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Abstract. In this study, the seismic performance of skewed highway bridges has been assessed by
using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare
complete information about the different damage states of a 30 degree skewed highway bridge. A three
dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has
been applied. The details of the full nonlinear procedures have also been presented. Different spectral
intensity measures are studied and the effects of the period on the fragility curves are shown in different
figures. The efficiency, practicality and proficiency of these different spectral intensity measures are
compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis.
It has been shown that, considering different intensity measures (IM) leads us to overestimate or low
estimate the damage probability which has been discussed completely.
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1. Introduction

In recent years, seismic vulnerability of skewed highway bridges has become more important
especially after the damage caused by the San Fernando earthquake (1971). When the skew degree
increases the behavior becomes complex and the effects of coupling becomes more important. In
fact, the seismic vulnerability of skewed highway bridges is greater than straight highway bridges.
In the last few decades many researchers have studied the seismic responses of skewed highway
bridges; however the research findings have not been comprehensive enough to address global
system response. Design codes and guidelines have improved significantly for dynamic and static
analyses of straight highway bridges. However, the lack of detailed procedure is still seen for the
responses of skewed highway bridges.

Some important skewed bridges which have failed during earthquakes had large skew angles
such as: Foothill Boulevard Undercrossing bridge with a 60 degree skew under San Fernando
earthquake in 1971, Gavin Canyon Undercrossing with a 66 degree skew under Northridge
earthquake in 1994 and etc.

Ghobarah and Tso (1973) studied the behavior of the Foothill skewed bridge in 1974. In this
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study the bridge was modeled by a flexible beam fixed at both ends in abutments. Torsional and
flexural modes with out of plane deformations were considered for it. The bridge was analyzed
under the vertical component force of the San Fernando earthquake and it was concluded
that damage was caused by Torsional and flexural movements of the deck and because of the out
of plane movements, bases were disjointed under heavy pressure. Maragakis and Jenings (1987)
studied the damage and aftermath of the 1971 San Fernando earthquake on California bridges.
They concluded that in most cases in skewed highway bridges, damage was caused by the
movement of the rigid body of deck accompanied by consecutive impacts of deck and side
supports, which in turn were cause by dynamic vibrations of the bridge. In that study it was
mentioned that overpass and underpass bridges of Foot Hill Boulevard and overpass bridge of San
Fernando have the same condition.

The simple model was devised to identify the main parameters in analyzing the bridge’s
behavior, and the complicated model which is more detailed was devised to examine the effect of
these parameters on bridge’s behavior. The complicated model was used to analyze the rigid body
of Nicols’s overpass skewed bridge (with 20 degree angle) located in Riverside California.
Wikfield et al. (1991) used two Finite Element Models to analyze the Foothill skewed bridge,
assuming linear and nonlinear behavior for the columns. The difference of the two models was in
modeling the deck. In the first model the deck was modeled using bar’s element and in the second
model the deck was modeled using shell elements. The second model was more accurate and
yielded a more realistic behavior of the bridge’s response. In dynamic linear and nonlinear analysis
of the transverse component of an earthquake the second model was used.

Mang and Luie (2002) in a similar study used three finite element models to analyze the
skewed bridge of Foot hill under the effect of modified longitudinal transversal and vertical
components of the earthquake (1971) using the spectral method and assuming the linear behavior
of bases. Three models were devised. In two of the models the deck was modeled using a shell
element as elastic and rigid, and for the third model the deck was modeled using a beam-column
element as a stick model. Free vibration analysis was performed to determine the natural periods
and mode shapes using these three models. The assumption of this study was similar to Wikfield et
al. (1991) except that in this study the rotation of nodes in side abutments along the longitudinal
axis was disregarded. The results of free vibration analysis of the three models shows that in all
three cases, the rotation mode of the deck in the plane was vertical rotation and in the second and
third models the movements of the stick model and the rigid deck model were only transmission
motion, but in these two modes the elastic deck model experienced motion transmission as well as
torsion and bending movements.

In considering the research from an accuracy point of view, Shinozuka et al. (2001) represented
an essay on fragility curves that in comparison to previous works was more accurate. This essay
represented the fragility curves for common bridges in southern California which had concrete
columns and were retrofitted with metallic coating. The high accuracy of this research owes to the
statistical method of software and the use of the dynamic technique of the nonlinear method and
for the first time showed that the fragility curve is statistical if used for considering accuracy.
Shinozuka et al. (2002) developed the same procedure for multi-span concrete bridges. In this
study the historical records were used for dynamic analysis and the fragility curves were in two
states: it’s supposed that bridge was symmetric and all the columns were on the same type of soil).

Following these works, Mackie and Stojadinovic (2003) extracted fragility curves for highway
bridges of California. Using the methods of earthquake classification which was explained above
they extracted the desired accelerograms and defined different criteria of applied earthquakes.
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Shahria Alam et al. (2012) performed an analytical study in 2012 on fragility curves of a three
span bridge with a continuous deck with seismic isolation installed and with shape-memory alloys.
Fragility function was defined in Siesmo Struct. Incremental dynamic analysis was performed
using record with PGA between 0.4 g and 1.07 g. In this study two types of rubber seats were used
in bridges, one with high damping and another with lead core in addition to tying made of shape-
memory alloy. Fragility curves were extracted for one of the bases, one of the isolators and the
whole system. Fragility curves of bridges were used to assess the bridge’s system in deferent
levels of damage. From the numerical results it can be concluded that on average PGAs different
levels of damage are lower in systems with SMA compared to systems without SMA. Also, in
bridges with seismic isolation damage is more concentrated on the separators rather than the piers
of the bridge.

There are other related papers on the seismic vulnerability of bridges and fragility assessment
procedures of structures available. Ataei and Padgett (2013), Cimerallo et al. (2010), Bisadi et al.
(2011), Choi (2002), Deepu et al. (2014), Eads et al. (2013), Elnashai and Borzi (2004),
Kameshwar and Padgett (2014), Katsanos and Sextos (2013), Padgett et al. (2008), Sung and Su
(2011), Tavares et al. (2012), Wright et al. (2011), Yi et al. (2007), Bayat et al. (2015a, b),
Kalantari and Amjadian (2010), Amjadian and Kalantari (2012).

Fragility curves can be divided into two categories: (a) Empirical fragility curves, (b) analytical
fragility curves. In this study, we have considered the analytical fragility curves of skewed
highway bridges using different intensity measures (IMs). A more complete overview of these two
approaches has been published in previous papers. In this paper an Incremental dynamic analysis
(IDA) has been used to develop the fragility curves of a 30 degree skewed bridge by considering
the effect of different spectral intensity measures on its seismic response. A detailed three
dimensional model of the bridge has been presented. A full nonlinear time history analysis is
utilized to evaluate the seismic response of bridge components (bridge piers).

Fig. 1 Three dimensional model of the 30 skewed bridge in SAP2000
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(a)

(b) (c)

Fig. 2 Concrete member reinforcing layout: (a) Deck detail; (b) Column; (c) Bent beam

2. Bridge configurations and modeling

The model used in this study is derived from a non-skewed model developed by Nielson (2005)
the characteristics of which are based on data obtained from a survey of numerous bridge plans.
Total length of the bridge is 48.8 m and its two equal spans have 24.4 m length. The width of
bridge is 15.01 m with eight AASHTO type prestressed girders. AASHTO Type I and III girders
are used for the end and centre spans. Elastomeric pads are the bearing of this bridge. The pads for
end spans are 406 mm long by 152 mm wide and 25.4 mm thick and for the centre span which are
559 mm long by 203 mm wide and still 25.4 mm thick. The concrete strength of the design is
assumed is assumed to be 20.7 MPa while the yield strength of reinforcing steel is 414 MPa. More
detailed specifications of these columns are in an investigation of existing bridge plans and also
from the work done by Hwang et al. (2001). Fig. 1 shows a three dimensional model of the
considered bridge and the detail of the column and deck and cap beam are presented in Fig. 2. The
deck is modelled using shell elements. The abutments are modelled using beam elements
supported on springs. A rigid bar is used to connect the nodes between girders and bearings,
bearings and cap beams, and cap beams and tops of the columns. Abutments and the column
boundary conditions are fixed-free in the longitudinal direction and fixed-fixed in the transverse
direction.
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3. Fragility function methodology

Cornell et al. (2002) formulated the procedure of developing the analytical fragility functions.
The fragility curves are the relation between the seismic hazard and response of structures and
modeled as lognormal distribution Cornell et al. (2002)
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( )φ • = Standard normal cumulative distribution function

DS = Median value of the structural demand in terms of a seismic intensity

D IM
β =Logarithmic standard deviation, or dispersion, of the demand conditioned on the IM.

The relation between SD and IM estimated as

b
DS aIM= (2)

With a linear regression we can obtain the coefficient of a and b and re-written the Eq. (2) as

ln( ) .ln( ) ln( )SD b IM a= + (3)

The dispersion of the mean demand conditioned on the IM is
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N= number of ground motions

di = Peak demands

3.1 Efficient intensity measure

If an IM is efficient it should have a less dispersion about the median of the results of nonlinear
time history analysis. D IM

β is the dispersion of the results around the median of the response in
this study. The lower values of D IM

β leads to a more efficient intensity measure Padgett et al.
(2008).

3.2 Practical intensity measure

Padgett et al. (2008) presented a new criteria o selecting an optimal intensity measure in
bridges. They introduce the practically of an intensity measure which is the relation between the
dependency of the structural response and seismic hazard. They identified the practically as a
coefficient of the regression parameter b in Eq. (3). The higher value of b leads to a more practical
intensity measure in comparison together.

3.3 Proficient intensity measure

Padgett et al. (2008) composite the measure of efficiency and practically as new criteria of
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selecting an optimal intensity measure as follow formulation
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(5)

A lower values of modified dispersion is a more proficient IM

D IM

b

β
ζ = (6)

Fig. 3 Graphical meaning of the b parameter Padgett et al. (2008)

Fig. 4 Response acceleration spectra of far field ground motions
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Table 1 Characteristics of the earthquake ground motion histories FEMA (2003)

Earthquake Recording station

ID No M PGA (g) Year Name Name owner

1 7.0 0.48 1992 Cape Mendocino Rio Dell Overpass USGS

2 7.6 0.21 1999 Chi-Chi, Taiwan CHY101 CWB

3 7.1 0.82 1999 Duzce,Turkey Bolu ERD

4 6.5 0.45 1976 Friuli, Italy Tolmezzo ------------

5 7.1 0.35 1999 Hector Mine Hector SCSN

6 6.5 0.34 1979 Imperial Valley Delt UNAMUCSD

7 6.5 0.35 1979 Imperial Valley El Centro Array#1 USGS

8 6.9 0.38 1995 Kobe, Japan Nishi-Akashi CUE

9 6.9 0.51 1995 Kobe,Japan Shin-Osaka CUE

10 7.5 0.24 1999 Kokaeli,Turkey Duzce ERD

11 7.3 0.36 1992 Landers Yemo Fire Station CDMG

12 7.3 0.24 1992 Landers Coolwater SCE

13 6.9 0.42 1989 Loma Prieta Capitola CDMG

14 6.9 0.53 1989 Loma Prieta Gilory Arrey#3 CDMG

15 7.4 0.56 1990 Manjil Abbar BHRC

16 6.7 0.55 1994 Northridge Beverly Hills-Mulhol USC

17 6.7 0.44 1994 Northridge Canyon Country-WLC USC

18 6.6 0.36 1971 San Ferando LA-Hollywood Stor CDMG

19 6.5 0.51 1987 Superstition Hills El Centro Imp.Co CDMG

20 6.5 0.52 1987 Superstition Hills Poe Road (temp) USGS

Fig. 5 Percentiles of response acceleration spectra of a suit of 20 far field earthquake ground motion records
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4. Selection of ground motion

Twenty earthquake ground motions have been selected for incremental dynamic analysis. A
general far-field ground motions set (see Table 1) is developed, based on FEMA-P695 far field
ground motion records FEMA (2003): The FEMA records satisfy the following criteria

(a) Magnitude > 6.5; (b) Distance from source to site > 10 km (average of Joyner-Boore and
Campbell distances) Joyner and Boore (1993); (c) Peak Ground Acceleration (PGA) > 0.2 g and
Peak Ground Velocity (PGV) > 15 cm/sec; (d) Soil shear wave velocity, in the upper 30 m, greater
than 180 m/s; (e) Lowest useable frequency < 0.25 Hz, to ensure that the low frequency content
was not removed by the ground motion filtering process; (f) Strike-slip and thrust faults (consistent
with California); (g) No consideration of spectral shape; (h) No consideration of station housing,
but PEER-NGA records were selected to be “free-field”.

Figs. 4 and 5 represent the average spectrum of the records and different percentiles of
acceleration response spectra with 5% damping ratio.

5. Incremental Dynamic Analysis (IDA)

Incremental dynamic analysis (IDA) has been used to develop the analytical fragility curves in
this study. The records were scaled up to the maximum considered PGA, stopping the scaling if
the extensive limit state is reached (PGAmax=2 g). IDA prepares valuable information of the elastic
behavior of the structure till the nonlinear. The suite of records (at least 20) is scaled to different
intensity levels with the increment of 0.1 (FEMA 2003). For each record the dynamic analysis was
run and the results post-processed.

6. Characterization of damage states

Different Engineering Demand Parameters (EDP) for highway bridges which have been
presented in Table 2. In this study, column drift ratio has been assumed as EDP, and evaluated it
considering the combination of transverse and longitudinal displacements

Table 2 Summary of DIs and corresponding LS for concrete columns

Bridge
component

DS
Slight

(DS=1)
Moderate
(DS=2)

Extensive
(DS=3)

Collapse
(DS=4)

Column

A
Physical

phenomenon
Cracking and

spalling
Moderate cracking

and spalling
Degradation without

collapse
Failure leading

to collapse

B
Section

ductility µk
µk>1 µk>2 µk>4 µk>7

C Drift ratio θ>0.007 θ>0.015 θ>0.025 θ>0.05

A. HAZUZ (1999): B. Choi et al. (2004): C. Yi et al. (2007)

7. Results and discussions

In this section, graphs and a table are presented to show a complete comparison between
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different intensity measures. Some criteria for finding the optimal intensity measure was
presented in previous sections. Efficiency and practicality and proficiency of an intensity measure
were shown in Eqs. (4) and (6). The EDP IM

β shows the dispersion of the results in linear regression
in logarithmic space, the less value of EDP IM

β leads us to more efficient intensity measure. The
value shown is the practicality of an intensity measure, the high values of b leads us to more
practical intensity measure.

A composite criterion has been presented as EDP IM

b

β
ζ = . The lower values of ζ leads us to

more efficient and more practical intensity measure. Fig. 6 represents the results of incremental

Fig. 6 IDA curves: 30 degree skewed highway bridge corresponding to the set of selected
accelerogramms IM=PGA,EDP=θ max

Fig. 7 Simulated maximum column drift ratio (as EDP) of bridge as a function of PGA (as IM)
ofearthquakemotions
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dynamic analysis, the selected intensity measures is PGA and the selected engineering demand
parameter is column drift ratio. The complete comparison for the different spectral intensity
measures and PGA are presented in Table 3. The trend of the selection of an intensity measure
with respect to the efficiency, practicality and proficiency have been shown. The Sa(1.1Ts,5%) is
the optimal spectral intensity measure. It is followed by Sa(Ts,5%) and Sa(1.2Ts,5%). There is a
difference of greater than 80% between the selected optimal intensity measure and the PGA which
is more than 80%. Figs. 7 to 23 show the results of linear regression analysis of the nonlinear time
history analysis and also the efficiency and practicality of the intensity measures. The practicality
of the intensity measures is clearer when considering the figures in detail. To have a better
understanding of the effects of the different intensity measure of the failure probability of the

Table 3 Comparisons of regression values of PGA and Sa (Ti,5%) and dispersion values

IM Ln (a) b EDP IM
β EDP IM

b

β
ζ = Differences (%)

PGA(g) -3.95 0.864 1.240 1.435 89.564

Sa(0.1Ts,5%) -4.18 0.826 2.107 2.550 236.856

Sa(0.2Ts,5%) -4.6 0.778 1.608 2.067 173.052

Sa(0.3Ts,5%) -4.73 0.728 1.815 2.493 229.326

Sa(0.4Ts,5%) -4.75 0.74 1.780 2.405 217.701

Sa(0.5Ts,5%) -4.65 0.846 1.341 1.585 109.379

Sa(0.6Ts,5%) -4.6 0.858 1.249 1.456 92.338

Sa(0.7Ts,5%) -4.59 0.809 1.412 1.746 130.647

Sa(0.8Ts,5%) -4.48 0.888 1.125 1.267 67.371

Sa(0.9Ts,5%) -4.39 0.928 1.122 1.210 59.841

Sa(Ts,5%) -4.34 0.932 0.769 0.825 8.983

Sa(1.1Ts,5%) -4.22 0.944 0.714 0.757 0.000

Sa(1.2Ts,5%) -4.17 0.92 0.864 0.939 24.042

Sa(1.3Ts,5%) -4.14 0.895 1.068 1.193 57.596

Sa(1.4Ts,5%) -4 0.902 1.005 1.114 47.160

Sa(1.5Ts,5%) -3.9 0.853 1.292 1.515 100.132

Sa(1.6Ts,5%) -3.9 0.813 1.470 1.808 138.838

Sa(1.7Ts,5%) -3.89 0.772 1.616 2.094 176.618

Sa(1.8Ts,5%) -3.89 0.734 1.757 2.394 216.248

Sa(1.9Ts,5%) -3.9 0.708 1.854 2.618 245.839

Sa(2Ts,5%) -3.89 0.706 1.863 2.639 248.613

Sa(2.1Ts,5%) -3.8 0.712 1.862 2.615 245.443

Sa(2.2Ts,5%) -3.8 0.729 1.801 2.470 226.288

Sa(2.3Ts,5%) -3.7 0.732 1.795 2.452 223.910

Sa(2.4Ts,5%) -3.6 0.744 1.764 2.371 213.210

Sa(2.5Ts,5%) -3.6 0.741 1.766 2.383 214.795
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Fig. 8 Simulated maximum column drift ratio
(as EDP) of bridge as a function of
Sa(0.5Ts,5%) (as IM) of earthquake motions

Fig. 9 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(0.6Ts,5%) (as
IM) of earthquake motions

Fig. 10 Simulated maximum column drift ratio
(as EDP) of bridge as a function of
Sa(0.7Ts,5%) (as IM) of earthquake motions

Fig. 11 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(0.8Ts,5%) (as
IM) of earthquake motions

bridge, we have considered the different fragility curves to show these differences.
Figs. 24 to 40 show the results of the fragility curves with respect to these 26 intensity

measures.With careful attention to these results, it has been shown that choosing different intensity
measures leads us to overestimate or low estimate the failure probability of the structure. The
comparison should be done between the optimal spectral intensity measure and the other spectral
intensity measures that follow.
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Fig. 12 Simulated maximum column drift ratio
(as EDP) of bridge as a function of Sa(0.9Ts,5%)
(as IM) of earthquake motions

Fig. 13 Simulated maximum column drift ratio
(as EDP) of bridge as a function of Sa(Ts,5%) (as
IM) of earthquake motions

Fig. 14 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.1Ts,5%) (as
IM) of earthquake motions

Fig. 15 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.2Ts,5%) (as
IM) of earthquake motions

Fig. 16 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.3Ts,5%) (as
IM) of earthquake motions

Fig.17 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.4Ts,5%) (as
IM) of earthquake motions
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Fig. 18 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.5Ts,5%) (as
IM) of earthquake motions

Fig. 19 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.6Ts,5%) (as
IM) of earthquake motions

Fig. 20 Simulated maximum column drift ratio (as
EDP) of bridge as a function of Sa(1.7Ts,5%) (as
IM) of earthquake motions

Fig. 21 Simulated maximum column drift ratio
(as EDP) of bridge as a function of Sa(1.8Ts,5%)
(as IM) of earthquake motions

Fig. 22 Simulated maximum column drift ratio
(as EDP) of bridge as a function of Sa(1.9Ts,5%)
(as IM) of earthquake motions

Fig. 23 Simulated maximum column drift ratio
(as EDP) of bridge as a function of Sa(2Ts,5%)
(as IM) of earthquake motions
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Fig. 25 Fragility curves of the bridge pier respect
to Sa(0.5 Ts,5%)

Fig. 26 Fragility curves of the bridge pier respect
to Sa(0.6 Ts,5%)

Fig. 24 Fragility curves of the bridge pier respect to PGA

Fig. 27 Fragility curves of the bridge pier respect
to Sa(0.7 Ts,5%)

Fig. 28 Fragility curves of the bridge pier respect
to Sa(0.8 Ts,5%)
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Fig. 29 Fragility curves of the bridge pier respect
to Sa(0.9 Ts,5%)

Fig. 30 Fragility curves of the bridge pier respect
to Sa(Ts,5%)

Fig. 31 Fragility curves of the bridge pier respect
to Sa(1.1Ts,5%)

Fig. 32 Fragility curves of the bridge pier respect
to Sa (1.2 Ts,5%)

Fig. 33 Fragility curves of the bridge pier respect
to Sa (1.3 Ts,5%)

Fig. 34 Fragility curves of the bridge pier respect
to Sa (1.4 Ts,5%)
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Fig. 35 Fragility curves of the bridge pier respect
to Sa (1.5Ts,5%)

Fig. 36 Fragility curves of the bridge pier respect
to Sa (1.6 Ts,5%)

Fig. 37 Fragility curves of the bridge pier respect
to Sa(1.7 Ts,5%)

Fig. 38 Fragility curves of the bridge pier respect
to Sa(1.8 Ts,5%)

Fig. 39 Fragility curves of the bridge pier respect
to Sa(1.9 Ts,5%)

Fig. 40 Fragility curves of the bridge pier respect
to Sa (2 Ts,5%)
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8. Conclusions

In this study, the focus has been on the seismic analytical fragility curve of the skewed highway
bridge. A 30 skew degree bridge is studied in detail. Different spectral intensity measures from
Sa(0.5Ts,5%) to Sa(2.5Ts,5%) are studied completely. The efficiency, practicality and proficiency
were considered din tables and figures. It has been shown that selection of an optimal intensity
measures will leads us to more high accurate fragility curves. The spectral intensity measures leads
us to more accurate results compare to PGA in our study for a skew highway bridge.
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