this method, the 

differential equations are changed into a first order 

algebraic equation by employing appropriate weighting 

coefficients. The weighting coefficients are independent of 

any special geometry and depend only on the grid spacing. 

The partial derivatives of a function (say w here) are 

approximated with respect to specific coordinates (say x and 

y), at a discrete point in a defined domain (0<x<a and 

0<y<b) as a set of linear weighting coefficients and the 

amount represented by the function itself at that point and 

other points throughout the domain. The approximation of 

the n
th

 and m
th

 derivatives function with respect to x and y, 

respectively may be expressed in general form (Sepahi et al. 

2010) 
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(63) 

where Nx and Ny, denotes the number of grid points in x and 

y directions, f(x,y) is the function and    1 1
,ik jlA B are the 

weighting coefficients defined as  

 

 

1

1

( )
,

( ) ( )

( )
,

( ) ( )

i
ik

i j j

i
jl

i j j

M x
A

x x M x

P y
B

y y M y







 
(64) 

where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and 

fourth derivatives are determined via matrix multiplication, 
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(66) 

Using the following rule, the distribution of grid points 

in domain is calculated as (Ghorbanpour 2012) 
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(67) 

Substituting Eq. (63) into the governing Eqs. (52)-(56) 

yield a set of algebraic equations expressed in matrix form  
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Table 1 Temperature-dependent material properties of (10, 

10) SWCNT (a=b=9.26 nm, R=0.68 nm, h=0.067 nm, 

Poisson’s ratio ν12
CNT

=0.175) 

Temperature 

(K) 
E11

CNT=(Tpa) E22
CNT=(Tpa) G12

CNT=(Tpa) α12
CNT=(106/K) α22

CNT=(106/K) 

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
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(68) 

where (KL) and (KNL) are linear and nonlinear coefficients 

respectively.  

The above nonlinear equation can now be solved using 

GDQM iterative process as follows. 

Initially, neglecting nonlinear parameters, which are 

dependent on displacements, (KNL)=0, Eq. (68) is solved as 

a linear boundary value problem. This yields the linear 

buckling load and displacements of CNTRC plate. The 

displacements are then scaled up. Substituting linear 

displacements into nonlinear parameters, (KNL) is 

evaluated. The problem is then solved considering nonlinear 

terms (KNL) in Eq. (68). This would give the nonlinear 

displacements and buckling load of the CNTRC plate in the 

presence of nonlinear parameters. The new nonlinear 

displacements are scaled up again and the above procedure 

is repeated iteratively until convergence is achieved. 

 

 

7. Results and discussion 
 

The numerical solution of nonlinear buckling of 

CNTRC plates resting on an orthotropic elastomeric 

temperature-dependent foundation has been carried out 

using GDQM. The polymer matrix is selected to be Poly 

methyl methacrylate (PMMA) which has a constant 

Poisson’s ratios of vm=0.34, temperature-dependent thermal 

coefficient of αm=(1+0.0005ΔT)×10
-6

/K, temperature-

dependent Young moduli of Em=(3.52−0.0034T)Gpa in 

which T=T0+ΔT and T0=300K (room temperature). The 

thickness and width of the CNTRC plate are h=15 µm and 

b=150 µm respectively. In addition, an arrangement of (10, 

10) SWCNTs are used in ten layers as reinforcement, the 

material properties of which is written in Table 1. The 

elastomeric medium is made of Poly dimethylsiloxane 

(PDMS) which is a temperature-dependent material, the 

properties of which are assumed to be vs=0.48 and 

Es=(3.22−0.0034T)GPa where T=T0+ΔT and T0=300K 

(room temperature) (Shen 2009).  

 

7.1 Validation 

Table 2 Comparisons of dimensionless buckling load 

parameters obtained in this research with the existing 

literature presented by Lie et al. (2013) 

Load Conditions 

Loading type 

Type of CNTRC, Lei et al. (2013) Type of CNTRC, Present work 

UD FGO FGX UD FGO FGX 

χ1=−1, χ2=0 30.9076 18.7534 40.8005 30.9075 18.7531 40.8003 

χ1=−1, χ2=−1 9.3805 6.9161 11.4231 9.3804 6.9157 11.4229 

χ1=−1, χ2=1 89.9909 63.4215 104.9802 89.9906 63.4208 104.9800 

χ1=−1, χ2=0 46.9779 34.4733 57.3978 46.9768 34.4727 57.3969 

χ1=−1, χ2=−1 10.3981 8.9197 11.6524 10.3977 8.9189 11.6519 

χ1=−1, χ2=1 101.0670 81.0655 108.9411 101.0661 81.0644 108.9402 

χ1=−1, χ2=0 69.3855 48.4971 82.0077 69.3846 48.4961 82.0066 

χ1=−1, χ2=−1 14.0470 9.3380 15.0540 14.0468 9.3375 15.0534 

χ1=−1, χ2=1 107.7075 92.2314 113.8593 107.7066 92.2301 113.8581 

 

 

Fig. 2 Effect of aspect ratio on dimensionless buckling load 

versus length of the CNTRC microplate at uniform 

distribution of reinforcement (UD) 

 

 

The validity of the results is demonstrated in 

comparison with those reported by Lei et al. (2013). For 

this purpose, ignoring the nonlinear terms and elastomeric 

medium, the non-dimensional buckling load parameter (i.e., 
2 3

/
cr cr y m

N N L E h ) of the CNTRC plate with simply 

supported boundary condition are written in Table 2 

considering material properties the same as Lei et al. 

(2013).  

Three loading conditions are considered namely as 

uniaxial compression (i.e., χ1=−1, χ2=0), biaxial 

compression (i.e., χ1=−1, χ2=−1) and biaxial compression 

and tension (i.e., χ1=−1, χ2=1)). As can be seen, our results 

obtained by GDQM are in good agreement with those 

reported by Lei et al. (2013) based on the element-free kp-

Ritz method.  

 

7.2 Nonlinear buckling of CNTRC microplate 
 

Dimensionless buckling load of CNTRC microplate 

(i.e., 
11/ ( , ))M

b ii mN N C h i x y   for the case of biaxial 

compression (i.e., χ1=−1, χ2=−1)) is plotted versus the plate 

length for different aspect ratios (width to thickness, b/h), 

boundary conditions, foundation type, temperature,  
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Fig. 3 Effect of aspect ratio on dimensionless buckling 

load versus length of the CNTRC microplate at non-

axisymmetric distribution of reinforcement (NAFG) 

 

 

Fig. 4 Dimensionless buckling load versus length of 

CNTRC microplate for different functionally graded 

distributions of reinforcement (FG) 

 

 
Fig. 5 The effect of boundary condition of CNTRC 

microplate on dimensionless buckling load versus 

length of the microplate 

 

 

reinforcement fibers distribution arrangements and 

orthotropic shear orientation angle. 

Fig. 2, for the case of simply supported boundary 

condition (SSSS), illustrates the nonlinear buckling load 

versus length of CNTRC microplate for four different 

aspect ratios (width to thickness, b/h). In this plot the 

uniform distribution (UD) arrangement of SWCNTs is  

 

Fig. 6 The effect of elastomeric temperature-dependent 

foundations of CNTRC microplate on nonlinear 

buckling load versus length of the microplate 

 

 

Fig. 7 The effect of temperature of CNTRC microplate 

on dimensionless buckling load versus length of the 

microplate 

 

 

Fig. 8 Dimensionless buckling load versus length of 

CNTRC microplate for different orientation angle of 

orthotropic elastomeric foundation 

 

 

considered. It is clear from this figure that, for the same 

microplate length, the minimum dimensionless buckling 

load in biaxial compression belongs to the lowest aspect 

ratio of 10 (b/h=10). This is due to the slenderness and 

lower stiffness of microplate in this case. As expected, for 

the same microplate length, increasing aspect ratio will 

increase critical buckling load.  
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Fig. 9 Number of grid points effect on the convergence 

and accuracy of the results obtained by GDQM 

 

 

Fig. 3 demonstrates the dimensionless nonlinear 

buckling load versus length of CNTRC microplate with 

SSSS boundary condition for four different aspect ratios 

and non-axisymmetric functionally graded (NAFG) 

distribution of SWCNTs. It is obvious from the plot that the 

buckling load is decreasing by increasing the microplate 

length. Again, for the same microplate length, the lowest 

dimensionless buckling load belongs to the lowest aspect 

ratio. Although the effect of aspect ratio on dimensionless 

buckling load for both NAFG and UD distributions of 

SWCNTs is almost similar at the same microplate length, 

but It can be found that the distribution arrangements of 

SWCNTs have significant influence on the magnitude of 

buckling load. In general, for the case of NAFG, the 

buckling load is lower than uniform distribution (UD) 

particularly for higher plate lengths.  

Fig. 4 illustrates the effect of SWCNT distribution in 

microplate, for the SSSS boundary condition, on the 

dimensionless buckling load versus length of the CNTRC 

microplate. This figure is plotted for the aspect ratio of 10 

(b/h=10). For the CNTRC microplate, UD and four types of 

FG distribution patterns of SWCNT reinforcements are 

assumed. It should be noted that the mass fraction (wCNT) of 

the UD and FG distribution of CNTs in polymer are 

considered to be equal for the purpose of comparisons. As 

can be seen, the buckling load for the FGA, FGO and 

NAFG cases are lower than the buckling load of UD 

microplates. While the FGX microplate has higher buckling 

load than four other cases. It is due to the fact that the 

stiffness of CNTRC microplates changes with the 

arrangement of CNTs distribution in polymer matrix. 

However, it can be concluded that SWCNT distribution 

close to the top and bottom of the microplate are more 

efficient than those distributed near the mid-plane because 

of increasing stiffness of the microplate. 

It also resulted that the NAFG distribution of SWCNs 

leads to a significant effect on dimensionless buckling load 

of the microplate and is less than other distribution cases. 

Generally, for the case of NAFG, the dimensionless 

buckling load is lower than other distribution cases 

particularly for higher microplate lengths.  

Fig. 5 shows the dimensionless buckling load versus 

length of the CNTRC microplate for different boundary 

conditions. It can be found that the dimensionless buckling 

load of microplate with clamped boundary condition at four 

edges (CCCC), defined by Eqs. (59)-(60), is greater than 

other boundary condition. Moreover, the dimensionless 

buckling load of SCSC boundary condition of the 

microplate is located between the buckling load of CCCC 

and SSSS cases for the same aspect ratio of 10 (b/h=10). 

This is due to the fact that the CNTRC microplate with 

CCCC boundary condition has higher stiffness with respect 

to other boundary conditions.It may be mentioned that the 

effect of boundary condition for lower length of the 

microplate is more significant than higher microplate 

length. On the other hand the dimensionless buckling loads 

in longer microplate length are almost identical for all 

boundary conditions. 

The dimensionless buckling load of the CNTRC 

microplate versus length is demonstrated in Fig. 6 for 

different elastomeric foundation mediums. In this figure, 

four cases are considered as follows: 

Case 1: Considering dimensionless buckling load in the 

absence of elastomeric medium. 

In this case, the dimensionless buckling load is 

significantly lower than other cases in which elastomeric 

temperature-dependent mediums are considered.  

Case 2: Considering elastomeric Winkler medium.  

The normal foundation effect of elastomeric medium on 

the bottom surface of the microplate is simulated as 

Winkler type defined by Eq. (28).  

Case 3: Considering elastomeric orthotropic medium. 

In this case both Winkler and Pasternak constants are 

considered. Also θ=45° is considered for Pasternak shear 

model orientation of orthotropic medium. 

Case 4: Considering elastomeric Pasternak medium.  

In this case, only Pasternak constant is considered. It is 

obvious from Fig. 6 that the dimensionless buckling load of 

the microplate is increased due to stiffer structure of the 

plate rested on the elastomeric foundation. 

Moreover, The Pasternak elastomeric foundation model 

is more efficient than other foundation types. This is 

because both normal and shear effects are taken into 

account in this case.  

Fig. 6 also shows that the minimum dimensionless 

buckling load belongs to case 1 which is expected. The 

dimensionless buckling load of the microplate in the other 

two cases, Winkler and orthotropic Pasternak, are located 

between these two extremes. For lower length of the 

microplate, the effect of Winkler and orthotropic Pasternak 

foundations is not significant.  

Dimensionless buckling load versus length of CNTRC 

microplate for different orientation angle of foundation 

orthotropy, for NAFG-type, is shown in Fig. 8. Note that, 

the foundation parameters are selected to be KW=41.4 N/m
3
, 

Gξ=41.4 N/m and Gη=4.14 N/m. As can be seen, orientation 

angle of foundation orthotropy do not have direct effect on 

the nonlinear buckling load of the CNTRC microplate.  

Generally, decreasing the orientation angle of the 

foundation orthotropy, decreases the dimensionless 

buckling load. The convergence and accuracy of the 

numerical procedure (GDQM) in evaluating the 

dimensionless buckling load of the CNTRC microplate for 
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different number of grid points is shown in Fig. 9. Indeed, 

increasing the number of grid points will yield more 

accuracy. However, efficiency and accuracy of the 

procedure will not be changed considerably for more than 

11×11 grid points. For this reason a number of 11×11 grid 

points is chosen in our solution.  

 

 

8. Conclusions 
 

Nonlinear buckling behavior of a nano-composite 

microplate made of polymer based matrix reinforced by 

several arrangements of carbon nanotubes including non-

axisymmetric distribution is investigated. The microplate is 

rested on an elastomeric temperature dependent foundation 

considering Winkler and orthotropic Pasternak effects. 

Three different combinations of simply supported and 

clamped edge boundary conditions are considered. Heat 

conduction equation is solved to obtain temperature 

distribution along thickness of the plate. The set of 

governing differential equations of the microplate is derived 

using nonlinear Mindlin displacement theory, energy 

method and Hamilton principle. It has been found that the 

orthotropic elastomeric foundation has a significant effect 

on buckling load of the microplate. Moreover, for non-

axisymmetric distribution of reinforcement, the buckling 

load is lower than all other arrangements. It has also been 

concluded that the buckling load in longer microplate length 

is almost identical for all edge boundary conditions. 
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