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1. Introduction 
 

During the last two decades, fiber reinforced polymers 

(FRP) have been accepted by civil engineers and used in 

different construction applications such as the repair and 

rehabilitation of existing structures as well as in new 

construction applications.  

The characteristics of FRP materials, including highly 

specific strength and stiffness, low thickness and weight, 

and high resistance to corrosion, are favorable properties 

justifying the increased use of these composites in structural 

rehabilitation and strengthening, namely to increase load 

carrying and energy absorption capacities. 

Many types of FRP composites are available for external 

strengthening and repair such as: glass fiber reinforced 

polymers, carbon fiber reinforced polymers (CFRP), and 

aramid fiber reinforced polymers. 

The strengthening of concrete columns can be executed 

by a FRP jacket, which provides lateral confinement to the 

column. FRP confinement can be of different types, such as  
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spiral, wrapped and tube. The FRP wrapping technique is 

widely used to increase load carrying capacity, ductility and 

the shear strength of concrete columns (Berthet et al. 2005, 

Harajli et al. 2006, Mirmiran and Shahawy 1997, Pessiki et 

al. 2001, Toutanji 1999, Toutanji and Deng 2001). 

In this application, the FRP sheets are generally 

wrapped around the columns with fibers mainly oriented in 

the circumferential (hoop) direction. When a FRP confined 

concrete column is axially loaded in compression, the 

concrete tends to expand laterally and this expansion is 

restrained by the FRP. Therefore, the fibers confine the 

concrete and increase its compressive strength by creating a 

triaxial stress state. The FRP wraps also increase the shear 

resistance of columns and prevent premature failures when 

columns are subjected to lateral loadings typical of those 

observed during earthquakes (Green et al. 2006). 

One of the successful and most popular structural 

applications of FRP composites is the external 

strengthening, repair and ductility enhancement of 

reinforced concrete columns in both seismic and corrosive 

environments using CFRP (Hollaway 2004, Leung et al. 

2006). 

In this context, the effect of FRP, namely CFRP, 

confinement on the strength and deformation capacity of 

concrete columns has been extensively studied and is now 

sufficiently understood and well documented. Therefore, 

several empirical and theoretical models have been 
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Based on the results obtained, CFRP confined concrete compressive strength can be accurately predicted for circular cross 

sections using SVM with five and six input parameters without spending too much time. The results for rectangular sections 
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developed and proposed by different authors (Deniaud and 

Neale 2006, Lam et al. 2006, Lee and Hegemier 2009, 

Matthys et al. 2005, Teng et al. 2007). 

However, the majority of such studies have focused on 

the performance of circular cross section columns. The data 

available for columns of square or rectangular cross 

sections have increased over recent years but are still 

limited (Benzaid and Mesbah 2013). Moreover, these 

relationships are usually empirical ones or based on 

correlation analysis, as so far there is no general law 

describing the phenomena and able to explain such a hugely 

complex system. In this context, the traditional methods 

based on generalization of previous experience may not be 

sufficiently accurate to provide satisfactory relationships. 

That is why intelligent models with the ability to learn from 

examples have been successfully applied in the prediction 

of concrete compressive strength (Gupta 2007, Kim and 

Kim 2002, Lai and Serra 1997, Martins and Camões 2013, 

Saridemir 2009 and Topçu and Saridemir 2008) and also in 

the prediction of CFRP confined concrete compressive 

strength (Cevik 2011, Cevik and Guzelbey 2008, Cevik et 

al. 2010, Doran et al. 2015 and Jalal et al. 2013). 

In this study the forecasting of wrapped CFRP confined 

concrete strength was carried out using Data Mining (DM) 

techniques taking into account the compressive strength 

prediction of the composite. These techniques are powerful, 

intelligent tools that learn from examples and experiences 

and were applied successfully to predict concrete strength 

by other authors (Gupta 2007, Kim and Kim 2002, Lai and 

Serra 1997, Saridemir 2009 and Topçu and Saridemir 

2008). 

This research compared the predictive capacity of 

several DM techniques to forecast CFRP confined concrete 

compressive strength taking into account the specimens’ 

cross section: circular or rectangular.  

This paper begins by presenting a brief description of 

CFRP confined concrete and its compressive strength 

prediction. This is followed by a definition of the data 

mining techniques and their application in predicting CFRP 

confined concrete behavior. How to evaluate the different 

algorithms of DM is also explained. Finally the results, 

discussion and conclusions are presented. 

 

 

2. Compressive strength prediction of CFRP 
confined concrete 
 

The use of CFRP in columns to increase deformation 

capacities and compressive strengths is a relatively new 

technique and has been extensively used for more than two 

decades. In this context, many experimental and analytical 

investigations have been conducted in recent decades to 

evaluate the axial load capacity and stress-strain behavior of 

concrete confined with CFRP polymers (Doran et al. 2015). 
Reinforced concrete columns need to be laterally 

confined in order to ensure major deformation under 
applied loads before failure and to provide an adequate 
flexural behavior. In the case of a seismic event, energy 
dissipation allowed by a well-confined concrete column can 
often save lives. On the contrary, a poorly confined concrete 
column behaves in a brittle manner leading to sudden and 

catastrophic failures (Dong et al. 2015 and Kumutha et al. 
2007). 

When a CFRP-wrapped concrete core is subjected to an 

axial compressive load, the concrete core expands laterally. 

This expansion is restricted by the CFRP wrap, and 

therefore the concrete core is changed from an uniaxial to a 

three-dimensional compressive stress state. In this state, the 

concrete core performance is significantly influenced by the 

confinement pressure (Parvin and Jamwal 2005). Several 

parameters influence the confinement effectiveness of the 

CFRP wrap, which include concrete strength, wrap 

thickness or the number of CFRP layers, and wrap angle 

orientation (Sadeghian et al. 2008). 

Although many investigations have been carried out on 

the behavior of CFRP-wrapped concrete, the effects of 

concrete strength, CFRP confining stiffness and CFRP 

rupture strain on the strength and ductility of CFRP 

confined concrete are quite complex and up to now, there 

are still no generally accepted guidelines for the design of 

CFRP confinement. 

 

2.1 Modelling FRP-confined concrete 
 

According to Hollaway (2004), Lee and Hegemier 

(2009) and Teng et al. (2007), various models for 

confinement of concrete with FRP have been developed. 

Most of the existing strength models for FRP-confined 

concrete adopted the concept of Richart et al. (1929), in 

which the compressive strength for confined concrete takes 

the following form 
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Where 
'

ccf  and 
'
0cf  are the compressive strength of 

confined and unconfined concrete respectively, fl is the 

lateral confinement pressure, k1 is the confinement 

effectiveness coefficient and Ks could be defined as the 

lateral confinement coefficient. 

Eq. (1) assumes a linear relation between 
'

ccf  and fl. 

However, other nonlinear empirical relations can be found 

in the literature (Jalal et al. 2013).  

 

 

3. Data mining 
 

3.1 Definition and applications to CFRP confined 
concrete 

 

The Data Mining (DM) process is one step of so-called 

Knowledge Discovery in Databases (KDD). According to 

Fayyad et al. (1996), KDD begins with the selection of the 

data base, which constitutes the support to proceed with the 

study. After the selection, the target data is pre-processed 

and DM is applied. The KDD process ends with 

presentation of the knowledge discovery after interpretation  
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Fig. 1 Example of a regression tree 

 

 

of the results. DM can be applied to classification and 

regression tasks. The regression task consists of mapping 

several input variables to a numeric output. In the DM 

process it is usual to divide the dataset into two subsets. 

One, called the training set, is used in a learning process of 

the algorithms, and the other, called the testing set, is used 

to test the algorithms. During the learning process the 

various parameters of the algorithms are adjusted to 

optimize the results. The accuracy of the algorithms is 

assessed through metrics based on errors and the correlation 

coefficient. The validated algorithms are used as models to 

predict the value of the output variables. 

Many authors have been successful in applying 

intelligent tools. Cevik and Guzelbey (2008) applied neural 

networks to model the strength enhancement of CFRP 

confined concrete cylinders. Cevik and Cabalar (2008), 

proposed a genetic programming approach to the 

formulation of strength enhancement of FRP confined 

concrete cylinders. Gandomi et al. (2010) presented a new 

approach to the formulation of compressive strength of 

CFRP confined concrete cylinders using linear genetic 

programming. Cevik (2011) applied genetic programming 

and step-wise regression, neuro fuzzy and neural network to 

model strength enhancement of FRP confined concrete 

cylinders. Jalal et al. (2013) carried out modelling of 

strength enhancement of concrete cylinders with retrofitted 

CFRP composites using the adaptive neuro fuzzy inference 

system (ANFIS) and genetic programming. Doran et al. 

(2015), implemented a new artificial intelligence-based 

algorithm to model the strength enhancement of CFRP 

confined reinforced concrete columns using fuzzy logic 

methodology. 

 

3.2 DM algorithms 
 

There are several DM algorithms such as Regression 

Trees (RT), Multiple Regressions (MR), Artificial Neural 

Networks (ANN), Support Vector Machines (SVM) and k-

Nearest Neighbors (k-NN). These algorithms were already 

explained by the authors in previous papers (Martins and 

Camões 2013, Martins and Miranda 2012). Therefore, a 

brief description of them will be provided below. Further 

details can be found in many publications. Breiman et al. 

(1984), Berk (2008), Coimbra et al. (2014) and Czajkowski 

and Kretowski (2016) for RT; Aleksander and Morton 

(1990), Ilonen et al. (2003), Downing (2015) and Souza and  

 

Fig. 2 Example of a multilayer perceptron 

 

 

Soares (2016) for ANN; Vapnik (1998), Cristianini and 

Shawe-Taylor (2000), Dibiki et al. (2001), Ben-Hur and 

Weston (2010) and Liang et al. (2011) for SVM; Cover 

(1968), Cover and Hart (1967), Nguyen et al. (2016) and 

Yang et al. (2016) for k-NN. 

The Decision Trees (Quinlan 1986) have an inverted 

tree structure composed of nodes and descendent branches. 

The result of a test performed at each node indicates the 

branch to continue the process. This process is repeated 

until the final decision can be made and a class is attributed 

to the register. Regression trees are a particular case of 

decision trees where classes are replaced by values (Fig. 1). 

Multiple regressions are similar to simple regressions 

but with several independent variables instead of one 

independent variable. 

ANN is a technique that attempts to mimic the human 

brain. The artificial neurons communicate with each other 

sending signals through liaisons that define the ANN 

architecture. A weight, wi, j (i and j are neurons or nodes) is 

associated with each link and each neuron has an activation 

function that introduces a non-linear component (Cortez 

2010 and Haykin 1999). This study used a logistic 

activation function f given by 1/(1+ex) and the following 

general equation 
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Where xi are the input parameters or nodes, I is the 

number of input parameters and o is the output parameter. 

This study adopted the multilayer perceptron (feed 

forward network) architecture (Haykin 1999) with one 

hidden layer that contains HN processing units (Fig. 2). 

Since the network's performance is sensitive to HN, a grid 

search of (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) was adopted 

during the learning phase to find the best HN value. The 

neural network can learn their weights and bias using the 

gradient descent algorithm, known as backpropagation, 

presented by Nielsen (2016). 

The SVM technique was initially developed for 

classification problems by Cortes and Vapnik (1995). This 

method uses nonlinear mapping to transform the input data 

into a multidimensional feature space (Fig. 3). After this  
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Fig. 3 Example of a multilayer perceptron 

 

 

transformation the SVM finds the best hyperplane of linear 

separation within the feature space. The nonlinear mapping 

depends on a kernel function k(x, x’). This work uses the 

Gaussian kernel function which is the most popular one 
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After introduction of the ε-insensitive loss function it 

was possible to apply SVM to regression problems (Smola 

and Scholkopf 2004). Both the width of the ε-insensitive 

zone and the kernel parameter, γ, affected the performance 

of the regression. In addition to these two parameters there 

is a penalty parameter C, which also affects the 

performance of the regression. In order to limit searching 

space, C and ε were set using heuristics proposed by 

Cherkassy and Ma (2004): C=3 and N/̂  , where 

  


N

i ii yy
1

ˆ5.1̂ , iŷ  is the value predicted by a 3-

nearest neighbor algorithm and N the number of examples. 

Under this setup, the search space was limited to the input 

values of γ. 

The k-Nearest Neighbor (Hechenbichler and Schliep 

2004) is a simple supervised learning algorithm that can be 

used in classification and regression problems. In 

classification problems an instance query is classified 

according to its neighbors’ classes (Fig. 4). The dominant 

class among the nearest neighbors is attributed to the query 

instance. In regression problems the property value for the 

instance query is obtained as the average of the weighted 

values of the k nearest neighbors. This implies calculation 

of the distance between the target and its neighbors in the 

multidimensional space. Generally, weights are attributed 

according to distance. The closest neighbors are given more 

weight than more distant ones. 

In this work the whole dataset was divided in two 

subsets: the training set with two thirds of the whole dataset 

and the testing set with the remaining data. 
Using the training dataset the parameters involved in the 

different techniques (H, γ and k) were optimized through a 
grid search of H(0, 2, 4, 6, ..., 20), γ(2

-15
, 2

-13
, ..., 2

3
) and 

k(2, 3, 4, ..., 12). The predictive performance of the models 
was evaluated by adopting a 10-fold cross-validation 
(Effron 1993) corresponding to the division of the training 
dataset, formed of two thirds of the whole dataset, in 10 
equal subsets. One subset is tested each time and the 
remaining data are used to fit the model. This means that all  

 

Fig. 4 Example of k-nearest neighbors 
 
 

training data are used for training and testing. The process 
is repeated sequentially until all subsets have been tested. 
After selection of the best parameters, the model is retrained 
with all training data. Finally, the future performance of the 
model is verified using the testing dataset (one third of the 
whole dataset). It must be stressed that this testing dataset 
was not used to fit the model. 

There are several metrics to assess the performance of 

the regression models. This study uses the mean absolute 

deviation (MAD), the root mean squared error (RMSE) and 

the coefficient of correlation (R). The three metrics are 

defined as 
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ŷŷyy
R

 
(7) 

Where N denotes the number of examples, yi the real 

value, iŷ  the value estimated by the model, y  the mean 

of the real values and ŷ  
the mean of the estimated values.  

The results obtained should be interpreted with great 

care, and the relative importance of the input parameters in 

the model can be very useful to support this interpretation. 

Hence the need to perform a sensitivity analysis (Kewley et 

al. 2000) aiming to evaluate the model’s response to 

changes in the input variables. Thus, each input parameter 

is ranged from its lowest value to its highest value while the 

remaining input parameters keep their mean values. For a 

given input parameter, the higher the variance induced by it 

in the model output, the greater its importance. 

 

 

4. Data used in data mining 
 

As already mentioned, this study includes two analyses 

corresponding to circular and rectangular cross sections. 

This required two databases. The database for circular cross 

 

Support Vectors 

Support Vectors 

Feature Space 
Transformation 

Real Space 

 

6 nearest 

neighbours 

2 nearest 

neighbours 

Query 

instance 
Observations 

236



 

Compressive strength prediction of CFRP confined concrete using data mining techniques 

Table 1 Statistics of the input and the output parameters for 

circular sections 

Parameters Min. Mean Max. 
Standard 

Deviation 

Coefficient of 

variation (%) 

Inputs 

d(mm) 51 131.20 200 34.99 26.67 

h(mm) 102 294.81 610 120.87 41.00 

t(mm) 0.089 0.416 2.0 0.368 88.62 

ECFRP(MPa) 19900 611600 211221.6 108110.5 51.18 

εrup(mm) 0.0017 0.0091 0.0207 0.0033 36.11 

f’
c0(MPa) 17.39 39.69 171 25.61 64.53 

Output Ks 1.05 2.15 5.23 0.91 42.37 

 
Table 2 Statistics of the input and the output parameters for 

rectangular sections 

Parameters Min. Mean Max. 
Standard 

Deviation 

Coefficient of 

variation (%) 

Inputs 

b(mm) 20 181.14 457 73.26 40.44 

l(mm) 108 185.19 457 46.98 25.37 

t(mm) 0.056 0.528 3.0 0.413 78.15 

ECFRP(MPa) 10500 193886.5 439000 77994.87 40.23 

f’
c0(MPa) 10.83 26.89 55.36 11.60 43.14 

Output Ks 0.94 1.77 4.79 0.72 40.75 

 

 

sections was taken from Jalal et al. (2013). This database 

was built from several existing tests on CFRP-confined 

concrete cylinders corresponding to twenty published 

papers. It is composed of 128 records, each record having 

the following parameters: diameter (d) and height (h) of the 

cylindrical specimen, total thickness of CFRP layer used (t), 

elastic modulus of CFRP (ECFRP), ultimate circumferential 

strain in the CFRP jacket (εrup), unconfined concrete 

strength (
'
0cf ) and confined compressive strength (

'
ccf ). 

Nevertheless, in this study 
'

ccf
 

was substituted by Ks 

which was calculated using the Eq. (2). The database for 

rectangular sections was taken from Doren et al. (2015). 

This database was collected from fifteen references and is 

composed of 163 records, each record having the following 

parameters: column width (b), column length (l), radius of 

the corner (r), total thickness of CFRP (t), elastic modulus 

of CFRP (ECFRP), unconfined concrete strength (
'

ccf ) and 

lateral confinement coefficient (Ks).  

Tables 1 and 2 present some statistical data of the 

parameters used in the analyses. In relation to rectangular 

cross sections the coefficients of variation of four 

parameters (b, ECFRP, 
'

0cf and Ks) are quite similar, which 

means they have analogous variability. The variability is 

more pronounced among the parameters corresponding to 

circular cross sections. Total thickness of CFRP (t) for both 

circular and rectangular cross sections presented the highest 

variability. It must be stressed that Ks presented similar 

variability for both circular and rectangular cross sections. 

 

 
5. Results and discussion 

Table 3 Mean values of the metrics obtained in the training 

phase for circular sections using six input parameters 

 RT MR ANN SVM k-NN 

MAD 0.574 0.687 0.509 0.359 0.442 

RMSE 0.767 0.883 0.797 0.518 0.618 

R 0.603 0.414 0.729 0.839 0.760 

 

Table 4 Mean values of the metrics obtained in the training 

phase for circular sections using five input parameters 

 RT MR ANN SVM k-NN 

MAD 0.578 0.690 0.469 0.355 0.394 

RMSE 0.761 0.882 0.691 0.501 0.549 

R 0.611 0.413 0.757 0.850 0.814 

 

Table 5 Mean values of the metrics obtained in the training 

phase for circular sections using four input parameters 

 RT MR ANN SVM k-NN 

MAD 0.551 0.697 0.407 0.366 0.386 

RMSE 0.757 0.873 0.660 0.506 0.533 

R 0.615 0.414 0.806 0.845 0.825 

 

 

Fig. 5 Metrics to evaluate the performance of the 

models for circular cross sections 

 

 

With the databases built, the predictive models were 

trained to forecast the lateral confinement coefficient (Ks). 

 

5.1 Circular cross sections 
 

For this geometry three analyses were performed using a 

different number of input parameters: six parameters (d, h, 

t, ECFRP, εrup and
'
0cf ), five parameters (d, t, ECFRP, εrup and 

'
0cf ) and four parameters (d, t, ECFRP and 

'
0cf ). 

Tables 3, 4 and 5 show the errors and the coefficient of 
correlation obtained in the training phase. Analysis of these 
tables reveals that the best RT, ANN and k-NN models are 
obtained with four parameters while the best MR and SVM 
models are obtained with six and five parameters, 
respectively. To allow a visual comparison of the different 
methods used, with the metrics close to each other, the bar 
graph in Fig. 5 was plotted. Fig. 5 is composed of the 
weakest SVM model and by the best models of the 
remaining techniques (RT, MR, ANN and k-NN). The use 
of the weakest SVM model is justified because, as can be 
seen in Tables 3 to 5, all SVM models are better than all the  
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Table 6 Importance of the input variables in the evaluation 

of Ks (%) for circular sections using six input parameters 

 RT MR ANN SVM k-NN 

d 21.68 12.00 3.58 11.87 8.11 

h 0 2.60 6.01 4.36 10.95 

t 1.68 7.38 52.90 24.48 6.98 

EFRP 23.95 15.92 13.94 11.02 32.01 

f’c0 52.69 52.44 15.41 37.98 24.14 

εrup 0 9.66 8.16 10.29 17.81 

 

Table 7 Importance of the input variables in the evaluation 

of Ks (%) for circular sections using five input parameters 

 RT MR ANN SVM k-NN 

d 21.68 20.45 5.75 21.17 7.99 

t 1.68 4.68 22.41 16.79 10.45 

EFRP 23.95 15.70 49.46 8.96 25.48 

f’c0 52.69 47.18 14.52 45.66 31.62 

εrup 0 11.99 7.86 7.42 24.46 

 
Table 8 Importance of the input variables in the evaluation 

of Ks (%) for circular sections using four input parameters 

 RT MR ANN SVM k-NN 

d 18.51 23.20 12.92 6.45 5.30 

t 1.44 6.19 26.43 37.61 20.68 

f’c0 35.04 5.05 26.40 10.48 23.46 

εrup 45.01 65.56 34.25 45.46 50.56 

 

 
models obtained with the other techniques. A visual analysis 

of Fig. 5 confirms that the SVM model has the smallest 

errors and the highest coefficient of correlation, whereas the 

MR model has the highest errors and the lowest coefficient 

of correlation. 

The importance of the input variables in the models is 

presented in Tables 6, 7 and 8. As explained earlier, the 

models are based on different algorithms. Therefore, the 

importance attributed to the input parameters differs from 

model to model. 

When only four parameters are used, all the models 

attributed the greatest importance to
'
0cf . The RT, MR and 

SVM models maintained 
'

0cf  as the most important 

parameter when using five and six input parameters. When 

the six input parameters are used all the models attributed 

low importance to h. 

The difference in performance verified in the training 

phase of the three SVM models is small. Therefore, at first 

sight, the three SVM models could be used to predict Ks. 

However, in the model with 4 parameters 
'
0cf  presents 

about four times less importance than εrup and t. As this 

relationship does not seem reasonable, the SVM model with 

four parameters should be discarded.  

The accuracy of the SVM models with six and five input 

parameters can be verified in Figs. 6-7, which present the  

  
(a) (b) 

Fig. 6 Predicted versus measured Ks using SVM model with 

six input parameters for circular cross sections obtained 

with: (a) training data set, (b) testing data set 

 

  
(a) (b) 

Fig. 7 Predicted versus measured Ks using SVM model with 

five input parameters for circular cross sections obtained 

with: (a) training data set, (b) testing data set 
 

Table 9 Metrics corresponding to SVM models of Figs. 6 

and 7 

Parameters  MAD RMSE R 

5 
training 0.060 0.120 0.992 

testing 0.162 0.247 0.958 

6 
training 0.086 0.176 0.986 

testing 0.151 0.216 0.977 

 

 
relationships between the measured and calculated values of 
Ks, using the training and testing data. It is recalled that the 
testing data were not used in generating the model. These 
figures confirm the good predictive capacity of both 
models. However, to perform a mathematical analysis of 
these figures it is necessary to calculate the associated 
errors and the coefficient of correlation. These metrics are 
presented in Table 9. In relation to the metrics obtained in 
the training phase (see Tables 3 to 5) it can be seen that the 
errors are lower and the coefficients of correlation are 
higher. Table 9 shows that the performance of the SVM 
model is better with six parameters using the testing dataset. 
 

5.2 Rectangular cross sections 
 

Table 10 shows the errors and the coefficient of 

correlation obtained in the training phase. The SVM model 

has the best forecasting capacity and the RT model the 

poorest forecasting capacity. In relation to the importance 

attributed to the input parameters by the models, only RT  
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Table 10 Mean values of the metrics obtained in the training 

phase for rectangular sections 

 RT MR ANN SVM k-NN 

MAD 0.405 0.375 0.325 0.279 0.302 

RMSE 0.586 0.541 0.684 0.445 0.498 

R 0.595 0.658 0.629 0.794 0.718 

 
Table 11 Importance of the input variables in the evaluation 

of Ks (%) for rectangular sections 

 RT MR ANN SVM k-NN 

b 0 2.05 3.73 0.96 6.18 

h 9.59 9.99 15.49 3.39 5.46 

t 6.43 37.90 27.25 36.71 16.85 

ECFRP 0 35.62 46.57 29.87 67.60 

f’c0 83.98 14.44 6.96 29.07 3.91 

 

  
(a) (b) 

Fig. 8 Predicted versus measured Ks using SVM model for 

rectangular cross sections obtained with: (a) training data 

set; (b) testing data set 
 

 

attributes the greatest importance to 
'
0cf  (Table 11).  k- 

NN and ANN attribute marginal importance to 
'
0cf . SVM 

attributed the highest importance to t. However, it attributed 

almost 30% of importance to
'
0cf  and ECFRP. 

Fig. 8 shows the comparison between the measured and 

the predicted lateral confinement coefficient for rectangular 

cross sections and the SVM model using the training and 

testing set, respectively. The results are reasonable until Ks 

is more or less equal to 3. For higher values of Ks the 

measured values tend to be lower than the predicted values. 

Fig. 9 allows visual comparison of the models’ 

performance, confirming the best performance of the SVM 

model followed by the k-NN model. Furthermore, the RT 

model has the highest MAD value and the lowest R value. 

However, it is the ANN model that gives the highest value 

of RMSE, which can be explained by the high variability of 

these errors obtained in the cross-validation scheme. 

 

 
6. Conclusions 
 

Data mining techniques have the capacity to learn from 
examples. In this study several data mining techniques were  

 

Fig. 9 Metrics to evaluate the models’ performance for 

rectangular cross sections 

 

 

used to predict the lateral confinement coefficient. The 

training phase indicates the SVM as the model with the best 

predictive capacity for all analyzed situations. Furthermore, 

the SVM model demonstrates sensitivity to parameters 

known to affect the lateral confinement coefficient. In the 

case of circular cross sections, the height (h) of the 

specimens has no significant influence on the models’ 

performance. This was confirmed by the lesser importance 

of h and the better performance of the models when using 

five parameters, without h, mainly ANN, SVM and k-NN 

models. However, the validation of the SVM model with six 

input parameters using the unseen testing dataset reveals 

that the influence of h is enough to slightly improve the 

performance of the SVM model with five parameters. 

Moreover, based on the analyzed data, Ks can be accurately 

predicted for circular cross sections using SVM with five 

input parameters without spending too much time. 

The results for rectangular sections were not as good as 

those obtained for circular sections. It seems that Ks can 

only be obtained with a reasonable accuracy for values less 

than 3. 

Despite the good performance presented by SVM, it 

should be stressed that this model is only valid for 

conditions found in the dataset used in this study. Therefore, 

it is only valid for circular and rectangular sections and for 

CFRP confined concrete. Its application to other materials 

of confinement, such as steel, was not studied in this 

research and should be verified using an enlarged dataset 

with data for those materials. 
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