
Computers and Concrete, Vol. 19, No. 6 (2017) 701-710 

DOI: https://doi.org/10.12989/cac.2017.19.6.701                                                                  701 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                                      ISSN: 1598-8198 (Print), 1598-818X (Online) 

 
1. Introduction 
 

Classical first gradient approaches in continuum 

mechanics do not address the size dependency that is 

observed in smaller scales. Consequently, a number of 

theories that include higher gradients of deformation have 

been proposed to capture, at least partially, size-effects at 

the nano-scale. Additionally, consideration of the second 

gradient of deformation leads naturally to the introduction 

of the concept of couple-stresses. Thus, in the current form 

of these theories, the material continuum may respond to 

body and surface couples, as well as spin inertia for 

dynamical problems.  

Voigt (1887) was the first to introduce the concept of 

couple stresses in the material, by assuming that the 

interaction between two parts of the continuum not only 

depends upon force stress vector but also on the couple 

stress vector. This leads to the description of stress by 

means of two skew symmetric tensors namely force stress 

tensor and couple stress tensor. However, Cosserat and 

Cosserat (1909) gave the mathematical formulation to 

analyze materials with couple stresses, by considering that 

the deformation of the medium is described by 

displacement vector an independent rotation vector. 

Displacements and rotations are associated with skew 

symmetric stresses and couple stresses through constitutive 

relations. This was contrary to the classical theory which 

described stress as symmetric tensor. In spite of its novelty, 

this theory was not recognized at that time, later on many  
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alternative theories on the same idea were given by Toupin 

(1962), Mindlin and Tiersten (1962), Mindlin (1964) and 

Koiter (1964). 

When a solid is illuminated with a laser pulse, 

absorption of the laser pulse results in a localized 

temperature increase, which in turn causes thermal 

expansion and generates a thermoelastic waves in the solid. 

Most laser applications in material processing and medicine 

involve using of a continuous wave (CW) laser, short 

pulsed lasers are being used in a variety of applications such 

as remote sensing, optical tomography, laser surgery and 

ablation processes. The thermoelastic waves induced by a 

pulsed laser in solid is of great interest to many researchers 

due to extensive applications of pulsed laser technologies in 

biomedical, material processing, non-destructive detecting, 

manufacturing and characterization. 

Pulsed lasers have the additional ability to control the 

width and depth of heating as well as induce high heating or 

cooling rates because of higher peak powers and shorter 

time duration. The uses of short-pulsed lasers in medicine, 

with regard to diagnostics and therapy, has gained attention 

in the last decade. 

The advantages of using short-pulsed lasers rather than 

more traditional methods for surgical treatment include the 

precise control of the output energy of the device and the 

ability to control energy dissipation and the heat-affected 

zone. Thus, pulsed laser is used in a number of high-

precision medical procedures like neurosurgery, 

ophthalmology, corneal surgery, and angioplasty.  

Yang et al. (2002) modified the classical couple stress 

theory and proposed a modified couple-stress model, in 

which the couple stress tensor is symmetrical and only one 

material length parameter is needed to capture the size 

effect which is caused by micro-structure. Bernoulli-Euler 
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beam model based on a modified couple stress theory 

studied by Park and Gao (2006). Thermoelastic wave 

induced by pulsed laser heating discussed by Wang and Xu 

(2001). Banerjee et al. (2005) proposed the problem of 

temperature distribution in different materials due to short 

pulse laser. Ai Kah Soh et al. (2008) studied the vibration of 

micro/nano scale beam resonators induced by ultra short 

pulsed laser by considering the thermoelastic coupling term. 

Sun et al. (2008) explained the vibration phenomenon 

during pulsed laser heating of a micro beam using the 

Laplace transform technique.  

Ghader et al. (2012) discussed problem of thermoelastic 

damping in a micro-beam resonator using modified couple 

stress theory. An eigenvalue formulation and Galerkin finite 

element method used to evaluate the problem of 

thermoelastic damping in vented microelectromechanical 

systems (MEMS) beam resonators presented by Guo et al. 

(2013). Sirafy et al. (2014) investigated the problem of 

thermoelastic beams in the context of dual-phase-lag model. 

The thermoelastic interaction in a gold nano beam resonator 

induced by ramp type heating in the context of three-phase-

lag model of thermoelasticity theory studied by Sur and 

Kanoria (2014). A problem of two-temperature generalized 

thermoelasticity induced by pulsed laser heating is 

discussed in the context of coupled thermoelasticity and L-S 

theories. Mohammad-Abadi and Daneshmehr (2014) 

studied the size dependent buckling analysis of microbeams 

based on modified couple stress theory with high order 

theories and general boundary conditions. 

Abouelregal and Zenkour (2014) discussed the problem 

of an axially moving microbeam subjected to sinusoidal 

pulse heating and an external transverse excitation with one 

relaxation time by using Laplace transform and also studied 

the effects of the pulse-width of thermal vibration, moving 

speed and the transverse excitation. Sharma and Kaur 

(2014) studied transverse vibrations in thermoelastic-

diffusive thin micro beam based on Euler-Bernoulli theory 

under clamped-clamped boundary conditions. Zenkour and 

Abouelregal (2015) studied the problem of thermoelastic 

vibration of an axially moving microbeam subjected to 

sinusoidal pulse heating. Yaghoub et al. (2015) studied the 

size-dependent equations of motion for functionally graded 

cylindrical shell on the basis of modified couple stress 

theory. Dehrouyeh-Semnani et al. (2015) studied the 

problems of microbeams based on modified couple stress 

theory.  
Keeping in view the applications of sensors in detecting 

Infrared imaging, chemical and biological agents sensing, 
design and construction of precision thermometers as well 
as the use of beam type components and devices, in 
addition to mechanics and civil structures, the present study 
is devoted to investigate the behavior of lateral deflection, 
thermal moment and axial stress average of thermoelastic 
beam in the modified couple stress theory. The Laplace 
transform technique has been used to find the analytic 
solution of the model. The effect of couple stress on lateral 
deflection, thermal moment and axial stress average for 
Coupled thermoelastic (CT) theory under the influence of 
laser source and heat flux are computed numerically and 
shown graphically. A particular case of interest is also 
deduced from the present investigation.  

 

Fig. 1 Problem description 

 
 
2. Basic equations 
 

Following Yang et al. (2002) and Nowacki (1976) the 

equations governing the modified couple stress generalized 

thermoelastic medium in absence of body forces are: 

(i) Constitutive relations 

ij ij
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2
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t e e e m T       (1) 

,2 ijij m
 

(2) 

 ij

1

2
, ,

,
i j j i

   
 (3) 

1

2
i ipq q p

e u 
,

,
 

(4) 

i,j,k=1,2,3.  

where tij are the components of stress tensor, λ and μ are 

material constants, δij is Kronecker’s delta, eij are the 

components of strain tensor, eijk is alternate tensor, mij
 
are 

the components of couple-stress, β=(3λ+2μ)αT, αT is the 

coefficient of linear thermal expansion, T is the temperature 

change, α is the couple stress parameter, χij is symmetric 

curvature, ωi is the rotational vector. 

  (ii) Equations of motion 

  2. ,
4 4

..

T
 

    
   

              
   

u u u  (5) 

where u=(u,v,w) is the components of displacement,
 
ρ
 
is the 

density, Δ is the Laplacian operator,  is del operator. 

(iii) Equation of heat conduction are given by Soh et al. 

(2008) 

 0
. ,

e i

T
K T c T S

t t
 

 
    

 
u  (6) 

where K is the coefficient of the thermal conductivity, ce is 

the specific heat at constant strain, T0 is the reference 

temperature assumed to be such that T/T0<<1, Si 
is the 

initial heat source. 

 

 
3. Formulation of the problem 

 
Let us consider an homogeneous isotropic, rectangular 

modified couple stress thermoelastic beam of length 
(0≤x≤L), width (−d/2≤y≤d/2) and thickness (−h/2≤z≤h/2), 
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where x, y and z are Cartesian axes lying, respectively, 
along the length, width and thickness of the beam. We 
define the x-axis along the axis of the beam and the y and z 
axes correspond to the width and thickness, respectively. 

According to the fundamental Euler-Bernoulli theory for 
small deflection of a simple bending problem, the 
displacement components are given by 

       , , , , , , , 0, , , , , ,
w

u x y z t z v x y z t w x y z t w x t
x


   



 (7) 

where w(x,t) is the lateral deflection of the beam and t is the 

time. The constitutive relation Eq. (1) in one-dimension 

along the axis and with the help of Eq. (7), we obtain 

 
2

2
2 ,

x

w
t z T

x
  


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
 (8) 

Then the flexural moment of the cross-section of the 

beam is given by 

2 2

2 2

 

h h

m x xy

h h

M M M d t z dz m dz

 

 
 
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 
 

 
 

(9) 

where Mσ and Mm are the components of the bending 

moment due to the classic stress and couple stress tensors 

respectively. 

Making use of Euler-Bernoulli assumption Eq. (7) and 

with the aid of Eq. (8) in Eq. (9), we obtain 

 
2 2

2 2
2 ,

T

w w
M I M h

x x
  

 
    

 
 (10) 

where I is the second moment of the cross-section area of 

the beam and MT is the thermal moment and I and MT are 

given by 

32 2
2

2 2

,  .
12

h h

T

h h

dh
I dz dz M d Tz dz

 

     (11) 

The equation of transverse motion of the beam is given 

by (Rao 2007). 

 
2 2

2 2
0,

M w
A

x t


 
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 (12) 

where ρ
 
denotes the beam density and A=dh is the cross-

sectional area of the beam. 

Now from Eqs. (10) and (12), we obtain 

 
24 2
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 (13) 

and the heat conduction equation can be written as 

2
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0,e i
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Multiplying Eq. (14) by z dz and integrate from interval 

(−h/2, h/2), we obtain 
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(15) 

where MT is mathematically approximated as the difference 

between the temperatures at the upper and bottom surfaces 

of the beam, the temperature is assumed to vary linearly 

through the thickness of the beam, thus, we have 

 2
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And 
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The following dimensionless quantities are introduced 

2
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(18) 

Using Eq. (18) in Eqs. (13) and (15), after dropping the 

dashes for convenience, we obtain 
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Where 
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4. Method of solution  
 

We define the Laplace transform as 

      
0

.stL f t e f t dt f s



   (21) 

where s is the Laplace transform parameter. 

Making use of Eq. (21) in Eqs. (19) and (20), we obtain 

 4 2 2

2 1
=0,

T
D a s w a D M   (22) 

       2 2

1 2
, , =0,

T
D b M x s b D w x s Q s  

 
(23) 

The differential equation of the lateral deflection w  
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and the thermal moment 
T

M are 

 6 4 2

2

2

0
,

T

w
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Where 
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(25) 

The differential equation governing the lateral deflection 

w  can take the form 

   2 2 2 2 2 2

1 2 3
0,D D D w       (26) 

where ±λ1, ±λ2 and ±λ3 are the characteristic roots of the 

equation 
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and satisfy the well-known relations 
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Then the lateral deflection is given by 
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where Ai and Bi, i=1,2,3, are constant coefficients and are 

depending on the Laplace variable s. 

The thermal moment is given by 
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Where Ai, A’i , '

i i
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and Bi, B’i i=1,2,3, are constant 

coefficients and are depending on the Laplace variable s. 

Substituting Eqs. (29) and (30) in Eq. (23), yields 
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Substituting Eq. (31) in Eq. (30), we obtain  
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Making use of Eqs. (8), (16), (17), (18) and Eq. (21), 

with the aid of Eqs. (29) and (32), the axial stresses can be 

written as 
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where 
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5. Boundary conditions 
 

We consider a beam with both ends simply supported 

and isothermal. The boundary conditions are as follows 

 
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Using Eqs. (18) and (21) in the boundary conditions 

Eqs. (35) and (36), yield 
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6. Application 
 

(i) Laser source with non-Gaussian form temporal 

profile set along the upper surface
2

h
z

 
 

 
, following Tang 

and Araki (2000) 

  0
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p p

I t t
I t exp

t t

 
  

 
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 (39) 

where tp is the laser pulse duration, I0 is the laser intensity 

which is defined as the total energy carried by a laser pulse 

per unit cross-section of the laser beam. The thermal 

conduction in the beam can be modeled as a one-

dimensional problem with an energy source Si near the 

surface, i.e., 

 
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where δ is the penetration depth of heating energy and R is 

the surface reflectivity. 

There is no heat flow across the upper and lower 

surfaces of the beam, i.e., 

, , , , 0.
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Now, we can evaluate the thermal influence Q  given 

by 
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Substituting the values of w  and 
T

M from Eqs. (29) 

and (32) in the boundary conditions Eqs. (37) and (38), with 

the aid of Eq. (42), after some simplification, we obtain the 

expressions of lateral deflection, thermal moment and axial 

stress average for laser source as 

   
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(45) 

where A1, A2, A3, B1, B2 and B3, are given in the Appendix.                                   

(ii) Constant heat flux normal to the upper surface 

.
2

h
z   

We replace the laser source term with a constant heat 

flux (−q0) normal to the upper surface 
2

h
z

 
 

 

 of the beam 

and keeping bottom surface 
2

h
z

 
  

   
at zero temperature 

gradient. The boundary conditions on the upper and bottom 

surfaces of heat conduction equation as 

0
, , , , , 0.
2 2

T h T h
q K x t x t

z z

    
     

    
 (46) 

Using Eqs. (18) and (21) on Eq. (46), we obtain 

0, , = , , , 0.
2 2

qdT h dT h
x s x  s

dz K dz

   
    

   
 (47) 

From Eqs. (25) and (47), the thermal influence is given 

by 

3 0 .
2

a q
Q

K
  (48) 

Making use of the value of thermal influence Q  from 

Eq. (48) in Eqs. (43)-(45), after some simplification, we 

yield the expressions of lateral deflection, thermal moment 

and axial stress. 

 

 

6. Particular cases 
 

(i) If α=0, in Eqs. (43)-(45), we obtain the results for 

lateral deflection, thermal moment and axial stress average 

in a thermoelastic beam and these results in a special case 

are similar as obtained by Sirafy et al. (2014) for 

thermoelastic beam theory without dual-phase-lag model.  

 

 

7. Inversion of the laplace transform 
 

To obtain the solution of the present application in the 

physical domain, we first apply the well-known formula 

   
1

 ,
2

c i

st

c i

f t f s e ds
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 
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 

 
 

(49) 

Secondly, we adopt a numerical inversion method on the 

fourier series expansion, by which the integral Eq. (40) can 

be approximated as a series theory in the absence and 

presence of couple stress for laser and heat flux applications 

are computed numerically and shown graphically in Figs. 2-

7 respectively. In all these Figs., solid line for 0≤t≤2t1. 
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(50) 

The above series Eq. (50) is called the Durbin formula 

and the last term in which is called the discretization error. 

Honig (1984) developed a method for accelerating the 

convergence of the Fourier series and a procedure that 

computes that computes approximately the best choice of 

the free parameters. 
 

 

8. Numerical results and discussion 
 

For numerical computations, we take the magnesium 

material. The physical data chosen for magnesium are taken 

as Daliwal and Singh (1980) and Sirafy et al. (2014). 
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The software MATLAB 7.10.4 have been used to 

determine the absence and presence of couple stress on 

lateral deflection w, thermal moment MT and axial stress 

average Tx for coupled thermoelastic (CT) corresponds to 

CT(α=0), solid line with centre symbol (−*−)
 
corresponds 

to CT(α=1.5), solid line with centre symbol (−o−) 

corresponds to CT(α=2.5). 

 
8.1 Laser application 

 
Fig. 2 shows the variation of laser induced lateral 

deflection w with respect to length x. It is observed that 
from the figure that the lateral deflection initially decreases 
and then increases in the range 0≤x<3 and then remain 
stationary in the considered range. The lateral deflection of  

 

 

the beam goes on increasing as the couple stress increases 

further with respect to length. Fig. 3 depicts the variation of 

laser induced thermal moment MT with respect to length x. 

It is evident that the value of thermal moment initially 

decreases and then increases monotonically for the assumed 

region. On the other hand, the values of thermal moment is 

higher in the presence of couple stress for coupled 

thermoelasticity CT(α=1.5,2.5)
 
and smaller in the absence 

of coupled stress for coupled thermoelasticity CT(α=0). Fig. 

4 represents the variation of laser induced average of axial 

stress Tx with respect to length x. It is noticed that the 

behavior and variation of axial stress are similar for all 

cases of coupled thermoelastic model but difference in their 

values. It is also clear from the figure that the value of laser 
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 Fig. 2 Variation of laser induced lateral deflection with 

length 

 

Fig. 3 Variation of laser induced thermal moment with 

length 
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Fig. 4 Variation of laser induced axial stress average 

with length 

 

Fig. 5 Variation of heat flux induced lateral deflection 

with length 
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Fig. 6 Variation of heat flux induced thermal moment 

with length 

Fig. 7 Variation of heat flux induced axial stress 

average with length 
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induced axial stress greater as the couple stress goes on 

increasing.  

 

8.2 Heat flux application 
 

Fig. 5 depicts the variation of heat flux induced lateral 

deflection w with respect to length x. It is evident that the 

value of lateral deflection initially decreases and then 

increases smoothly for the considered region. As we seen 

from the figure that the value of lateral deflection is smaller 

as the couple stress parameter increases with respect to 

length but there is very small difference between them. Fig. 

6 shows the variation of heat flux induced thermal moment 

MT with respect to length x. Oscillatory behavior is shown 

for smaller value of length but remain stationary for higher 

value of length. As couple stress increases, the value of heat 

flux induced thermal moment decreases for coupled 

thermoelastic (CT) theory. Fig. 7 represents the variation of 

heat flux induced average of axial stress Tx with respect to 

length x. It is noticed from the figure that the value of axial 

stress increases monotonically for the whole range. The 

value of heat flux induced axial stress increases as couple 

stress increases further for all cases of coupled 

thermoelastic theory.  

 

 

9. Conclusions 
 

In this present study, the vibration of a simply supported 

Euler-Bernoulli thermoelastic rectangular microscale beam 

in the context of Coupled thermoelastic (CT) model of 

thermoelasticity have been studied during two different 

ways of heating: the laser pulse heating and the constant 

heat flux on the upper surface. The method of Laplace 

transform is used to solve the problem. A numerical 

technique has been adopted to recover he solutions in the 

physical domain. The expressions for lateral deflection, 

thermal moment and axial stress average have been derived 

successfully and shown graphically in the absence and 

presence of couple stress for Laser and heat flux 

applications. It is observed from the figures that as couple 

stress increases, the value of lateral deflection increases for 

laser application and decreases for heal flux application. It 

is clear from the figures that the value of thermal moment 

decreases and axial stress increases as couple stress 

increases for both laser and heat flux applications. It is also 

seen from the figures that the behavior and variation are 

approximately similar for both laser-pulse and heat flux 

applications. The results obtained in the study should be 

beneficial for people working in material processing, 

remote sensing, optical tomography, laser surgery, medical 

science, thermomechanical, engineering, accelerometers, 

sensors, resonators and also working in the field of 

thermoelastic beam in modified couple stress theory for 

Coupled thermoelastic model. 
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 

2

1 2

2

1
12

i
i

i

h
N

L Ld

 



  
  
  
 

 

   3 31 2

1 2
, ,g e e g e e

    
   

 

 3 1

3
,g e e

 
 

 

       3 32 2 1 2 1 2

4 5 6 7
, , , ,g e e g e e g e e g e e

        
       

 

 32

1 2 3
,l k e k e

 
 

 

         3 3 31 2 2 1 2 1 2

2 3 1 3 2 3 4 2 3 5 1 2 6 1 2
, , , , .l k e k e l k e k e l k e k e l k e k e l k e k e

          
         

 

Δi(i=1,……….,6) are obtain by replacing 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th
 column by

 

1 2 1 2

0,0, ,0,0,

T

Q Q    
    

        

in
 
Δi. 
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