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1. Introduction 
 

Since the introduction of the scalar damage concept by 

Kachanov (1958) and Rabotnov (1963) for creep of metals, 

continuum damage mechanics has become an emerging 

field of active research. Continuum damage mechanics, a 

combination of the internal state variable theory and the 

physical considerations of the irreversible thermodynamic 

processes, provides a powerful framework for derivation of 

consistent constitutive models suitable for many 

engineering problems (e.g. Chow and Wei 1999, Zhou et al. 

2002, Selvadurai 2004, Ohata and Toyoda 2006, Wang et al. 

2006, Thakkar and Panley 2007, Umit et al. 2007, Voyiadjis 

et al. 2008, Voyiadjis et al. 2009, Li and Li 2010, Mitsuru et 

al. 2010, Alexandrov and Jeng 2011, Mao et al. 2012, Tan 

and Watanabe 2012, Alexander et al. 2012, D’Annibale and 

Luongo 2013, Pham and Marigo 2013, Misra and Singh 

2013, Rinaldi 2013, Xiong et al. 2015, Fang et al. 2016). 

The damage variable (or tensor), based on the effective 

stress concept, represents average material degradation, 

which reflects the various types of damage at the micro-

scale level like nucleation and growth of voids, cracks, 

cavities, micro-cracks, and other microscopic defects 

(Voyiadjis and Kattan 2009). The damage variable is scalar  
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in the case isotropic damage mechanics, and the evolution 

equations are easy to handle (Jarić et al. 2012). Lemaitre 

(1984) argued that it is sufficient for using the assumption 

of isotropic damage to give good predictions of the load-

carrying capacity, the number of cycles, or the time to local 

failure in structural components. However, some 

researchers reckon that a single scalar damage variable is 

not sufficient to entirely characterize isotropic damage 

behaviors of damaged materials in multidimensional space. 

For instance, it has been shown by Ju (1990) and Cauvin 

and Testa (1999) that the accurate and consistent description 

of the special case of isotropic damage is obtained by using 

two independent damage variables.  

For isotropic damage theory, in which damage is 

characterized by a single scalar damage variable, the 

effective Poisson’s ratio is immune from the effect of 

damage, i.e., v
*
=v, thus, the following result can be obtained 

K
*
/K=G

*
/G=E

*
/E, where K, G, and E are the bulk 

modulus,the shear modulus and the Young’s modulus of 

undamaged materials, respectively. K
*
, G

*
, and E

* 
are their 

corresponding effective values due to the effect of damage. 

However, foran isotropic solid material with randomly 

oriented cracks, the analytical results of micro-mechanics 

theory (Tang et al. 2002) show that G
*
/G>E

*
/E when the 

crack density parameter 0<β<1. Therefore, strictly 

speaking, the isotropic property of material must be 

characterized by two independent scalar parameters.  

In order to entirely characterize the isotropic damage 

behaviors of damaged materials inmultidimensional space, 
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we deeply investigated the isotropic property of damaged 

materialsand established a system theory of isotropic double 

scalar damage variables on the basis of the research of Tang 

et al. (2002), including the expressions of specific damage 

energy release rate, the coupled constitutive equations 

corresponding to damage, the conditions of admissibility for 

two scalar damage effective tensors within the framework 

of the thermodynamics of irreversible processes. Compared 

with the research of Tang et al. (2002), the theoretical 

formulations of double scalar damage variables in this study 

are given in the form of matrix, which has many features 

such as simpleness, directness, convenience and 

programmable characteristics. In addition, it should be 

noted that the proposed isotropic double scalar damage 

model has been successfully applied in analyzing the 

consolidation problem of damaged porous media (Xue et al. 

2014). Different from Xue et al. (2014), however, the 

present paper mainly concentrates on introducing and 

discussing the entire theory of isotropic double scalar 

damage variables instead of applications. 

 

 

2. Isotropic double scalar damage variables 
 

Young’s modulus (E), Poisson’s ratio (v), shear 

modulus (G or μ) and bulk modulus (K) are the elastic 

material constants commonly used in engineering. Four 

corresponding damage parameters, ΩE, Ωv, ΩG, and Ωk can 

be traditionally defined in terms of the effective engineering 

elastic coefficients and to characterize phenomenologically 

the state of damage as (Xue 2008, Zhang and Cai 2010) 

1
E

E E    (1a) 

1
v

v v    (1b) 

1
G

G G    (1c) 

1
K

K K    (1d) 

As an example, taking into account the elastic relations 

of both the undamaged and the damaged material 
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where λ is the Lamé constant. λ
*
 is the effective Lamé 

constant for isotropic damaged material. By taking the 

following classical elastic relation into account 

1
2

E

G
   , 

 3 3

GE
K

G E



 (3) 

A similar relationship for isotropic damaged material 

can be derived, such as 

 

 
*

1
1

2 1

E

G

E

G







 



, 
  

   
*

1 1

3 3 1 1

G E

G E

GE
K

G E

 

 

 

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 (4) 

The isotropic damage behavior can be characterized by 

two scalar damage variables. Any two out of the four 

damage parameters ΩE, Ωv, ΩG, and Ωk can be used to 

quantify isotropic damage. After selection of the two 

independent damage variables, the corresponding formulas 

estimating the two derived damage parameters can be 

obtained (Xue 2008, Zhang and Cai 2010). 

 

 

3. Strain energy release rate with double scalar 
damage variables 
 

The principle of energy equivalence has been proposed 

in many articles, the elastic energy for a damaged material 

is the same as that of the undamaged material when the 

stress tensor is replaced by the corresponding effective 

stress in the stress-based form. Mathematically, it is shown 

again (Xue 2008, Zhang and Cai 2010) 

      
1T1

2

* *

E G
 , , =W D    



    (5) 

where W
*
 stands for the elastic energy, the effective elastic 

compliance tensor [D
*
]

-1
 in terms of the two scalar damage 

variables ΩE and ΩG for the thermodynamics system can be 

expressed as (Xue 2008) 
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(6) 

By substituting the above equation into Eq. (5), it gives 
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(7) 

Based on the laws of thermodynamics with internal state 

variables, the damage strain energy release rates 

corresponding to the damage variables ΩE and Ωμ can be 

defined as 

*
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*W
Y

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 (9) 

Substituting Eq. (7) into Eqs. (8) and (9), it gives 
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(11) 

The overall specific damage energy release rate should 

be the sum of YE and Yμ i.e., 
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(12) 

It is known that the specific elastic energy W can be 

considered as a sum of two parts  

b dW W W    (13) 

The first part Wb reflects the energy due to bulk change 

(i.e., hydrostatic energy) while the second one Wd is the 

contribution due to distortion of damaged material (i.e., 

shear energy). It is obvious that 
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According to Eq. (13), we have  
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Lets the average stress be 
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and the von Mises equivalent stress be 

 

1 1
2 2

T2 2
{ } or

3 3
eq eq ij ij

s s s s 
   

    
   

 (18a) 

     

1

222 2 2 2 22

3
eq x m y m z m xy yz zx

         
             

 (18b) 

where sij is the deviatoric components of stress tensor, i.e., 

   
T

, , , , ,
ij x m y m z m xy yz zx

s                          (19a) 

3ij ij kk ijs      (19b) 

503



 

Xinhua Xue
 
and Wohua Zhang 

Taking Eqs. (18) and (19) into account, Eqs. (14)-(16) 

can be rewritten  

   
21 9 3

2 1 1
b m

E

W
E




  

 
  

   

 
(20a) 

and 

 
21

6 1
d eq

W



 




 
(20b) 

     
2 21 9 3 1

2 1 1 6 1
b d m eq

E

W W W
E

 

 
    


 

    
    

=  (20c) 

Substituting Eq. (20) into Eqs. (8) and (9), the specific 

damage strain energy release rate has four terms 

 

2

2

9

2 1

b b m

E

E E

W
Y

E



 


 
 

 
(21a) 

 

2

2

3

2 1

b b m
W

Y


 



  


  
 

 
(21b) 

0d d

E

E

W
Y




 


 (21c) 

 

2

2

6 1

eqd d
W

Y


 



  


 
 

 
(21d) 

The specific damage strain energy release rate 

corresponding to the change of both bulk and distortion are 

respectively 

   

2 2

2 2

9 3

2 1 2 1

b b b m m

E

E

Y Y Y
E





 

  
   

 

 
(22a) 

 

2

2

6 1

eqd d d

E
Y Y Y







 
  


 (22b) 

The alternant expression of isotropic damage strain 

energy release rate with respect to the double scale damage 

variables ΩE and Ωμ can be expressed as 

 

2

2

9

2 1

m

E

E E

W
Y

E



 


 
 

,

 

2
22

2

3 1

32 1

eq m

eq

W
Y


 

 

  

     
             

 

(22c) 

The total specific damage energy release rate Y=Yb+Yd, 

which considers the effect of tensile damage, shear damage 

and stress triaxiality, may be expressed as 

     

2
2

2 2 2

/ 3 /
3

2 13 1 1

eq m

eqE

E E
Y

E
 

  

 

     
             

 
(23) 

By taking E/μ=2(1+v), thus 

     

2
2

2 2 2

2(1 ) 3 2(1 )
3

2 13 1 1

eq m

eqE

Y
E

 

  

 

      
             

 (24) 

It is noticed that if ΩE=Ωμ=Ω, the above equation can be 

degenerated the single scalar damage as 

 
   

2
2

2

2
1 3 1 2

32 1

eq m

eq

Y
E

 
 



  
           

 (25) 

which is the same as the Equation that was firstly presented 

by Lemaitre (1985). The specific damage energy release 

rate (Eq. (23) or Eq. (24)) derived from the present model 

of isotropic damage mechanics with double scalar damage 

variables is more practical than that of the single scalar 

damage variable (Eq. (25)) to quantify effects of damage. It 

should be noted that the damage evolution equations are not 

presented for the reason that the dissipation potential is not 

explicitly defined in this study, and readers are referred to 

Xue et al. (2014) concerning with the inelastic dissipation 

potential function and evolution equations of inelastic 

damage variables.  

 

 

4. Coupled constitutive equations corresponding to 

damage 
 

The total strain is defined as (Xue 2008, Zhang and Cai 

2010) 

     e in     (26) 

where {εe} the elastic strain, {εin} the inelastic strain. The 

damage coupled elastic constitutive equation is written by 

{ε
e
}=[D

*
]

-1
{σ} or {σ}=[D

*
]{ε

e
}, where [D

*
] is the effective 

elastic matrix for damaged material defined before.  

For derivation of damage-coupled inelastic constitutive 

equation, the deformation part of the dissipation potential is 

proposed for the eutectic material as 

   2
,

in m
J     (27) 

where J2 is the second invariant of the stress deviatoric 

defined as 

      

1

2
T

2

3
,

2
in m

J s s  
 

   
 

 (28) 

Therefore, the inelastic strain rate can be derived as 

 
   

 **

in in in

2

3
=

2

in
s

J


   

 


 

 
 (29) 

From Eqs. (28) and (29), the relationship between the 

multiplier λin and the inelastic strain {εin} can be derived as 

follows 
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   
   

   

1
T2

2T T
2 2

2

2

3 3 2
,

2 2 3

in in in in

in in in

s s

J
      

    
      

    

 (30) 

Therefore, the multiplier λin is equal to the equivalent 

inelastic strain rate.  

 

 

5. Conditions of admissibility for two scalar damage 

effective tensors 
 

In order to discuss the conditions of admissibility for 

two scalar damage effective tensors, one of simple form can 

be presented as follows (Xue 2008, Zhang and Cai 2010) 

   
2 2* 2 * * 2 *1 1

0
2 2

*

e G Tr G e K TrW          (31) 

where *

eW  
is the elastic energy, which requires that the 

following necessary G>0, λ
*
>0, and sufficient G

*
>0, K*>0 

conditions, or the effective Young’s modulus E
*
>0 and the 

effective Poisson’s ratio −1<v
*
<0.5, that is 

 
 

   

2
*

*

2*

1
0

2 1 2 11

E E
G



 


  

 
 (32a) 

 
 

   

2
*

*

2*

1
0

2 1 3 1 21 2

E E
K



 


  

 
 (32b) 

 
2

* 1
0

E E

  
    (32c) 

where Ω and ω are damage variables. 

Nevertheless, the set of the two above conditions must 

be enriched by the additional condition v
*
>0 since there 

does not exist materials of negative Poisson’s ratio. This 

leads to the following requirement imposed on elements in 

[D
*
]

-1
, that is 

   

 

2*

2

2 1 1 3
0

1

v w v w

E E





   
  


 (33) 

As long as the denominator of fracture Eq. (33) is 

always positive the numerator changes sign for real 

materials for which the initial (undamaged) Poisson’s ratio 

is 0<v<0.5. For instance, in the case of solder material 

63Sn-37Pb considered by Chow and Wei (1999) for which 

v=0.4,  depends on w as shown in Fig. 1. 

The change of sign accompanying w=0.354 means that 

for a damage more advanced than this value the material 

starts to behave in a peculiar way, namely there is observed 

elongation in the direction transverse to the direction of the 

uniaxial tension. This means that wmax=0.354 is the upper 

bound of the damage variable w. Consequently, a physically 

impossible behavior mentioned above was not observed by 

Chow and Wei (1999). Since the numerical examples 

presented in the model restrict themselves to uniaxial 

tension tests and accompanied magnitude of damage  

 
Fig. 1 Dependence of damage modified component

of constitutive tensor with respect to damage 

variable w for material 63Sn–37Pb solder 

 

 

variable w is smaller than its theoretical limit. In order to 

derive conditions of admissibility for the damage effective 

tensors of double scalar damage variables, let us consider a 

general fourth rank symmetric tensor similar to the damage 

effective tensor presented as Eq. (34) 

0

[ ]= 
0 0

0 0 0

0 0

a b a a

a a b a

a a a b

b

b

b



 
 


 
 
 
 
 
 
 

 (34) 

The symmetric constitutive Hookean tensor of isotropic 

material can be expressed as 

 
-1

2

2 0

2
= 

/ 2 0 0

0 0 / 2 0

0 0 / 2

D

   

   

   







 
 


 
 
 
 
 
 
 

 

(35) 

where a=λ, b=μ/2. In such a case the damage-modified 

tensor of elasticity remains symmetric and isotropic tensor 

of four rank can be presented as follows 

     

 

1 1

* 1 1 *

i

*

jkl ijmn mnpq pqkl ij kl ik jl il jk
D D + +       

  

 

  

 

D D 

 
 (36) 

The effective Lamé constant λ
*
 and μ

*
 can be similarly 

defined as  

  3 2 3 2a aG b a b abG         (37a) 

2G b G    (37b) 

Necessary and sufficient conditions of positive 

definiteness of quadratic form associated with the strain 

energy Eq. (31) enriched by additional condition of Eqs. 

(32), (33) are as follows 

1 *

1122
D

1 *

1122
D
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  

  
 

* 2 2 * 2

2 2*

* * 2 2 2

2 / 3 9 6 0,

1 9 6 31 1
0

9 6 9 6

K G a ab b G b G

a ab b

E K G E a ab b b



 

     

  
    

 

 (38) 

It is visible that all these inequalities are satisfied if a≥0, 

b>0. The following three cases can be distinguished 

Case 1: If a=0 and b=1/(1−Ω), then inequalities 

    

  

 

*

*

2*

*

2

2
*

*

0
3 1 2 3 1 2 1

0
2 1 1

1
0

E E
K

E
G

E E

  

 

 

  
  

 
 


   

 (39) 

are always satisfied, so the damage effective tensor of the 

form  

     1I    

or    1 / 2ijkl ik jk il jk        

(40) 

is always admissible.  

Case 2: If w=1/(1−Ω) and b=1/(1−Ω), then inequalities 

   

   

    
 

2

*

2

*

2

2 2
*

* 2

9 6 1
0

3 1 21

1

2 11

1 1 9 6 3
0

3 9 6 1

E
K

E
G

E E

 





    

 

 
 






       
 

 
(41) 

are always satisfied so the damage effective tensor being 

sum of two first terms  

1

1 1 1

1
0

1 1 1

1

1 1 1
[ ]=  

1
0 0

1

1
0 0 0

1

1
0 0

1

  

  

  

  

  

  








 
   
 

 
   
 


 
   

 
 

 
 
 

 
 
   

 

(42) 

is always admissible. 

Case 3: If a=1/(1−Ω) and b=w/(1−Ω) then inequalities 

   

   

  

 

2

*

2

2

*

2

2 2*

* 2

9 6
0

3 1 21

2 11

(1 ) 1 9 6 3
0

3 9 6

E
K

E
G

E E

 







   

 

 
 






     
  

 

 (43) 

are always satisfied so the damage effect tensor 

 

1 1 1

1 1 1

1 1 1
0

1 1 1

1 1 1

1 1 1
=  

0 0
1

0 0 0
1

0 0
1



  


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

  













 
   
 

 
   
 


 
   

 
 

 
 
 

 
 
   



 

(44) 

is always admissible. 

Case 4: If a=[1/(1−ΩK)−1/(1−Ωu)]/3 and b=1/(1−Ωμ), 

then inequalities 

     
*

2 2

1
0

3 1 21 1
K K

K E
K

v 
  

 

 
(45a) 

     
* *

2 2

1
0

2 11 1

E
G

 




 
   

 

 
(45b) 

are always satisfied, however the last condition 

2 2*

*

(1 )(1 ) (1 2 )(1 )
0

3

K

E E


        

     (45c) 

is not always fulfilled since the numerator may change the 

sign. Therefore the damage effective tensor referring to 

damage variables affected separately the volumetric and 

deviatoric parts of the stress can be presented as follows 

 

1 2 1 1 1 1

1 1 1 1 1 1

1 1 1 2 1 1
0

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 1 11
=

33
0 0

1

3
0 0 0

1

3
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1

K K K

K K K

K K K

  

  
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





     

     

     







 
        

 
 

   
      

 
   

      
 
 

 
 
 
 
 
 
  



 

(46) 

which may be conditionally admissible if only 

       
1

21 1 1 2 1K v v       
. 

506



 

Theoretical formulation of double scalar damage variables 

6. Conclusions 
 

In this study, the detailed dissections concentrated on 

isotropic double scalar damage variables are discussed. 

Based on the irreversible thermodynamics, the expressions 

of specific damage energy release rate, the coupled 

constitutive equations corresponding to damage and the 

conditions of admissibility for two scalar damage effective 

tensors have been developed in this paper. It is worth 

mentioning that the above-mentioned theoretical 

formulations are only logically reasonable. Owing to the 

limitations of time, conditions, funds, etc, they should be 

subject to multifaceted experiments before their innovative 

significance can be fully verified. As such, there is still 

room for further refinement of the theory of double scalar 

damage variables in future research work. The current level 

of research can only be regarded as an exploratory attempt 

in this field. 
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