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1. Introduction 
 

Fiber reinforced concrete is a composite material, to 

which, in addition to the usual concrete ingredients, small 

discontinuous fibers of high tensile strength are added 

during the mixing process. The fibers used in fiber 

reinforced concrete are classified according to the material 

they are made of: steel fibers, glass fibers, synthetic fibers 

and natural fibers (ACI Committee 544 2001). Compared to 

the same concrete composition without fibers, fiber 

reinforced concrete has significantly higher fracture energy 

but also compressive and tensile strengths are higher. 

However, for some fiber types or for excessively large 

volume fractions of fibers, compressive or tensile strengths 

might be reduced. The main advantages of fiber reinforced 

concrete are visible at the post peak response, when the 

fibers bridge the cracks and contribute to the resistance and 

ductility (ACI Committee 544 2001). 

Due to its composition concrete is an extremely 

heterogeneous quasi-brittle material, not simple to model 

realistically. From the numerical point of view this makes 

the modelling even more complex. In the numerical 

modelling macro scale models are mostly used in 

engineering practice, however, numerically more 

demanding meso scale models provide better insight into 

the actual concrete behaviour. Numerical studies are 

essential to improve the properties of the material, such as 

concrete or fiber reinforced concrete. Having a realistic 

numerical model, numerical parametric studies together 

with experiments can serve as important tool to improve 

material and structural properties. An overview of the  

                                           

Corresponding author, Ph.D. 

E-mail: ozbolt@iwb.uni-stuttgart.de 

 

 

models for modelling of fiber reinforced concrete is given 

in Kunieda et al. (2011), according to which the majority of 

fiber reinforced concrete models are based on: (1) Models 

formulated in the framework of continuum mechanics using 

stress-strain (σ-ε) relationship and smeared crack approach 

(Han et al. 2003, Suwada and Fukuyama 2006); (2) 

Discrete models based on the stress-crack opening law (σ-w, 

discrete cracks) (Fischer et al. 2007, Maalej 2001) and (3) 

The combination of (1) and (2) (Bolander and Saito 1997).  

The numerical analysis of fiber reinforced concrete can 

be carried out at the macro or meso scale. For the modelling 

at the macro scale material properties have to be be 

homogenised and, depending whether the cracking is 

modelled using smeared or discrete approach, stress-strain 

softening law or stress-crack opening law is employed. 

These models are suitable for analysis of structures (e.g., 

beams, frames, slabs, etc.). As an example for the modelling 

of the fiber reinforced concrete within the concept of 

smeared crack approach at the macro scale, where the effect 

of fibers is implicitly accounted for in the constitutive law, 

is the recently proposed microplane model M7f (Caner et 

al. 2013). However, when modelling at the meso scale, the 

fiber reinforced concrete is usually considered as a three-

phase material consisting of: cement matrix (concrete), 

fibers and interface between cement matrix and fibers. 

Every single fiber has to be modelled separately so that the 

fiber position and its orientation, as random variables, have 

to be specified. In such detailed models where the concrete, 

fibers and its connection (bond) are explicitly discretized 

(e.g., using finite elements) and characterised by the 

specific constitutive law, the macroscopic response is the 

result of the meso scale analysis. These models are useful 

for detailed parametric studies, however, they are 

computationally too expensive to be employed in structural 

analysis. Typical examples of such modelling approach are 

based on the Lattice models and the Rigid-Body-Spring  
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Fig. 1 Hook-ended steel fibers Dramix RC 65/35 BN 

 

 

Fig. 2 Single fiber pull-out test 

 

 
Model (RBSM) (Kunieda et al. 2011, Ogura et al. 2013, 

Bolander and Saito 1997, Jun and Mechtcherine 2010, 

Bolander and Sukumar 2005, Bolander et al. 2008, Kang et 

al. 2014, Schauffert and Cusatis 2012, Schauffert et al. 

2012). 

In the present paper experimental and numerical results 

of 3-point bending pre-notched beams made of fiber 

reinforced concrete are presented and discussed. In order to 

provide better insight into the actual behaviour of fiber 

reinforced concrete, the numerical analysis is performed at 

the meso scale. The aim is to investigate whether the meso 

scale model based on the microplane model for matrix 

(concrete) is able to replicate the macroscopic response of 

concrete and to investigate the effective bond-slip 

relationship between fibers and concrete for different 

volume content of fibers. In the analysis fiber reinforced 

concrete is considered as a three-phase composite 

consisting of concrete, fibers and the interface between 

them. Concrete is discretized by 3D four nodes constant 

strain finite elements with the microplane model as a 

constitutive law (Ožbolt et al. 2001). The fibers are 

modelled as a simple truss finite elements that are randomly 

distributed over the concrete and represented by the uniaxial 

stress-strain relationship for steel. The connection between 

concrete and fibers is modelled with discrete bond-slip 

relationship. The calibration of the parameters for concrete 

and for the bond-slip relationship is obtained by fitting 

experimental results of concrete beams without and with 

different fiber content. Finally, numerical parametric study 

is carried out to find out the relationship between volume 

content of fibers and effective bond-slip relationship. The 

results indicate that effective bond strength and slip 

capacity degrade with an increase in volume content of 

fibers, beyond a threshold value.  

 

Fig. 3 Single fiber pull-out force vs. slip curves 

 

 

Fig. 4 Pre-notched beam geometry and 3-point bending 

test set-up (Vandewalle 2002) 

 

 

Fig. 5 Displacement controlled flexural 3-point 

bending test set-up (Vf=1.5%) 

 

 

2. Experimental investigations 
 

Three-point bending tests are performed on pre-notched 

fiber reinforced concrete beams. In the experiments the 

concrete quality is kept constant and only the volume 

content of steel fibers is varied in the range from 0 to 1.5%. 

The experimental results are then used to calibrate 

numerical model in order to investigate the influence of 

volume content of fibers on the effective bond-slip 

constitutive law for fibers. 

 

2.1 Material properties 
 

The compressive strength of concrete is measured 

according to EN 12390-3 standard (EN 12390-3:2001 2001) 

on three concrete cubes dimensions 150×150×150 mm. 

Tensile strength is measured by employing tensile splitting 

tests according to EN-12390-6 standard (EN 12390-6:2000 

2000) on 150×150×150 mm concrete cubes using three  
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(a) Vf=0% (b) Vf=0.5% 

  
(c) Vf=1.0% (d) Vf=1.5% 

Fig. 6 Experimentally measured load-displacement 

curves for beans with different fiber volume fractions 

 

 

specimens. The mean values of compressive and tensile 

splitting strength are fc=74.47 MPa and fts=4.38 MPa, 

respectively. 

In the fiber reinforced concrete the hooked-end steel 

fibers Dramix RC 65/35 BN are used. The fiber length 

being lf=35 mm, the diameter df=0.55 mm (Fig. 1) and the 

aspect ratio lf/df=65. The fiber tensile strength is fs=1.345 

GPa and Young’s modulus Es=210 GPa. To obtain bond-slip 

relation of a single fiber, three pull-out tests are carried out 

on 40×40×160 mm concrete prisms (Fig. 2). The steel fibers 

were embedded in the middle of the concrete prism, with 

the embedment length equal to one fourth of the fiber length 

(le=lf/4=35/4≈9 mm). The axis of the fiber is perpendicular 

to the surface of the concrete specimen. The pull-out tests 

are carried out by displacement control, the constant 

displacement rate being 0.005 mm/s. The experiment is 

conducted until the fiber is completely pulled out from the 

specimen (total displacement of 9 mm). The measured pull-

out load vs. fiber displacement curves and the 

corresponding mean value curve are shown in Fig. 3. Note 

the presence of the post-peak hump, which is characteristic 

of the actions of the hook-ended of the fiber during pull-out. 

Note that due to the averaging of test data (n=3) the hump is 

not clearly seen in the average response curve. The post 

peak hump is a consequence of fully straightened end of 

hooked fiber.  

 

2.2 Three-point bending tests on pre-notched beams 

 
The bending tests are carried out on square cross-section 

beams dimensions b×h=150×150 mm of the total length 
L=550 mm. The beam is simply supported with the span of 
l=5 0 0  mm ( see  F i g .  4 ) ,  a cco rd i n g  to  RI LEM 
recommendations for fiber reinforced concrete structures 
TC 162-TDF (Vandewalle 2002). The notch at the mid-
length of the beam was cut 28 days after casting using the 
wet sawing method. The beam was turned on its side at 90° 
against the casting surface and the notch was sawn over the  

 
Fig. 7 Decomposition of the macroscopic strain vector 

into microplane strain components-normal (volumetric 

and deviatoric) and shear 
 
 

entire width. The notch width is 5 mm and 25 mm in depth 
(see Fig. 4). 

The beam is loaded by displacement control with 

displacement rate at the mid-span of 0.01 mm/min for plain 

concrete beams and 0.2 mm/min for the fiber reinforced 

beams, respectively. For fiber reinforced beams the 

displacement controlled test is carried out up to the total 

displacement of approximately 30 mm. During the test the 

load and displacement at the bottom surface of the beam 

were continuously measured (see Fig. 5). The tests are 

performed for four different fiber volume fractions (Vf=0%, 

0.5%, 1.0% and 1.5%) and for each fiber fraction three 

specimens are tested, i.e., in total 12 specimens. 

Experimentally obtained load-deflection curves for the 

beams, with different fiber volume fractions (Vf=0%, 0.5%, 

1.0% and 1.5%) are plotted in Fig. 6. Each figure shows the 

load-displacement relationship for all tested specimens as 

well as the mean value (in black). For plain concrete beams 

(Vf=0%) the displacement up to 0.5 mm is shown, while for 

fiber reinforced concrete (Vf=0.5%, 1.0% and 1.5%) the 

displacement up to 5.0 mm is plotted. It can be seen that up 

to the formation of the first crack in concrete the load-

displacement curves are almost identical for all beams, and 

only after the first crack appearance large scatter of 

measured data can be observed. As expected, with addition 

of steel fibers the beam response becomes more ductile. It is 

obvious that with increasing the fiber volume fraction, the 

resistance and ductility of the beams increase. In all cases 

the failure is due to the mode-I fracture with formation of 

single discrete crack. 

 
 

3. Meso scale modelling approach 

 
In the numerical 3D finite element analysis at the meso 

scale, fiber reinforced concrete is considered as a three-

phase composite consisting of concrete, fibers and the 

discrete interface between them. Concrete is discretized by 

3D finite elements with the microplane model as a 

constitutive law. The fibers are modelled as simple 1D truss 

finite elements that are randomly distributed over the 

concrete and the uniaxial stress-strain relationship for steel 

is used as a constitutive law. The connection between 

concrete and fibers is simulated with discrete bond-slip 

relationship.  
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Fig. 8 Constitutive law of steel fiber 

 

 

Fig. 9 Discrete bond-slip relationship 

 

 

3.1 Concrete 
 

The numerical analysis is carried out using three-

dimensional finite element (3D FE) code MASA developed 

at the University of Stuttgart (Ožbolt 1998). Through a 

number of numerical studies it has been demonstrated that 

the code is able to realistically predict behaviour of concrete 

structures (Ožbolt et al. 2001, Ožbolt et al. 2002, Ožbolt 

and Reinhardt 2002, Ožbolt et al. 2000). In the analysis the 

concrete is simulated by the microplane model in which 

damage and cracking phenomena are modelled within the 

concept of smeared cracks. To assure mesh objective results 

relatively simple crack band approach is used (Bažant and 

Oh 1983).  

It is important to note that for the realistic modelling of 

concrete the constitutive law plays the most important role. 

In the microplane model, the material response is calculated 

based on the monitoring of stresses and strains in different 

predefined directions. Integrating microplane stresses in a 

thermodynamically consistent way, from a known 

macroscopic strain tensor it is possible to calculate 

macroscopic stress tensor. The constitutive framework is 

similar to discrete type of the models (e.g., random particle 

model) with the difference that the model is formulated in 

the framework of continuum. The physical concept behind 

the microplane model was already discussed at the 

beginning of last century by Mohr (1900) and Taylor 

(1938). In the model, the material is characterized by 

uniaxial relations between stress and strain components on 

planes of various orientations. These planes may be 

imagined to represent damage planes or weak planes in the 

microstructure, such as those that exist at the contact  

 

Fig. 10 Finite element idealization of fibers: (a) bond-

slip relationship, (b) four truss finite elements and (c) 

actual fiber shape 

 

 

between aggregate and the cement matrix. Unlike 

phenomenological models for concrete (e.g., plasticity or 

damage based models), which are based on tensor 

invariants, in the microplane model the tensorial invariance 

restrictions need not be directly enforced. Superimposing, 

in a suitable manner, the responses from all the microplanes 

automatically satisfies them.  

The used microplane model (Ožbolt et al. 2001) is based 

on the so-called relaxed kinematic constraint concept. It is a 

modification of the M2 microplane model proposed by 

Bažant and Prat (1988). Each microplane is defined by its 

unit normal vector components ni (see Fig. 7). Microplane 

strains are assumed to be the projections of macroscopic 

strain tensor ij (kinematic constraint). On the microplane 

are considered normal (N, N) and two shear stress-strain 

components (K, M, K, M). 

To realistically model concrete, the normal microplane 

stress and strain components have to be decomposed into 

volumetric and deviatoric parts (N=V+D, N=V+D). 

Unlike most microplane formulations for concrete, which 

are based on the kinematic constrain approach, to prevent 

unrealistic model response for dominant tensile load and to 

prevent stress locking phenomena, in the present model 

kinematic constrain is relaxed by additional discontinuity 

function that is introduced at the macro level. Based on the 

micro-macro work conjugancy of volumetric-deviatoric 

split and using pre-defined microplane stress-strain 

constitutive laws, the macroscopic stress tensor is calculated 

as an integral over all possible, pre-defined, microplane 

orientations 
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where S denotes the surface of the unit radius sphere and ij 

denotes Kronecker delta and ki and mi are directions of 

shear microplane components. The integration is performed 

by numerical integration using 21 integration points 

(symmetric part of the sphere, see Fig. 7). For more detail 

see (Ožbolt et al. 2001). 

 
3.2 Steel fibers 
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(a) (b) 

Fig. 12 Stress-strain curves for concrete: (a) uniaxial 

compression and (b) uniaxial tension 

 

 

The constitutive law for fibers is defined by the uniaxial 

stress-strain relationship. The three-linear stress-strain law 

shown in Fig. 8 is used, which is defined by five 

parameters: initial Young’s modulus E0, hardening modulus 

Eh, yield stress fy and tensile (compressive) strength fs and 

limit strain f. Once the strain reaches the limit value it is 

assumed that the stress immediately drops to zero. 

However, as will be shown later, in all here investigated 

 

 

Fig. 13 Load-displacement curves for plain concrete 

beam, numerical and experimental results 

 

 

cases the failure of steel was not relevant since the fibers 

were pulled-out before the limit strain was reached. The 

constitutive law is assumed to be the same for tension and 

compression. 

 

3.3 Connection between fibers and concrete: 
Discrete bond-slip relationship 
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(e) 

Fig. 11 Finite element discretization of concrete and fibers for fiber volume content of 0.5% and 1.0%: (a) Vf=0.5%, 

entire beam view, (b) Vf=1.0%, entire beam view, (c) Vf=0.5%, left half of the beam (d) Vf=0.5%, isometric view of the 

left half of the beam and (e) detail of fiber-concrete of connection 
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Fig. 14 Experimental single fiber bond-slip 

relationship (τ-s) and fit obtained from numerical 

analysis 

 

 

Fig. 15 Comparison between experimentally and 

numerically obtained load-mid span displacement 

curves (Vf=0.5%) for different bond-slip relationships 
 

 

The discrete bond model for the modelling of bond 

between concrete and deformed reinforcement bars is here 

used to simulate the connection between fibers and concrete 

(Ožbolt et al. 2002). In the finite element model the bond 

model simulates the connection between concrete 3D finite 

elements and the fibers that are represented by 1D truss 

finite elements. The connection perpendicular to the fiber 

orientation is assumed to be perfect and the connection in 

direction of fiber axis is defined by discrete bond-slip law. 

The fiber slip s represents a relative displacement between 

“the same” concrete and the fiber node in direction of fiber 

axis. It is modelled using zero length nonlinear spring 

element. The equation used for the discrete bond model is 

divided into four parts (Ožbolt et al. 2002, see Fig. 9) 
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(2) 

where the parameters for s (slip), τ (bond stress), k 

(stiffness) and R (radius of curvature of the ascending 

branch) are defined as shown in Fig. 9. 

 

3.4 Generation of fiber finite elements 
 
For the defined 3D space of the beam the fibers are 

generated randomly. For the given length of fibers (35 mm) 

the position of their centre of gravity and orientation are 

 

Fig. 16 Comparison between experimentally and 

numerically obtained load-mid span displacement 

curves (Vf=1.0%) 

 

 
Fig. 17 Fiber bond-slip relationship (τ-s) for fiber 

reinforced concrete beams with different fiber volume 

fractions 

 

  
(a) Vf=0% (b) Vf=0.5% 

  
(c) Vf=1.0% (d) Vf=1.5% 

Fig. 18 Comparison between experimentally and 

numerically obtained load-mid span deflection curves 

 

 
chosen as a random variables. The random generator fulfils 

two constrains: (1) the generation of fibers is terminated 

when in the advanced specified volume content of fibers is 

reached and (2) the crossing between fibers is not allowed, 

i.e., if two fibers are crossing one of them is removed. Once 
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the fibers are generated they are discretized by four truss 

finite elements as a straight bars, i.e., the hooks are not 

modelled (see Fig. 10). Note that their mechanical effect is 

taken into account indirectly through the effective bond-slip 

relationship. Truss finite elements are used as a constraint 

for the generation of four node concrete solid finite 

elements. At the common points two nodes are introduced 

and connected with zero length nonlinear spring elements, 

which represent bond-slip constitutive law, as defined 

above.  

In order to save computational time, in the 3-point 

bending finite element analysis of the beam, only central 

part of the beam (150×150×150 mm) is modelled as a three-

phase material. The rest of the beam, which is out of the 

zone of interest, is modelled using standard 3D solid finite 

elements representing fiber reinforced concrete at macro 

scale. Furthermore, in the analysis simplified version of the 

bond-slip relationship from Fig. 9 is used in most cases with 

the assumption R= (see Fig. 10). The essential parameters 

for the calibration of the bond-slip relationship (τ-s) are: 

k1=k2=ksecant, τmax=τm+τf and s3. The contribution of the 

hooks is smeared out over the length of the fibers and it is 

represented by the mechanical bond (τm). The friction 

between deformed fiber and concrete is accounted for 

through τf. Both contributions are assumed to be the same in 

all five nodes of the fiber finite elements. This 

simplification is introduced in order to avoid modelling of 

complex processes related to the deformation of hooks 

when a fiber is pulled out from the concrete. In such 

modelling approach the fiber has to be discretized with 

several beam finite elements in order to simulate pull-out 

from the concrete realistically. In the present simulations 

four finite elements are used. 

 

Table 1 Discrete bond model parameters for Vf =0.5% 

Case 

Model parameters 

τm 
(MPa) 

τf 
(MPa) 

ksecant 
(MPa/mm) 

k1 
(MPa/mm) 

k2 
(MPa/mm) 

s2
* 

(mm) 
s3 

(mm) 
R 

BS-P 10.17 1.83 17.13 41.81 2.71 0.20 4.80 3.04 

BS-1 10.17 1.83 1200 1200 1200 0.20 4.80 - 

BS-2 10.17 1.83 1200 1200 1200 0.20 4.00 - 

BS-3 12.55 1.83 1200 1200 1200 0.20 4.80 - 

BS-4 7.76 1.83 1200 1200 1200 0.20 4.80 - 

 

 

4. Numerical analysis 
 

4.1 Finite element model 
 

The numerical analysis is carried out for notched beams 

with different fiber volume fractions (Vf=0%, 0.5%, 1.0% 

and 1.5%). For the finite element discretization of the beam 

with fiber content Vf=0.5% and Vf=1%, in total 1874 and 

3784 fibers, respectively, are generated in the middle zone 

of the beam. For the fiber volume fraction of Vf=1.5% the 

number of concrete 3D finite elements becomes extremely 

large and the analysis very demanding. Therefore, the finite 

element mesh for this case (Vf=1.5%) is the same as for the 

case Vf=1.0%, however, the cross-section area and diameter 

of the fibers are adopted accordingly, i.e., an increase of 1.5 

times in the fiber cross section area and fiber circumference 

are accounted for. The models for plain concrete (Vf=0%) 

are generated for concrete meshes that correspond to 

Vf=0.5% and Vf=1.0%. These two models are marked with 

Vf=0.0% (0.5%) and Vf=1.0% (1.0%), respectively. Note 

that the discretizations without bond elements and fibers 

need to be verified with respect to the mesh objectivity, i.e., 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 19 Cracks (maximum principal strain) at peak load: (a) Vf=1.0% and (b) Vf=1.5% and in the last increment: 

(c) Vf=1.0% and (d) Vf=1.5%; Experimental failure mode for: (e) Vf=1.0% and (f) Vf=1.5% 
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Fig. 20 Load-displacement response of the beam 

(Vf=0.5%) assuming three different bond-slip 

relationships 

 

  

(a) (b) 

Fig. 21 The correlation between (a) maximum bond 

strength (τmax) and volume fraction of fibers (Vf) and 

(b) limit slip (s3) and volume fraction of fibers (Vf) 

 

 

two different meshes for plain concrete beams should result 

to the same response. The typical finite element 

discretizations for beams with 0.5% and 1.0% of volume 

fiber fractions together with random distribution of fibers 

are shown in Fig. 11. 

 
4.2 Calibration of concrete parameters 

 
The model parameters are obtained by fitting of the test 

results for plain concrete beams loaded in 3-point bending 

under displacement control. The experimentally obtained 

load-displacement curve for mean value is fitted by the 

numerical simulation. In Fig. 12 are shown stress-strain 

curves for uniaxial compression and tension, respectively. 

The curves are plotted for the crack band width (element 

size) h=5 mm. The resulting macroscopic properties of 

concrete are: Young’s modulus Ec=38652 MPa, Poisson’s 

ratio c=0.18, uniaxial compressive strength fc=75.0 MPa, 

uniaxial tensile strength ft=5.24 MPa and fracture energy 

GF=92 J/m
2
.  

In Fig. 13 are plotted experimentally and numerically 

obtained curves for two different meshes. As can be seen 

the agreement between experimental and numerical results 

for plain concrete is reasonably good for both 

discretizations. 

 
4.3 Effective bond-slip relationship of single fiber 

 
The mechanical properties of steel fiber are given by the 

Table 2 Discrete bond model parameters for all models 

Volume 

content of 
fibers 

Model parameters 

τm 

(MPa) 

τf 

(MPa) 

ksecant 

(MPa/mm) 

k1 

(MPa/mm) 

s2
* 

(mm) 

s3 

(mm) 

0.5 10.17 1.83 1200 1200 0.20 4.00 

1.0 6.17 1.83 1200 1200 0.20 2.50 

1.5 4.89 1.83 1200 1200 0.20 2.00 
 

 

Table 3 Maximum and minimum stresses in fibers 
 

Model 

Vf (%) 

Maximum stress in fibers 

(MPa) 

Minimum stress in fibers 

(MPa) 

0.5 1154 -359 

1.0 771 -741 

1.5 648 -632 

 

 

producer and are as follows: Young’s modulus Es=210 GPa, 

Poisson’s ratio νs=0.33, yield stress fy=1.211 GPa, strength 

fs=1.345 GPa, hardening modulus Eh=14.56 GPa and limit 

strain s=0.05. The bond-slip relationship (τ-s) for single 

fiber is obtained from the single fiber pull-out test (see 

Fig. 3) with bond stress 

  ef ld

P





  (3) 

where P is the pull-out load, df is the fiber diameter (0.55 

mm) and le is the embedment length (9 mm). 

The model parameters of the effective bond-slip curve 

(see Fig. 9) for single fiber loaded in axial direction are 

obtained by fitting experimentally obtained bond-slip 

relationship (mean value, Fig. 3). Based on the fit, the 

discrete bond model parameters are obtained as: τm=10.17 

MPa, τf=1.83 MPa, ksecant=17.129 MPa/mm, k1=41.808 

MPa/mm, k2=2.707 MPa/mm, s2
*
=0.2 mm, s3=4.8 mm and 

R=3.039. The comparison between the experimental bond-

slip curve and the constitutive law is shown in Fig. 14. 

The influence of the bond-slip relationship on the 

response of the beam is first studied for the concrete mix 

with volume fiber fraction of 0.5%. The analysis is carried 

out using bond-slip constitutive law for pull-out of single 

fiber (case BS-P, see Table 1). The comparison with the 

experimental results (see Fig. 15) shows that the peak 

resistance is well estimated, however, the pre-peak stiffness 

is too low and the post peak response too brittle. There are 

two reasons for this, first, the bond-slip relationship for a 

single fiber does not account for the interaction between 

fibers (damage of concrete between fibers) and, second, in 

the critical section of the beam fibers are loaded (pulled out) 

in directions that do not coincide with the their axis, i.e., 

there is also dowel action, which leads to the increase of the 

stiffness of the effective bond-slip relationship. The analysis 

clearly shows that the initial stiffness of the bond-slip 

relationship significantly influences the response. 

Therefore, to more realistically estimate the effective bond-

slip relationship, single fiber tests, where the inclination of 

fibers is varied, should be carried out. Moreover, additional 

numerical parametric study would be useful to investigate 

the effect in more detail.   
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Meso scale model for fiber-reinforced-concrete: Microplane based approach 

To obtain better fit of the experimental results a 

parametric study is carried out. In the study the simplified 

version of the bond-slip relationship (see Fig. 10(a)) is used 

in which, compared to the single bond-slip relationship, 

stiffness k1, k2 and ksecant are increased and all equal to 1200 

MPa/mm, keeping all other parameters the same (case BS-

1, see Table 1). With these parameters for bond-slip 

relationship the analysis shows very good agreement with 

the experiments almost in the entire displacement range, up 

to 5 mm. To further improve the response for large 

displacements, in the next step slip parameter s3 is slightly 

decreased, from 4.8 mm to 4.0 mm (case BS-2). The 

resulting curve obtained from the meso-scale model exhibit 

now nice agreement with the experimental curve, not only 

for the pre-peak response and resistance but also for the 

entire post-peak response in the range up to displacement of 

5 mm. Finally, the effect of bond strength on the response of 

the beam is investigated by varying peak resistance (12.0 

MPa, case BS-1) in the range of 20% (cases BS-3 and BS-

4). From Fig. 15 can be seen that this leads to the positive 

and negative shift, respectively, of the post-peak response. 

Based on the comparison of the numerical and experimental 

data it can be concluded that the best fit for Vf=0.5% is 

obtained for the bond-slip relationship BS-2. 

If one employs the bond-slip relationship obtained from 

the calibration of the model with Vf=0.5% for the beams 

with higher content of fibers then the resulting resistance is 

overestimated and the post-peak response is too ductile. 

This is illustrated in Fig. 16 which shows the comparison 

between the corresponding experimental data and numerical 

simulation using bond slip relationship for the case BS-2. 

The reason for this is obvious, namely, due to the higher 

content of fibers the interaction between fibers over the 

surrounding concrete leads to the reduction of the pull-out 

capacity of fibers. The concrete of the fracture process zone 

between fibers becomes more damaged and consequently 

the pull-out capacity of fibers is lower. 

The evaluation of numerical results shows that the 

effective bond-slip relationship should be adapted to the 

volume content of fibers. This is obtained through the 

parametric study, similar as carried out for the fiber volume 

content of 0.5%. In the study the starting constitutive bond-

slip relationship is the case BS-2 (see Table 1). The peak 

resistance m and the limit slip s3 are varied such that the 

analysis fit the mean load-displacement curve for the fiber 

volume content of 1.0% and 1.5%, respectively. The 

optimal parameters of the bond-slip constitutive law for all 

three volume contents are summarised in Table 2 and the 

corresponding bond-slip relationships are plotted in Fig. 17. 
The resulting load-displacement curves for the beams with 
volume fraction of fibers varied from 0% to 1.5% are 
shown in Fig. 18. As can be seen for the entire range of the 
post peak response the agreement between numerical and 
experimental curves is very good. Note that for the case 
with 1% of fiber content the analysis was stopped at 
displacement of approximately 4 mm due to numerical 
difficulties. It can be seen that for relative low volume 
fraction of fibers after the peak resistance is reached the 
load-displacement curve exhibit a sudden drop and 
subsequent recovery. This is due to the relative low volume 

content of fibers but is also dependent on the beam size. In 
case of large beams this drop would probably be even more 
pronounced. 

In all simulations the failure is due to the bending 

Mode-I failure type. For the lower content of fibers damage 

tends to be more localized around the final discrete crack 

whereas for the cases with higher content of fibers damage 

tends to be more distributed. Typical crack patters observed 

in the experiments and analyses for Vf=1.0% and 1.5%, 

respectively, are shown in Fig. 19. It can be seen that 

concrete in the fracture process zone is more damaged if the 

content of fibers is higher (compare Figs. 19(c) and 19(d)). 

This explains the reason for decrease of effective bond 

resistance of fibers with increase of volume fractions of 

fibers.  

In Table 3 are summarized the maximum and minimum 

stresses in fibers. It is evident that in no case the stress in 

the fibers reaches yield stress fy=1210.5 MPa. Moreover, the 

maximum tensile stresses in fibers descreases with increase 

of volume fraction of fibers. In the contrary, the 

compressive stresses in fibers increases with increase of 

volume fraction of fibers. Obviously, failure is due to the 

pull-out of fibers and not to the failure of steel. This 

suggests that for the correct prediction of the failure of 

beams the pull-out constitutive law is relevant.  

The importance of the bond-slip constitutive law is 

demonstrated in Fig. 20, which shows load-displacement 

response of the beam (Vf=0.5%) assuming three different 

bond-slip relationships: (1) bond-slip law the same as in the 

case BS-2 (see Table 1), (2) perfect bond (no slip) and no 

limit strain of steel and (3) perfect bond and limit strain 

failure of steel equal to 5%. From Fig. 20 can be seen that 

perfect bond leads to high peak resistance and high ductility 

only if no failure of steel fibers takes place. With 

accounting for the limit on the strain in steel (5%) peak load 

also increases, however, once the strength of steel fibers is 

reached there is relative brittle failure of the beam.  

 
4.4 Proposed bond-slip relationship 
 
Based on the results of the numerical study the 

correlation between the maximum shear stress τmax=τm+τf 

(MPa) and the fiber volume fraction Vf (%) is proposed as 

5.15.0)(

5.00)(

max

max,max





f

f

f

fsf

V
V

B
AV

VV





 (4) 

where τmax,s is the bond strength of a single fiber and A and 

B are constants obtained from the above discussed fitting 

procedure. For the fibers investigated in the present study 

τmax,s=12 MPa, A=4.05 (MPa) and B=3.97 (MPa) with 

correlation coefficient equal 0.99. 

The correlation between the slip s3 (mm) at which τm 

becomes zero and the fiber volume fraction Vf (%) is 

proposed as follows 

5.15.0)(

5.00)(

3

max,33
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f

ff
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in which s3,max is the maximum value of s3 (4.0 mm), which 

approximately corresponds to single pull-out constitutive 

law, C (1.0 mm) and D (1.5 mm) are a constants obtained 

from the fitting procedure with correlation coefficient 1.00. 

The relationships from Eqs. (4) and (5) are plotted in 

Fig. 21. They can be used for the estimation of the 

parameters τmax and s3 for any fiber volume fraction value 

between 0.0 % and 1.5 %. Of course, these functions are 

valid only for the fiber type used in the present study. 

Moreover, they could also be dependent on the concrete 

type. 

The above equations principally cover the range of the 

volume content of fibers from 0.5% up to 1.5%, since for 

this range the study was carried out. However, for relatively 

low amount of fibers (Vf<0.5%) it is assumed that the 

distance between the fibers is such that the effective bond-

slip resistance is not affected, i.e., the maximum bond 

resistance is reached for Vf=0.5%.   

 

 

5. Conclusions 

 
Based on the results of the study, the following 

conclusions can be drown out.  

• The present numerical results show that meso scale 

approach based on the microplane model for concrete and 

discrete bond-slip relationship for steel fibers is able to 

realistically replicate experimental tests. As expected, with 

increase of the volume fraction of fibers the resistance and 

especially ductility increases. 

• The effective bond-slip relationship is calibrated based 

on the fit of the experimental results for 3-point bending test 

data by the numerical results using bond-slip relation of a 

single fiber as the starting relationship. 
• It is shown that the effective bond-slip relationship 

cannot be obtained only from a single fiber pull-out 
experiments, where the fibers were aligned with the loading 
direction. Single fiber tests, where the inclination of fibers 
is varied, can lead to a better representation of effective 
bond properties. From such a test only bond strength and 
maximum slip can be realistically evaluated. However, the 
initial stiffness is underestimated, with a consequence that 
the resulting pre-peak resistance is underestimated and the 
post-peak response is too brittle. 

• With the increase of the volume content of fibers the 

bond strength and maximum slip decrease. The likely 

reason is the interaction among the fibers when they come 

too close to each other, i.e., the local damage of concrete 

around fibers leads to degradation of effective bond 

capability. 

• The evaluation of the numerical results shows that for 

the investigated beams the failure is due to the failure of 

bond between concrete and fibers, i.e., fibers are pulled-out 

from the concrete. In all cases the yield stress in steel is not 

reached.  

• All beams fail in mode-I bending failure type. With 

increase of the volume content of fibers local damage 

around discrete bending crack increases, which also leads to 

the increase of ductility. 

• The proposed meso scale model is shown to be 

powerful numerical tool able to realistically predict 

behaviour of fiber reinforced concrete. In combination with 

experimental results it can be effectively employed in 

design of new steel fiber reinforced concretes and structural 

elements. 
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