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Abstract. In the last decade, several modeling approaches have been proposed and applied to estimate
the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling
its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods
remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from
noise which negatively affects the prediction accuracy and increases the variance. In the recent years,
ensemble learning methods have introduced to optimize the prediction accuracy and reduce the
prediction error. This study investigates the potential usage of bagging (Bag), which is among the most
popular ensemble learning methods, in building ensemble models. Four well-known artificial
intelligence models (i.e., classification and regression trees CART, support vector machines SVM,
multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner.
As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF)
are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could
noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

Keywords: bagging (bootstrap aggregating); classification and regression trees; ensemble learning;
multilayer perceptron; support vector machines

1. Introduction

Self-compacting concrete (SCC) is a highly flowable concrete which does not segregate and
can spread into place, fill the formwork with heavily congested reinforcement without any
mechanical vibration Nanthagopalan and Santhanam (2011). The three key characteristics of
self-consolidating concrete (SCC) are flowability, segregation resistance and passing ability.
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Quality control of flowability is typically predicted by the final diameter of a slump-flow test; a
larger diameter indicates higher flowability Tregger et al. (2012). The main property that defines
SCC is high workability in attaining consolidation and specified hardened properties Ferraris et al.
(2000).

The High-Performance Concrete (HPC) technology has been the important subject in concrete
research since HPC has unique properties and numerous advantages in practical applications.
Among them, the fine workability (i.e., easy placing and consolidation) is one of the most
representative characteristics Yen et al. (1999).

In addition to four basic ingredients of the conventional concrete, i.e., Portland cement, fine
and coarse aggregates and water, the making of HPC needs to incorporate the supplementary
cementitious materials such as fly ash and blast furnace slag, and chemical admixture and super
plasticizer. The use of fly ash and blast furnace slag plays an important role in contributing to a
better workability and low slump loss rates of HPC Yeh (2007).

The diverse requirements of mixability, stability, transportability, placeability, mobility,
compactability and finishability of fresh concrete mentioned above are collectively referred to as
workability Gambhir (2004). According to Yeh (2007) workability of concrete is defined as the
property determining the effort required to manipulate a freshly mixed quantity of concrete with
minimum loss of homogeneity. Also The American Concrete Institute (ACI 116R-00, 73)
describes workability as “that property of freshly mixed concrete or mortar that determines the
ease with which it can be mixed, placed, consolidated, and finished to a homogenous condition.”
The Japanese Association of Concrete Engineers defines workability as “that property of freshly
mixed concrete or mortar that determines the ease and homogeneity with which it can be mixed,
placed, and compacted due to its consistency, the homogeneity with which it can be made into
concrete, and the degree with which it can resist separation of materials” Ferraris (1999).

There are many methods and flow test is a widely used method for measuring the workability
of concrete. Flow test gives the satisfactory performance for concretes of the consistencies for
which slump test can be used. The test consists of moulding a fresh concrete cone on the top of the
platform of the table. The spread of concrete, measured as the increase in diameter of cone, is
taken as a measure of the flow or consistency of the concrete Gambhir (2004).

In recent years, machine learning methods have been applied to many civil engineering
problems. Chou and Tsai (2012) developed a hierarchical classification and regression (HCR)
approach for predicting (HPC) compressive strength for high performance concrete. Kewalramani
and Gupta (2006) used multiple regression (MR) analysis and artificial neural networks (ANN) for
prediction of compressive. Topcu and Sarıdemir (2008) developed ANN and fuzzy logic models 
for predicting the compressive strength. Chou and Pham (2013) compared ensemble models with
individual numerical models in terms of their performance in predicting the compressive strength
of HPC in their study. The best prediction performance results obtained via ensemble technique
combining two or more models. Heshmati et al. (2008) proposed new formulations of compressive
strength and slump flow using variant of genetic programming (GP).

The objective of this study is to investigate the potential usage of bagging (Bag), which is
among the most popular ensemble learning methods, in building ensemble models.

2. Method

The following three performance measures are used to evaluate the proposed predictive
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models. The correlation coefficient (R) is a common measure of how well the curve fits the actual
data. A value of 1 indicates a perfect fit between actual and predicted values, meaning that the
values have the same propensity. The mathematical formula for computing R is
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where y= actual value, y′= predicted value, and n=number of data samples.
The root mean squared error (RMSE) is the square root of the mean square error. The RMSE is

thus the average distance of a data point from the fitted line measured along a vertical line. The
RMSE is given by the following equation
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The mean absolute error (MAE) is a quantity used to measure how close forecasts or
predictions are to the eventual outcomes. The mean absolute error is given by
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According to Refaeilzadeh et al. (2009) cross-validation (CV) is a statistical method of
evaluating and comparing learning algorithms by dividing data into two segments: one used to
learn or train a model and the other used to validate the model. In typical cross-validation, the
training and validation sets must cross-over in successive rounds such that each data point has a
chance of being validated against. K-fold CV is the basic form of cross-validation and the other
forms of cross-validation are special cases of K-fold CV or involve repeated rounds of K-fold CV.

In K-fold CV, the sample is divided into K different subsets ��(ℎ = 1,2,… ,�) of
approximately equal size. The model is trained � times, each time leaving out one of the subsets
from the training, but using only the omitted subset to compute the prediction error. The mean of
these K values is the CV-estimate of the extra-sample error. Denote by ��(ℎ = 1,2,… ,�) the
training set obtained by removing the ℎ-th subset �� and let � = �/� be the number of units in
each subset (assuming that n is a multiple of �) Borra and Di Ciaccio (2010). The CV-estimator is
defined as the average error on the � analyses
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In this study, we applied a 10-fold CV to assess model predictive performance. First, the
dataset is randomly divided into ten (k) subsets of equal size in which the class is represented in
approximately the same proportions as in the full dataset. Next, each subset is held out in turn and
the learning scheme trained on the remaining nine-tenths (k-1); then its error rate is calculated on
the holdout set. Thus, the learning procedure is executed a total of ten times on different training
sets Erdal (2013).

2.1 Bagging
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Breiman’s Bagging (bootstrap aggregating) is one of the first cases of an ensemble of decision
trees Abellan and Masegosa (2012), Breiman (1996). It is noteworthy that most of the ensemble
learning algorithms, such as Bagging and Boosting are designed for supervised learning Jia et al.
(2011). A replica dataset of size n is randomly drawn with replacement from the original dataset of
the n patterns. A bootstrap sample Dl may contain some in D multiple times, whereas others are
not included. The idea of the bootstrap is that sampling from the actual dataset D is the best
possible approximation for sampling from the unknown distribution P. Then a model is built by
using this so-called bootstrap dataset. This procedure is repeated T times and thus results in T
models. Then T models are aggregated by using the mean for regression problems Erdal et al.
(2013). The bagging ensemble model structure developed in the present study is shown in Fig. 1.

Fig. 1 Bagging ensemble model structure

As shown in Fig. 1 Bagging and Boosting have final prediction as a linear combination of
classifiers. After several regression models are constructed, the average value of the predictions of
each regression model gives the final prediction Karakurt et al. (2013).

For a regression problem, it works as follows Bühlmann and Yu (2002)
A training set of D consists of data {(Xi ,Yi),i=1,2,…,n} where Xi is a realization of a

multi-dimensional predictor variable and Yi is a realization of a real-valued variable. A predictor
(Y|X = x)=f(x) is denoted by

))(,...,()( 1 xDDhxC nnn = (4)

Theoretically, bagging is defined as follows: First, construct a bootstrapped sample

),( ***
iii XYD = (5)

according to the empirical distribution of the pairs Di=(Xi , Yi), where (i=1,2,…, n).

))(,...,()( *** xDDhxC ninn = (6)
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Secondly, estimate the bootstrapped predictor by the plug-in principle,
where Cn(x)=hn(D1,…, Dn)(x)

Finally, the bagged predictor is

)()( *
; xDExC nBn = (7)

To sum up, bagging is one of the simplest to implement technique which can reduce variance
when combined with the base learner generation, with a satisfactory performance Wang et al.
(2011). A more detailed version of bagging is described in Breiman (1999).

2.2 Support vector regression

Support vector machine’s soft margin classifier was introduced by Cortes and Vapnik (1995)
for binary classification. SVM is based on the structural risk minimization method Vapnik (2000).
Basak et al. (2007) stated that support vector classification (SVC) and support vector regression
(SVR) are the two main categories for support vector machines. SVR, most common application
form of SVM, has been proposed in 1997 by Vapnik, Steven Golowich, and Alex Smola Basak et
al. (2007).

Considering a set of training data )},(),....,,{( 11 ll yxyx , where each RyRx i
n
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decision function is given by

f(x)=(w·Φ(x))+b (8)

with respect to nRw∈ , Rb ∈

whereΦ denotes a non-linear transformation from nR to high dimensional space. The primal
optimization problem is given by
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where S(·) is a cost function and C is a constant moreover, vector w is given by

∑
=

Φ−=
l

1

*
)()(

i

iii xw αα (10)

By substituting Eq. (8) into Eq. (10), the decision function is
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In Eq. (11) the dot product can be replaced with kernel function ),( xxk i , Eq. (12) can be

rewritten as
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Theε -insensitive loss function is the most widely used cost function. The function is given by

745



Hacer Yumurtacı Aydoğmuş et al. 







 ≥−−−

=−

otherwise

yxfforyxf

yxfS

0

)(,)(

))((

εε

(13)

where ε is the width of the regression tube, for given value, the corresponding dual formulation is
by

maximize ∑ ∑∑
= ==

−++−−−−
l ll

1 1,

**

1,

**
)()(),())((

2

1

j ji

iiii

ji

jijjii xxk ααααεαααα (14)

with respect to n
ii R∈
*

,αα and, subject to ∑
=

=−
l

1

*
0

i

ii αα 0&0
*

≥≥≥≥ ii CC αα

where *
ii and αα are Lagrange multipliers.

2.3 Multilayer perceptron

Artificial neural network, as a branch of artificial intelligence, is a simplified model based on
the neural structure of the brain Anderson and McNeill (1992). Osman and Laporte (1996) noted
that ANN has very powerful applications in scientific and engineering when used to predict,
classify or recognize patterns due to the inherent data classification capabilities and massively
parallel processing power.

ANN consists of a number of nodes representing neurons and these neurons are arranged into
layers. The neurons from one layer are connected to the neurons in the two layers on either side of
it. The perceptron is a simple neuron model that is used to classify its inputs into one of two
categories Coppin (2004). Multilayer perceptrons as one of the neural network approaches are
universal approximators, which have better generalization capabilities to capture complex
relationship between inputs and outputs Thomas and Thomas (2011).

MLP is frequently trained with error back-propagation algorithm based on the error correction
learning rule Haykin (1999).

This study uses a conventional back-propagation artificial neural network. The output signal for
the lth neuron in the nth layer is given by
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where )(⋅ϕ is the activation function, n
ljw is the connection weight, t is the time index and

)(
0

twn
l

n
l =Ψ is the weighted. For an n-layer network, the synaptic weight )(twn

ji is given by

)()()1( twtwtw n
ji

n
ji

n
ji ∆+=+ (16)

subject to Nnl ≤≤ and it can be revised as given by
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subject to 0<η<1

where η is the learning rate, and n
jt

n
j uEt ∂∂−≡)(λ is the local error gradient. To improve the

back-propagation algorithm, a momentum termα is added
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subject to 0< α<1
For the output layer, the local error gradient is given by

)]([)()]([)]()([)( tutetutytdt N
jj

N
j

N
jj

N
j ϕϕλ ≡−= (19)

where dj(t) is the goal output signal, and φ(·) is the activation function.

2.4 Radial basis function neural network

Radial basis function neural network (RBFNN) is the mostly adopted network topology
because of numerous advantages such as better prediction capabilities, simpler network structures,
and faster learning process Li et al. (2008). RBFNN is a feed forward neural network and involves
three layers. These layers are listed as input layer which is consists of source nodes that connect
the network to its environment, hidden layer applies a nonlinear transformation from the input
space to the hidden space and output layer is linear, supplying the response of the network to the
activation pattern applied to the input layer Haykin (1999).

The most general formula for any radial basis function neural network (RBF-NN) is

))()(()( 1 cxRcxxh T −−= −φ (20)

where c is the center, R is the metric and φ is the function Orr (1996). The metric is often

Euclidean so that IrR 2= for some scalar radius r and the Eq. (13) simplifies to
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The simplification is a one-dimensional input space in which case
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The Gaussian function zez −=)(φ is used. Therefore, a typical radial function is the Gaussian

which, in the case of a scalar input, is
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2.5 Classification and regression trees

As mentioned in study of Erdal and Karakurt (2013), classification and regression trees
(CART) has gained popularity in the recent years. The CART modeling which was proposed by
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Breiman et al. (1984) is a non-parametric statistical methodology that can incorporate both
numerical and categorical variables into the analysis Li (2006).

It works as follows Hancock et al. (2005): Each node within the tree has a partitioning rule and
the partitioning rule is defined through minimization of the relative error (RE) which is the
minimization of the sums-of-squares of a split for regression problems

2
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Where 1y and ry are the left and right partitions with L and R observations of y in each, with

respective means ����� and �����.The decision rule d is a point in some estimator variable x that is
used to determine the left and right branches. The partitioning rule that minimizes the RE is then
used to construct a node in the tree. The primary parameters for the CART are the following: the
number of folds; the minimum total weight; and the number of seeds and the values for these
parameters are 3, 2 and 1, respectively. A CART structure is depicted in Fig. 2.

3. Application and discussion of results

3.1 System data sets

One hundred - three various mix proportions collecting data were used to build the workability
model. The data sets, based on Yeh’s (2007) slump flow modeling study, obtained from HPC

Fig. 2 A CART structure

Table 1 Ratio of data used in single and ensemble predictive models

Ratio of Data Maximum Minimum

Water / Cement 1.69 0.48

Fine Aggragate/Coarse Aggragate 1.18 0.66

W/(Cement + Fly ash+Slag) 0.66 0.29

SP/(Cement + Fly ash+Slag) 0.04 0.01

Fly ash/(Cement + Fly ash+Slag) 0.61 0.00

Slag/(Cement + Fly ash+Slag) 0.55 0.00

(Fly ash+slag)/(Cement + Fly ash+Slag) 0.74 0.00

Aggregate/(Cement + Fly ash+Slag) 5.56 2.36
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produced with seven admixtures as cement (C), fly ash, blast furnace slag, water (W),
superplasticizer (SP), coarse aggregate and fine aggregate. The general details of these data sets
were given in Table 1. One hundred - three various data were evaluated by predictive single
models (SVM, RBF, CART, MLP) and ensemble models (Bag-SVM, Bag-RBF, Bag-RT,
Bag-MLP). The predicted values of these single and ensemble models compared with each other and
the actual values.

3.2 Results and discussion

In this section, the results of analyses are presented. Tables 2-4 summarizes the performance
measures of base learners (i.e., multilayer perceptron MLP, support vector machines SVM,
classification and regression trees CART, radial basis function neural networks RBF) and bagging
ensemble models (i.e., bagged-multilayer perceptron Bag-MLP, bagged-support vector machines
Bag-SVM, bagged-classification and regression trees Bag-RT, bagged- radial basis function neural
networks Bag-RBF). The mean absolute error (MAE), root mean squared error (RMSE) and
correlation coefficient (R) performance statistics are used to evaluate the performance of the
proposed predictive models.

Two empirical studies are conducted for this study according to training-testing approach i.e.,
(i) stratified 5-fold cross-validation and (ii) stratified 3-fold cross-validation. Split sample method
could be used in the study which is a common technique to evaluate the predictive performance on
a test set. In split sample method, a subsample of the dataset is kept back from training and

Table 2 Performance statistics of proposed predictive models for 5-fold cross validation

Single models Ensemble models

SVM RBF CART MLP Bag-SVM Bag-RBF Bag-RT Bag-MLP

R 0.6299 0.4092 0.5015 0.7112 0.6652 0.592 0.6219 0.7741

MAE (cm) 11.15 13.49 12.26 10.59 10.87 11.97 10.78 8.27

RMSE (cm) 13.87 16.42 15.79 14.68 13.24 14.25 13.70 11.24

Table 3 Relative improvements of predictive models for 5-fold cross validation

Method A Method B Improvement

R MAE (cm) RMSE (cm)

SVM Bag-SVM 5.60% 2.51% 4.52%

RBF Bag-RBF 44.67% 11.29% 13.18%

CART Bag-RT 24.01% 12.02% 13.21%

MLP Bag-MLP 8.84% 21.86% 23.48%

Table 4 Performance statistics of proposed predictive models for 3-fold cross validation

Single models Ensemble models

SVM RBF CART MLP Bag-SVM Bag-RBF Bag-RT Bag-MLP

R 0.6394 0.5484 0.4984 0.6146 0.6533 0.5983 0.6722 0.7584

MAE (cm) 11.29 12.02 11.74 12.66 11.12 11.67 10.14 8.56

RMSE (cm) 14.01 14.65 15.48 16.39 13.64 14.13 12.99 11.84
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employed to measure the accuracy of forecasting. Nevertheless, especially in small data sets, this
method can be quite misleading and very dependent on the validation set, and cross-validation is
accepted to be superior to the ordinary split-sample methods Aertsen et al. (2010).

The optimum parameters are chosen by monitoring the R of each of the models. The SVM’s
parameters are as follows: The kernel is, radial basis function kernel and Poly kernel; the
complexity parameter is 1, 2 and 3; the epsilon is 1.0E-11 and 1.0E-12 the exponent is 1, 2 and 3
the best parameter configuration for this technique is: Poly kernel is chosen to be the kernel
function for SVM moreover, the complexity parameter is 2, epsilon is 1.0E-11 and the exponent is
1. The primary parameters for the CART are the following: the number of folds; the minimum
total weight and the number of seeds; the number of folds is 5, 10 and 15; the minimum total
weight is 1, 2 and 3; the number of seeds is 1, 2 and 3. The best values for these parameters are 5,
2 and 1, respectively. The data is used in several experiments to obtain best parameters for MLP.
The parameters for the network are: the number of hidden layers was 1, 2, and 3; the learning rate
is 0.2, 0.3 and 0.4; the momentum factor is 0.2, 0.3, and 0.4; and the training epochs is 500 and
1,000. The experiments indicated that the best network parameters were as follows: the number of
hidden layers is 2; the number of the learning rate is 0.3; the momentum factor is 0.2, and the
training time is 500. The RBF’s parameters tested in the proposed model included the following:
the minimum standard deviation for is 0.1 and 0.5 the Ridge value is 1.0 E-7 and 1.0 E-8; the
number of clusters are 1, 2 and 3, finally the maximum number of iterations is 1 and 5. The best
values for RBF-NN are: the minimum standard deviation is 0.1, the Ridge value is 1.0 E-8, the
number of clusters is 2, and finally the maximum number of iterations is 1. Bagging has three
parameters of particular importance: the size of each bag (as a percentage); the number of
iterations (number of trees); and the number of seeds; the size of each bag is 80, 90 and 100; the
number of iterations is 30, 40 and 50; and the number of seeds is 1, 2 and 3. In this case, the values
for these parameters are 100, 40, and 1, respectively. The base model (i.e., MLP, RBF, CART, and
SVM) parameters are identical to the case in which are they are separately applied.

For measuring the prediction accuracy, only the test sample is considered because good
learning (training) sample measures of the prediction accuracy give no guarantee for good test
sample measures of the prediction accuracy. Table 2 indicates the results of the first empirical
study (5-fold cross validation case). It is evident from the table that the Bag-MLP model has the
best performance in term of R (0.7741), and single MLP model has the second best performance
(R=0.7112). Bag-SVM model yields the third best performance (R=0.6652). Single CART
(0.5015) and RBF (0.4092) models yields worst performances among all eight predictive models.
Moreover, MAE and RMSE statics are inconsistent with the correlation coefficient statics. For
minimizing RMSE statics, Bag-MLP (11.24 cm) is the best, Bag-SVM (13.24 cm) is the second,
Bag-RT (13.70 cm) is the third and RBF (16.42 cm) is the worst model and Bag-MLP (8.27 cm) is
the best, MLP (10.59 cm) is the second Bag-RT (10.78 cm) is the third and RBF (13.49 cm) is the
worst model for minimizing MAE statics. The application of bagging has brought a substantial
improvement for base learners: Bag-MLP (R=0.7741, MAE=8.27, RMSE=11.24), Bag-SVM (R=
0.6652, MAE=10.87, RMSE=13.24), Bag-RT (R=0.6219 , MAE=10.78, RMSE=13.70) and
Bag-RBF (R=0.592 , MAE=11.97, RMSE=14.25) outperform their base learners MLP (R=0.7112,
MAE=10.59, RMSE=14.68), SVM (R=0.6299, MAE=11.15, RMSE=13.87), CART (R=0.5015,
MAE=12.26, RMSE=15.79) and RBF (R=0.4092, MAE=13.49, RMSE=16.42) in term of all three
performance indicators.

Table 4 shows the results of second empirical study (3-fold cross validation case). It can be
noted from the table that, for determining R, the Bag-MLP model is superior to other predictive
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models (R=0.7584). Bag-RT model has the second best performance (0.6722) and Bag-SVM
slightly performs worse (R=0.6533). Single CART (0.4984) model performs worst among the all
predictive models. In addition, for reducing RMSE statics, Bag-MLP (11.84 cm) is the best,
Bag-RT (12.99 cm) is the second, Bag-SVM (13.64 cm) is the third and MLP (16.39 cm) is the
worst model. For minimizing MAE statics, Bag-MLP (8.56 cm) is the best, Bag-RT (10.14 cm) is
the second Bag-SVM (11.12 cm) is the third and MLP (12.66 cm) is the worst model. The
implementation of bagging has also brought a substantial enhancement for single models:
Bag-MLP (R=0.7584, MAE=8.56, RMSE=11.84), Bag-RT (R=0.6722, MAE=10.14,
RMSE=12.99) Bag-SVM (R=0.6533, MAE=11.12, RMSE=13.64), and Bag-RBF (R=0.5983,
MAE=11.67, RMSE=14.13) outperform their base learners MLP (R=0.6146, MAE=12.66,
RMSE=16.39), CART (R=0.4984, MAE=11.74, RMSE=15.48) SVM (R=0.6394, MAE=11.29,
RMSE=14.01), and RBF (R=0.5484, MAE=12.02, RMSE=14.65) in term of all three performance
indicators.

As shown Tables 3-5, bagging ensemble learning method can noticeably increase the accuracy
and reduce the error statics of the single models (i.e., MLP, RBF, CART, and SVM). Bagging
ensemble learning method enhances the accuracy of the MLP RBF, CART, and SVM by 23.40% –
8.84%, 44.67% – 9.10%, 23.40% – 8.84% and 5.60% – 2.17%, respectively. Moreover, bagging
reduces the MAE of the MLP RBF, CART, and SVM by 32.41% – 21.86%, 11.29% – 2.96%,
13.67%– 12.02% and 2.51% – 1.49%, respectively, and it decreases RMSE of the MLP RBF,
CART, and SVM by 27.77% – 23.48%, 13.18% – 3.61%, 16.09%– 13.21% and 24.52%– 2.61%,
respectively.

The predicted slump flow values of these four ensemble models (BSVM, BRBF,BRT and
BMLP) compared with the actual test result for 5-fold cross validation and 3-fold cross validation
are shown in Figs. 3-4.

The predicted slump flow distributions of single and ensemble models and the distribution of

Fig. 3 Predicted slump flow values using ensemble learning models for 3-fold cross validation vs.
actual test values
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Fig. 4 Predicted slump flow values using ensemble learning models for 5-fold cross validation vs.
actual test values

Fig. 5 Box plots of actual slump flow and predicted slump flow distributions of single and ensemble
models for 5-fold cross validation

actual slump flow are shown on the boxplot graphs given in Figs. 5-6 and the statistics values of
each distribution are given above Tables 6-7.

The distributions of models are nearly symmetric and the mean values close the median value
and so that the distributions close to nearly zero skewness and kurtosis shown in Tables 5-6.
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Fig. 6 Box plots of actual slump flow and predicted slump flow distributions of single and ensemble
models for 3-fold cross validation

Table 5 Relative improvements of predictive models for 3-fold cross validation

Method A Method B
Improvement

R MAE (cm) RMSE (cm)

SVM Bag-SVM 2.17% 1.49% 2.61%

RBF Bag-RBF 9.10% 2.96% 3.61%

CART Bag-RT 34.87% 13.67% 16.09%

MLP Bag-MLP 23.40% 32.41% 27.77%

Table 6 Statistics for 5-fold cross validation

Actual SVM BSVM RBF BRBF CART BRT MLP BMLP

Mean 49.6107 51.2702 51.3274 50.7474 49.5476 48.9991 49.523 52.8808 50.5762

Std. Error
of Mean

1.73109 1.31696 1.29258 1.07455 0.81340 1.31235 1.12980 1.95758 1.50587

Median 54.0000 51.3770 50.5480 52.5740 51.3460 55.9630 53.9540 56.3640 52.2310

Std.
Deviation

17.56861 13.36571 13.11828 10.90553 8.25510 13.31892 11.46617 19.86730 15.28291

Variance 308.656 178.642 172.089 118.931 68.147 177.394 131.473 394.710 233.567

Skewness -.521 .349 .365 -.442 -.531 -.671 -.805 .233 -.515

Kurtosis -.898 .144 -.072 .805 -.368 -.617 -.462 2.933 -.423

Minimum 20.00 20.76 25.48 19.97 31.17 20.16 23.83 .40 16.39

Maximum 78.00 92.18 85.86 71.43 64.06 75.13 64.34 139.87 78.88
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Table 7 Statistics for 3-fold cross validation

Actual SVM BSVM RBF BRBF CART BRT MLP BMLP

Mean 49.6107 51.1044 50.7575 49.1936 48.9624 52.0545 50.4047 54.4501 51.9640

Std. Error of Mean 1.73109 1.46913 1.43854 1.03808 .86885 1.05823 1.09373 1.79840 1.52968

Median 54.0000 50.7280 49.7840 51.2170 51.6080 50.7100 52.8820 57.7400 55.8250

Std. Deviation 17.5686114.9100014.5995410.535368.8178510.7398911.1001018.2517315.52460

Variance 308.656 222.308 213.146 110.994 77.755 115.345 123.212 333.126 241.013

Skewness -.521 .239 .330 -.919 -.917 -.460 -.617 -.096 -.710

Kurtosis -.898 -.070 -.109 .363 .447 -.009 -.381 -.274 -.041

Minimum 20.00 17.67 20.04 23.68 24.88 25.82 22.69 14.12 12.57

Maximum 78.00 94.48 91.74 69.73 65.64 77.00 68.68 97.07 81.25

The boxes given in the figures indicate the interquartile ranges and the bottom and top of the
box are always the 25th and 75th percentile (the lower and upper quartiles), and the horizontal
band near the middle of the box is always the 50th percentile (the median) and dots indicate
outside values and asterisks indicate out values.

When the statistical distributions of the predicted slump flow and the actual data were
compared, the performance of RBF, BRBF and CART models were worse when compared to the
actual slump flow data and the other models.

It could be understood from the empirical results that bagging ensemble learning method can
improve the prediction accuracy of their base predictors. Ensemble learning could be a very
effective procedure when applied to unstable learning algorithms such as decision trees and neural
networks Pino-Mejias et al. (2008). Like many other applications, HPC behavior (workability)
prediction suffers from concurrent negative effects by the noise. Wang et al. (2012) discussed that
bagging ensemble models introduce certain mechanisms to reduce the influence of the noise.

Bagging works because as mentioned before the main goal of bagging is minimizing variance
in the prediction. In bagging, different learning sub-datasets are drawn at random with replacement
from the entire learning dataset. Separate individual models are generated and are used to predict
the entire learning data from aforesaid sub-datasets. Many of the original instances may be
repeated in the resulting training set whereas others may be omitted. After several regression
models are constructed, the average value of the predictions of each regression model gives the
final prediction. This means that various same type of base learners are specialized in different
parts of the observation space. Ensemble models are superior to their base models because using
only one model to predict the HPC behavior may not illuminate the internal mechanism of the
phenomenon. However, the increase in the prediction accuracy and the decrease in the prediction
error of SVM due to bagging is limited according to other base learners (i.e., MLP, RBF and
CART). This may happen because SVM is more rigid (stable) method than the other single models
and its stiffness may influence the bagging process.

5. Conclusions

The main conclusions drawn from the study can be summarized as followed (i) bagging
ensemble method could remarkably optimize the prediction accuracy and reduce the variance of
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the simple CART and ANN models (i.e., MLP and RBF) (ii) the increase in the prediction
accuracy and the decrease in the prediction error of SVM due to bagging is limited (iii) Bag-MLP
is found superior to other predictive models for determining the three performance indicator.
Overall, as a result of this study, bagging ensemble learning method is found promising and easy
to implement a technique for HPC behavior prediction. In this study, only bagging method is used
in building ensemble models. The other ensemble learning methods like boosting could be used in
constructing ensembles. This study focuses on reducing the concurrent negative effects by the
noise; however, eliminating redundant attributes is also another crucial issue in the prediction.
Attribute-base ensemble learning methods like random sub-spaces can be used for reducing
redundant attributes. These may be subject of future works.
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