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Abstract.  The main aim of this study is to predict the compressive and flexural strengths of self–

compacting mortar (SCM) containing nano–SiO2, nano–Fe2O3 and nano–CuO using wavelet–based 

weighted least squares–support vector machines (WLS–SVM) approach which is called WWLS–SVM. The 

WWLS–SVM regression model is a relatively new metamodel has been successfully introduced as an 

excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order 

to achieve the aim of this study, first, the WLS–SVM and WWLS–SVM models are developed based on a 

database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer 

dosage, slump flow diameter and V–funnel flow time are considered as the input parameters of the models. 

The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. 

Finally, a statistical analysis is performed to demonstrate the generality performance of the models for 

predicting the compressive and flexural strengths. The numerical results show that both of these metamodels 

have good performance in the desirable accuracy and applicability. Furthermore, by adopting these 

predicting metamodels, the considerable cost and time–consuming laboratory tests can be eliminated. 
 

Keywords:  model mortar; compressive strength; flexural strength; nanoparticles; weighted least 

squares support vector machine; wavelet 

 
 
1. Introduction 
 

Mechanical assessment of concrete strengths has been widely considered as the main and most 

important property of concrete, which is often measured after a standard curing time. The 

mechanical strength consists of the compressive and flexural strengths which depends on many 

factors. Other concrete properties such as elastic modulus and water absorption appear to have 
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direct relationships with the compressive strength. Furthermore, the compressive strength is 

usually utilized as the major criterion in the evaluation of the concrete quality. Therefore, an 

accurate estimation of the compressive strength before the use of concrete in constructing 

engineering projects is very important.  

Recently, self-compacting concrete (SCC) has been widely developed and known as a new type 

of concrete technology (Oltulu and Sahin 2010). Due to the ability to be compacted by its own 

weight without the need of vibration, the uses of SCC have been increased rapidly in the last three 

decades (Jalal et al. 2012, Madandoust et al. 2012). Previous studies were shown that mechanical 

properties of self–compacting mortar (SCM) are similar to the results of the SCC. Consequently, 

conducting research on the mortar is more controllable (Niknam and Mousavi 2010). Furthermore, 

the mechanical properties of SCM can be used to examine and estimate the performance of SCC.  

Recently, nanotechnology has widely received the considerable attention due to the new 

potential use of the nano materials in nanoscale, which can improve the properties of cementitious 

materials. Nanoparticles (NP) can affect the acceleration of cement hydration, because of their 

high activity, and also the particles can act as a nano–filler due to their high surface. Hence, the 

materials efficiently improve compacting the microstructure, reduce the porosity and consequently 

increase the strength. According to the author’s knowledge, several works incorporate 

nanoparticles into SCM have been done. The most of them have focused on nano–SiO2 (NS) in 

cement–based materials (Sobolev et al. 2009, Nazari and Riahi 2011a, Oltulu and Sahin 2013, 

Mohseni et al. 2015). Nanoparticles same as other factors like age of curing, water–to–cement 

ratio and aggregate type can mainly affect the properties of concrete specially strength. 

In the last decade, predicting the compressive strength of concrete has been an attractive 

research, and different approaches have been introduced to estimate the compressive strength 

based on the mix proportions of different ingredients (Yeh 1998). Various studies have applied 

artificial intelligence (AI) techniques to predict the compressive strength of SCS (Yeh 1998, Chou 

et al. 2011, Erdal et al. 2013). According to previous studies, the AI techniques have proved their 

superior capability over traditional modelling methods. The successful application of Artificial 

Neural Network (ANN) as one of AI techniques has been reported for prediction of the 

compressive strength of concrete (Guang and Zong 2000, Kewalramani and Gupta 2006, Oztaas et 

al. 2005). Although, ANN has the following limitations: 
• ANN cannot provide the information about the relative significance of the various parameters 

(Park and Rilett 1999).  
• A common criticism of neural networks is that they require a large diversity of training for 

operation. The knowledge acquired during training the model is stored in an implicit manner. 

Thus, it is hard to come up with a reasonable interpretation of the overall structure of the network 

(Kecman 2001). 
• ANN has some intrinsic disadvantages such as slow convergence speed, less generalizing 

effectiveness, arriving at local minimum and over–fitting problems (Ravi 2008). 

The support vector machine (SVM) is a relatively new AI technique which has been widely 

applied in engineering problems and has yielded encouraging results. The results show that the 

SVM approach has comparable or higher performance than traditional learning machines and has 

been utilized as a powerful tool to solve classification and regression problems (Chou et al. 2011, 

Cevik et al. 2015). However, the SVM approach consists of several inherent drawbacks. Firstly, 

the approach is unable to provide high prediction accuracy for either the penalty parameter or 

kernel parameter settings. Secondly, it considers all training data points equally in order to 

construct the decision surface. Hence, Suykens et al. (2002) introduced weighted least squares–
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support vector machines (WLS–SVM) as a machine learning algorithm that keeps the estimate 

more robust and precise by assigning weights for training samples. Over the past few years, WLS–

SVM has been applied in many engineering problems successfully (Quan et al. 2010, Sobhani et 

al. 2013, Khatibinia and Khosravi 2014, Mirzaei et al. 2015, Mahani et al. 2015, Katibinia et al. 

2016, Chitti et al. 2016). Recently, a combination of WLS–SVM and Morlet wavelet kernel 

function, called WWLS–SVM has been introduced (Khatibinia et al. 2013a, b, Gharehbaghi and 

Khatibinia 2015). The results have demonstrated that the wavelet kernel function effectively 

improve the performance of WLS–SVM. 

The main purpose of this study is to predict the compressive and flexural strengths of SCMs 

incorporating different types of NPs based on using the WLS–SVM and WWLS–SVM models. 

Although, the superiority of the SVM approaches have been strongly indicated in various recent 

applications, none of the previous research has investigated the capability of the WWLS–SVM and 

WWLS–SVM models for predicting the SCM strength. Hence, the main aims of this study are:  

• Develop the reliable and robust WWLS–SVM and WLS–SVM models for predicting the 

mechanical properties of SCM.    

• Explore the influence of wavelet and Gaussian radial basis function (RBF) kernel functions on 

the performance of the WLS–SVM model. 

• Compare the results of WWLS–SVM and WLS–SVM with those of other techniques. 

 

 

2. Experimental program 

 
2.1 Material 

 
Ordinary Portland Cement (OPC) type II and natural river sand were used conforming to 

ASTM C150 (2001) and ASTM C778 (2011), respectively. According to the ASTM standard, fly 

ash (FA) as an additive material can be used to improve the workability of SCMs. The physical 

properties and chemical composition of cement and FA are given in Table 1.  

 

 
Table 1 The chemical composition and physical properties of cement and FA 

Chemical analysis 

Constituents (%) Cement FA 

SiO2 21.75 55.8 

Al2O3 5.15 20.75 

Fe2O3 3.23 6.66 

CaO 63.75 4.12 

MgO 1.15 1.9 

SO3 1.95 0.44 

K2O 0.56 1.73 

Na2O 0.33 0.78 

L.O.I 2.08 1.95 

Physical properties 

Surface area (m
2
/g) 0.32 0.28 

Specific gravity (g/cm
3
) 3.15 2.2 
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Table 2 Properties of nanoparticels 

Nanoparticles Average Diameter (nm) Specific Surface Area (m
2
/g) Purity (%) 

Nano SiO2 15 200 > 99 

Nano Fe2O3 60 60 > 98 

Nano CuO 15 200 > 99 

 

 

In Table 1, the nanoparticles include nano SiO2, nanoCuO and nano Fe2O3 with an average 

particle size of 20 nm which is used as a partial replacement for cement. Some properties of these 

nanoparticles are shown in Table 2. 

 

2.2 Mixture proportions 
 

A total of 22 mixture specimens were produced with having constant water/binder ratio of 0.4 

and total binder of 700 kg/m
3
. The amount of FA was 25wt.% of the cement. The proportion of the 

nanoparticles amount used were determined at rations corresponding to 1, 3 and 5wt.% of the 

binder. The amounts of FA and NPs were considered by carrying out a number of preliminary 

trials.  

In this study, the label of NS, NF and NC denote the SCMs containing nano–SiO2, nano–Fe2O3 

and nano–CuO, respectively. The number before the letter N indicates the amount of NPs were 

added in the mortar. For example, 3NS mortar mixture is consisted of nano–SiO2 at ratio of 3wt%. 

The overall proportion of NPs in the single, binary and ternary mixing was identical. For example, 

in binary combinations containing 1% nanoparticles, each amount of nanoparticle was obtained 

with a ratio of 1%/3. For example, the 1NSC mortar consists of 1%/2 nano–SiO2 and 1%/2 nano–

CuO. In order to achieve the desired flow ability of the mixtures, a polycarboxylate type super 

plasticizer (SP) conforming to ASTM C494 type F, with a density of 1.03 g/cm
3
 was utilized. The 

amount of SP was varied to satisfy slump flow diameter and V–funnel flow time, according to the 

standards of the EFNARC committee (2002). The mix proportions of the SCMs are given in Table 

3. 

 

2.3 Test procedure 
 

Since NPs may not show a uniform distribution in the mixture due to their large surface area, it 

directly influences on the physical and mechanical properties of mortars. In the present study, after 

several pioneer experiments was finalized according to: 

First, the cement and sand were dry mixed in the mixer at a moderate speed for approximately 

60sec. Then, FA and 30% of the mixing water inclusive NPs were added at high speed for 60 

seconds. The mixture was allowed to rest for around 90 sec. And finally, SP and remain of the 

water (70%) were added and mixed for 120 sec.  

When the mixing was completed, slump flow and V–funnel tests were conducted on the fresh 

mortars in accordance with the procedure recommended by the EFNARC committee. Any 

bleeding or segregation of the mortars was observed visually.  

Fresh mortar was cast into 50×50×50 mm cubes for compressive strength, and into 50×50×200 

mm prismatic moulds for flexural strength. After one day, the specimens were placed in water at  
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Table 3 Mixture proportions of the mortars 

Label 
Cement 

(kg/m
3
) 

FA 
(kg/m

3
) 

Nano SiO2 

(kg/m
3
) 

Nano Fe2O3 

(kg/m
3
) 

Nano CuO 

(kg/m
3
) 

Water 

(kg/m
3
) 

Sand 

(kg/m
3
) 

SP 

(kg/m
3
) 

Control 525 175 0 0 0 280 1210 4.5 

1NS 518 175 7 0 0 280 1198 4.5 

3NS 504 175 21 0 0 280 1176 4.2 

5NS 490 175 35 0 0 280 1153 4.2 

1NF 518 175 0 7 0 280 1198 4.2 

3NF 504 175 0 21 0 280 1176 4 

5NF 490 175 0 35 0 280 1153 4 

1NC 518 175 0 0 7 280 1198 4.2 

3NC 504 175 0 0 21 280 1176 4 

5NC 490 175 0 0 35 280 1153 3.9 

1NSF 518 175 3.5 3.5 0 280 1198 4.2 

3NSF 504 175 10.5 10.5 0 280 1176 4.2 

5NSF 490 175 17.5 17.5 0 280 1153 4 

1NSC 518 175 3.5 0 3.5 280 1198 4.1 

3NSC 504 175 10.5 0 10.5 280 1176 4 

5NSC 490 175 17.5 0 17.5 280 1153 4 

1NFC 518 175 0 3.5 3.5 280 1198 4 

3NFC 504 175 0 10.5 10.5 280 1176 3.8 

5NFC 490 175 0 17.5 17.5 280 1153 3.8 

1NSFC 518 175 2.3 2.3 2.3 280 1198 3.8 

3NSFC 504 175 7 7 7 280 1176 3.8 

5NSFC 490 175 11.7 11.7 11.7 280 1153 3.5 

 

 

21±2 °C until testing. Mechanical properties of hardened mortars consist of the compressive and 

flexural strength were measured at 3, 7, 28 and 90 days. Afterward the average of three specimens 

were assigned to each specimens. 

 

 

3. Experimental result 
 

3.1 Properties of fresh self-compacting mortar 
 

Table 4 shows the rheological test results containing slump flow diameter and V–funnel flow 

time. All of mixtures were designed to have a slump flow diameter of 25±1 cm which achieved by 

using the desirable dosage of SP. The mini V–funnel flow times were in range of 7.7–11 seconds. 

The highest mini V–funnel flow time measured for the control sample and the 5NC mix shows the 

lowest flow time of V–funnel test.  
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Table 4 Fresh properties of SCMs 

Label Slump flow diameter (cm) V–funnel flow time (sec) 

Control 24.5 11 

1NS 24.5 10.2 

3NS 24.8 9.7 

5NS 25 8.3 

1NF 24.7 10.8 

3NF 24.9 9.8 

5NF 25.5 7.6 

1NC 24.5 9.8 

3NC 24.8 8.2 

5NC 25.5 7.7 

1NSF 24.5 10.1 

3NSF 24.9 9.8 

5NSF 25 9.5 

1NSC 24.5 10.5 

3NSC 25.2 9.1 

5NSC 25.5 7.7 

1NFC 24.3 10.9 

3NFC 24.5 10.7 

5NFC 24.6 9.9 

1NSFC 24.5 10.5 

3NSFC 24.6 9.9 

5NSFC 25 8.7 

 

 

3.2 Mechanical properties of self–compacting mortar 
 

3.2.1 Compressive strength 
The results of the compressive strength are shown in Fig. 1. As can be seen from Fig. 1, the 

compressive strength is improved in all ages except for the combination containing NF in early 

ages (i.e. 3 and 7 days). This may be due to pozzolanic activity of the samples of FA and NF. 

Another possible reason can be in the virtue of excessive amount of NF for the sake of bigger size 

of NF that decrease the filler effect of NPs. The samples incorporating NC demonstrates the most 

improvement in the compressive strength. The comparison with the single mixtures containing 

3NC shows the highest compressive strength, that improves the strength up to 20%. This result is 

in agreement with work of Nazari and Riahi (2011b), which can be related to acceleration of the 

calcium–silicate–hydrate (C–S–H) gel.  

Among all mixtures, the combination of NS+NC indicates the best improvement in the 

compressive strength of specimens containing NPs in binary combinations. The 5NSC sample also 

gives the greatest enhancement which is around 30% at all ages. In binary mixtures the results 

show that the reduction of strength is occurred after addition of 3wt% NPs, except for NSC. It is 

due to the weak pore structure of SCMs, decreasing the C–S–H gel, consequently having the weak  

1070



 

 

 

 

 

 

Modeling mechanical strength of self–compacting mortar containing nanoparticles... 

  
(a) (b) 

 
(c) 

Fig. 1 Compressive strength of self–compacting mortar mixture containing (a)single, (b)binary and   

(c)ternary dosage of NPs 
 

  
(a) (b) 

 
(c) 

Fig. 2 Flexural strength of self–compacting mortar mixture containing (a)single, (b)binary and (c)         

ternary dosage of NPs 
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microstructure of cement matrix. In ternary combination of NPs the compressive strength is 

decreased at early ages, although it is observably increased at older ages. 
 

3.2.2 Flexural strength 
The results of the flexural strength of SCMs containing NPs are depicted in Fig. 2. It can be 

seen from Fig. 2 that the single NPs in comparison with the control sample improves the flexural 

strength, although in some binary and ternary mixtures of NPs some drawbacks are observed. In 

the mixtures containing single NPs, the addition of 3% could be the best percentage. 
Using the comparison of the results, the binary mixtures had different trends. First of all, the 

combination of NS and NC, for instance of 5NSC sample, the flexural strength showed an increase 

of about 16–30%, which is due to pozzolanic action and filler effect. By adding NS+NF, different 

trend can be seen. Addition of 1 and 3% increased the flexural strength and after that decreased. 

Finally, the combination of NF and NC showed reduction in early ages and improvement in older 

ages. The ternary combination of NPs, showed reduction by adding 1%. Also, 3% replacement of 

nanoparticles is the most desirable percentage by about 19% improvement in flexural strength. 

 

 

4. Wavelet kernel function–based metamodel 
 

4.1 Least squares support vector machine 
 

Support vector machines (SVMs) proposed by Vapnik and Lerner (1963) have strong 

theoretical foundation for modeling the high non–linear system based on small sample. The SVMs 

approaches have been developed based on the structural risk minimization (SRM) rules which can 

avoid the problems of over learning, dimension disaster and local minimum. This metamodel has 

been utilized in many classification andregression problems successfully (Park and Ang 1985). 

The least squares support vector machine (LS–SVM) presented by Suykens et al. (1999) overcome 

the drawbacks of SVM such as slow training velocity in the large–scaleproblem. 
Consider a set of training data {(x1,y1),…,(xn,yn)} X , where X denotes the space of input 

patterns. In the modeling of LS–SVM regression, the error 
i  quadratic norm is taken as the loss 

function of LS–SVM. The optimization problem is described as follows (Suykens et al. 1999) 

2 2

1

1 1
min ( , )

2 2
ω ω

n

i

i

J C 


    (1) 

subject to the equality restriction 

( ) , 1,2,...,ω x
T

i i iy b i n      (2) 

Therefore, the model of the LS–SVM regression is defined as follows 

( ) ( )x ω x
Ty b   (3) 

In Eq. (1), C defined as punishment factor determines the tradeoff between the complexity of 

the LS–SVM model, i.e. y(x), and its accuracy in capturing the training data. The LS–SVM's loss 

function is different from the standard SVM. For the optimization problem, the Lagrange function 

is introduced as follows 
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2 2

1 1

1
( , , , ) [ ( ) ]

2
ω α ω ω

n n
T

i i i i i

i i

L b C x b y    
 

        (4) 

In Eq. (4), αi (i=1,2,…,n) are the Lagrange multiplier. Based on the Karush–Khun–Tucker 

(KKT) conditions, by eliminating ω, ξ the solution is given by the following set of linear equation 

1 1 1
1

1

0 1 1

01
1 ( , ) ( , )

1
1 ( , ) ( , )

α

n

n
n n n

K x x K x x
ybC

y
K x x K x x

C

 
   
   

            
     

 (5) 

where (.,.)K is so–called kernel function. According to Mercer’s condition, a kernel (.,.)K is 

selected, such that 

( , ) ( ), ( )x x x x
H

K    (6) 

In fact, ( , )K describes the high dimensional feature spaces that is non–linearly mapped from 

the input space x. Thus, the following LSSVM model is concluded as follows: 

1

( ) ( , )x x
n

i i

i

y K x b


   (7) 

 

 

4.2 Weighted least squares–support vector machine 
 

Due to assigning weights in the weighted least squares–support vector machine (WLS–SVM), 

WLS–SVM in comparison with LS–SVM can predict functions in a more robust and precise 

manner. It is shown that the performance of WLS–SVM is better than the LS–SVM (Suykens et al. 

2002). In order to achieve this purpose, the error ξ is weighted. Therefore, the WLS–SVM model 

is presented as the following optimization problem in primal weight space (Quan et al. 2010) 

2 2

1

1 1
min ( , )

2 2
ω ω

n

i i

i

J C v 


    (8) 

and the constrain of WLS–SVM is Eq. (2). It is impossible to indirectly calculate w from Eq. (8), 

because the structure of the function )(x is unknown. Hence, the dual problem described in Eq. 

(8) is minimized by the Lagrange multiplier concept as follows 

1

( , , , ) ( , ) ( ( ) )ω x ω ω x
n

T
i i i i

i

L b J b y    


      (9) 

Based on the KKT conditions, by eliminating ω and  the solution is given by the following set 

of linear equations 
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























 

0

yα

01

1V

b
n

T

n
 (10) 

where 

1 ,

1 1

{1/ ,...,1 / } ; ( ), ( ) , 1,...,

[ ,..., ] ; [1,...,1] ; [ ,..., ]

V x x

y 1 α

n i j i j H

T T
n n n

diag Cv Cv i j n

y y

  

 

   

  
 (11) 

So, the WLS–SVM model same as LS–SVM can be provided for the prediction of functions, 

which defined in Eq. (7). After weights kv  are determined, the model defined in Eq. (7) is obtained 

after solving the WLS–SVM problem (i.e. Eq. (10)). In the WLS–SVM models, the Gaussian 

radial basis function (RBF) as the kernel function is applied and expressed as 

2

2
( , ) exp( )

x x
x xK




   (12) 

where 2 is a positive real constant, and it is usually called the kernel width. 

 

4.3 Wavelet kernel–based WLS–SVM  
 

Wavelet kernel–based SVMs have been proposed and widely developed in many applications 

(Wu 2010, Wu 2011, Calisir and Dogantekin 2011, Zavar et al. 2011). The wavelet functions as 

kernel function can effectively improve the performance of the SVM approaches. A function 
2 ( )RL  as a wavelet is introduced if it has zero average on (Lekutai 1997) 

( ) 0x dx




  (13) 

Morlet’s basic wavelet function as the mother wavelet has be proposed by multiplying of the 

Fourier basis with a Gaussian window (Martinet et al. 1987). Khatibinia et al. (2013a, b) 

introduced a wavelet kernel–based WLS–SVM that employ the cosine–Gaussian Morlet wavelet 

with 0 4  as the kernel function of WLS–SVM. The wavelet function is expressed as follows 

2

0

1
( ) cos ( ) exp 0.5( )

x c x c
x

a aa
 

    
    

   
 (14) 

Hence, the wavelet kernel function can be defined as (Martinet et al. 1987) 

1

( , ) ( ) ( )
x x

x x
n

i i i i

i

c c
K

a a
 



 
  (15) 

where n is the number of samples; x  and x R
n , and Eq. (16) is called as dot–product wavelet 

kernels. Thus, the translation–invariant wavelet kernel can be explained as follows 

1

( , ) ( )
x x

x x
n

i i

i

K
a





  (16) 
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According to Eqs. (14) and (16), the wavelet kernel function of the cosine–Gaussian Morlet 

wavelet is obtained as follows 

0 2
1

1
( , ) cos ( ) exp( 0.5 )

n
i ii i

i

K
a aa




 
  

 


x xx x
x x  (17) 

In the work of Khatibinia et al. (2013a), it has been shown that the best performance of 

WWLS–SVM was obtained with a=6.75. The general structure of the WLS–SVM and WWLS–

SVM models is depicted in Fig. 3: 

 

 

 

Fig. 3 The general structure of the WWLS–SVM and WLS–SVM models (Mirzaei et al. 2015) 

 

 

5. Prediction of the mechanical strengths of SCM 
 

5.1 Development of the metamodel 
 

In this study, a set of 82 samples as database is utilized to develop the WLS–SVM and WWLS–

SVM models for predicting the mechanical strength of SCM. Each sample contains cement, sand, 

NS, NF, NC, superplasticizer dosage, Slump flow diameter and V–funnel flow time as input 

variables of the database, the compressive and flexural strengths of SCM as the output variables of 

the database. The data are obtained from the experimental studies. Table 5 shows descriptive 

statistics for these input variables and the outputs. 

 

 
Table 5 Statistical description of mortar components 

Factors Unit Min Max Mean 
Standard 

deviation 
Skewness Kurtosis 

Cement kg/m
3
 490 525.0 504.95 12.28 0.01 –1.49 

Nano SiO2 kg/m
3
 0.00 35.00 6.68 9.21 1.69 2.99 

Nano Fe2O3 kg/m
3
 0.00 35.00 6.68 9.21 1.69 2.99 

Nano CuO kg/m
3
 0.00 35.00 6.68 9.21 1.69 2.99 

Sand kg/m
3
 1153 1210 1177.23 19.78 –0.01 –1.46 

SP kg/m
3
 3.50 4.50 4.04 0.23 0.00 0.70 

Slump flow diameter cm 24.3 25.50 24.81 0.36 0.72 –0.42 

V–funnel flow time sec 7.60 11.00 9.56 1.09 –0.61 –0.84 

Compressive strength MPa 11.00 61.97 33.08 14.82 0.04 –1.33 

Flexural strength MPa 3.11 11.10 7.08 2.36 0.04 –1.24 
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Before scaling dividing database, the values of the input variables are normalized as follows 

min

1 2

max min

i

i

x x
x b b

x x


 


 (18) 

where
i

x , xmax and xmin are the normalized, maximum and minimum values of the input and output 

variables, respectively. In this study, b1 and b2 are assigned the values 0.6 and 0.2, respectively. 

To predict the compressive and flexural strengths of SCM, at first, the samples are selected on a 

random basis and from which 70% and 30% samples are employed to train and test the 

metamodels. Then, two WLS–SVM and WWLS–SVM models with the 10–fold cross–validation 

are trained based on the database. Furthermore, a grid search algorithm is employed in the 

parameter space in order to obtain the optimal model parameters of the metamodels. According to 

Khatibinia et al. (2013a), the WLS–SVM model based on RBF and wavelet kernel functions for 

predicting of output data is performed using the following procedure: 

Step 1: Assign training data 1{ , }x
Ntot

k k ky  , set N=Ntot. 

Step 2: Find an optimal ( , )  combination on the total amount of Ntot training data by 10–fold 

cross–validation, and solve linear system (10), give the model (7). 

Step 3: Sort the values α . 

Step 4: Remove a small number of M points (typically 5% of the N points) that has the smallest 

values in the sorted α . 

Step 5: Retain N–M points and set N=N–M.   

Step 6: Go to 2 and retrain on the reduced training set. 

To investigate the accuracy of the metamodels, the mean absolute percentage error (MAPE), the 

relative root–mean–squared error (RRMSE) and the absolute fraction of variance (R
2
) are adopted 

as the performance criteria. The criteria are computed as following (Topcu and Sandemir 2008) 






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wherey and  are actual value and predicted value, respectively; and nt is the number of testing 

samples. The smaller RRMSE and MAPE and the larger R
2
, are the indicative of better 

performance. 

y
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(a) training phase 

 
(b) testing phase 

Fig. 4 Observed versus predicted the compressive strength for WWLS–SVM and WLS–SVM methods 
 
 

5.2 Results and discussion 
 

Figs. 4 and 5 show scatter diagrams for the actual and predicted values of training data and 

testing data, respectively.  
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(a) training phase 

 
(b) testing phase 

Fig. 5 Observed versus predicted the flexural strength for WWLS–SVM and WLS–SVM methods 

 

 

It is obvious from Figs. 4 and 5 that, visually, the distribution of the compressive and flexural 

strength data predicted the WLS–SVM and WWLS–SVM models remarkably fit the distribution 
of the experimental data. The performance generality of the WLS–SVM and WWLS–SVM models  

based on the statistical value of R
2
 are also reported in Table 6 for the compressive strength and 

flexural strength, respectively. 
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Table 6 R
2
 value for the prediction of the mechanical strength 

Mechanical strength Phase WWLS–SVM WLS–SVM 

Compressive strength 
Train 0.9999 0.9999 

Test 0.9999 0.9999 

Flexural strength 
Train 0.9999 0.9996 

Test 0.9997 0.9994 

 

 

It can be seen from Table 6 that the predicted values of the mechanical strengths based on the 

WLS–SVM and WWLS–SVM models are exactly similar to the experimental values. 
 

5.3 Comparison of results with other techniques  

 
This section presents the results from the comparison of the WLS–SVM and WWLS–SVM 

models with other prediction techniques including adaptive–network–based fuzzy inference 

system (ANFIS) and ANN metamodels. The results of the WLS–SVM and WWLS–SVM models 

were obtained as explained in the previous section. In order to clarify an overall comparison, all 

statistical criteria used in testing data are combined to create a normalized reference index (RI) 

(Chou et al. 2011). For this purpose, at first, each of the performance criteria is normalized to a 

value of 1 for the best performance and 0 for the worst. Then, the RI is obtained by calculating the 

average of every normalized performance criteria as shown in Eq. (22). 

2

RRMSE MAPE
RI


  (22) 

also, Eq. (23) is used for normalizing the performance criteria as 

max,

,

max, min,

i i

norm i

i i

f f
f

f f





 (23) 

Hence, Tables 7 and 8 show the results obtained based on the WLS–SVM, WWLS–SVM 

ANFIS and ANN techniques for the performance comparison of the metamodels.  

 
Table 7 Performance measurement results of various prediction techniques for the compressive strength  

Model 
Training phase  Testing phase 

MAPE RRMSE R
2 

 MAPE RRMSE RI
 

R
2 

WLS–SVM 0.0365 0.0014 0.9999  0.4632 0.0067 1.000 0.9999 

WWLS–SVM 0.4768 0.0069 0.9999  0.4717 0.0069 0.999 0.9999 

ANN 10.154 2.2930 0.9947  12.5809 1.7142 0.178 0.9915 

ANFIS 11.517 2.6579 0.9895  14.2869 2.2338 0.0 0.9882 

 
Table 8 Performance measurement results of various prediction techniques the flexural strength 

Model 
Training phase  Testing phase 

MAPE RMSE R
2 

 MAPE RMSE RI
 

R
2 

WWLS–SVM 0.8060 0.0103 0.9999  4.8817 0.0528 1.000 0.9996 

WLS–SVM 1.2912 0.0250 0.9997  6.3448 0.0570 0.9328 0.9997 

ANN 11.235 2.2845 0.9911  14.0357 2.7142 0.1225 0.9899 

ANFIS 12.517 2.6684 0.9815  15.8952 2.9338 0.0 0.98100 
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Based on the RI index obtained from testing process, the WLS–SVM and WWLS–SVM 

models outperformed the ANN and ANFIS techniques. In fact, the WLS–SVM and WWLS–SVM 

models in comparison with the ANN and ANFIS techniques could accurately predict the 

compressive and flexural strengths using few samples. Furthermore, the WWLS–SVM metamodel 

obtained the best result for every performance measure, with an RI value of 1.00. Due to the 

superior performance of the WWLS–SVM model over the other models, the WWLS–SVM model 

instead of time–consuming laboratory tests can be considered as an the robust approach for 

predicting the compressive and flexural strengths of SCM. 

 

 

6. Conclusions 
 

In this study, the weighted least squares–support vector machines (WLS–SVM) approach based 

on Gaussian radial basis function (RBF) and wavelet kernel functions was utilized to predict the 

mechanical strength of SCM. The following results could be drawn from this study: 

• Incorporation of nanoparticels, whether used single alone, binary and ternary combination 

except for NF samples in some cases, had an influential effect in compressive and flexural 

strengths of SCMs. As an average, the most increased related to adding 3NS and NC in single, and 

5NSC in binary mixtures at all ages. The results showed that in binary mixtures, incorporation of 

NS+NC was the best results at both early and older ages. Although the suitable percentages of 

incorporation was 3 in early and 5 in older ages. However, using ternary combination of NPs 

didn’t result significant influences in early ages, but it caused to improve the mechanical properties 

at older ages. Due to common results, it was found the best combination to arise the strength was 

3% of NPs. 

• In order to predict the effects of NPs in SCMs containing fly ash, two different WWLS–SVM 

and WLS–SVM approach models are proposed. It was observed that these models could 

effectively be used as a tool to assign the mechanical properties of SCMs.  

• The WLS–SVM and WWLS–SVM models in comparison with the ANN and ANFIS 

techniques can accurately predict the compressive and flexural strengths using few samples. 

• The results indicate that the generality performance of the WLS–SVM model based on the 

wavelet kernel, such as Morlet kernel function, is better than the RBF kernel function in predictive 

ability and precision. 

Therefore, based on the significant results the WWS–SVM and WLS–SVM can be considered as 

an the robust approach for predicting the compressive and flexural strengths of self–compacting mortar. 
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