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Abstract.  Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising 
bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily 
taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the 
flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these 
safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range 
behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical 
method which uses the actual stress-strain curves of the materials and considers the path-dependence of 
materials. In view of the different behaviour of components and the large shear deformation of corrugated 
steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no 
longer be valid. The interaction between shear deformation and local bending of flanges may cause 
additional stress in flanges, which is considered in this study. The numerical results obtained are compared 
with experimental results for verification. A parametric study is undertaken to clarify the effects of various 
parameters on ductility, deformability and strength. 
 

Keywords:  corrugated steel web; ductility and deformability; flexural strength; partially prestressed 
concrete; reinforced concrete 
 
 
1. Introduction 
 

The concrete bridge with corrugated steel webs is a structural form in which the steel webs 
mainly resist shear force and the concrete flanges mainly resist bending moment. This form of 
bridge has some remarkable advantages such as lightness, high shear buckling strength of steel 
webs, efficient prestressing of concrete and easy maintenance. In 1986, the first bridge of this type, 
Cognac Bridge, was built in France (Cheyrezy and Combault 1990). Because of the successful 
application and its remarkable advantages, this type of bridges becomes popular worldwide, 
especially in Japan and China. Hereafter in this paper, this form of bridge is assumed unless 
otherwise stated. 

A typical cross section of the bridge is shown in Fig. 1(a), where tu and tl are the depths of the 
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upper and lower flanges respectively; bu and bl are the widths of the upper and lower flanges 
respectively; hw is the height of the steel web; and h is the distance between the centroidal axes of 
flanges. Fig. 1(b) shows typical forms of corrugated web (trapezoidal and sinusoidal) where s 
denotes the developed length of a half corrugation; s0 denotes its projected length; r denotes the 
rise of corrugation; and θ denotes the trough angle. The corrugated steel web is usually analysed 
by the theory of orthotropic plates. The equivalent orthotropic shear modulus Ge of the corrugated 
web is given by Ge=(s0/s)Gw, where Gw is the shear modulus of steel (Briassoulis, 1986, Samanta 
and Mukhopadhyay, 1999). 

In view of the different behaviour of components and the large shear deformation of corrugated 
webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may 
no longer be valid for this type of bridges. The behaviour of the bridge as shown in Fig. 2(a) is 
similar to that of a sandwich beam with thick facings as shown in Fig. 2(b). The flexural rigidities 
of both the corrugated steel webs of the bridge and the core of the sandwich beam are negligible. 
Chen et al. (2015b) proposed an extended sandwich beam model to predict the elastic behaviour 
taking into account the effects of diaphragm and interaction between shear deformation and local 
bending of concrete flanges. The proposed model was verified by three-dimensional finite element 
model and tests. 

 
 

 

Fig. 1 A cross section of bridge and typical web 
corrugations: (a) a simplified section; and (b) 
typical web corrugations 

Fig. 2 Comparison of a bridge and a sandwich beam 
with thick faces: (a) A bridge; and (b) a sandwich 
beam with thick faces 

 
 
In the design of this type of bridges, especially those with flanges made of high-strength 

concrete and those with the requirement of seismic resistance, the flexural ductility and 
deformability as well as strength need to be carefully examined. Evaluation of these safety-related 
attributes requires the reliable estimation of full-range behaviour that encompasses the service and 
failure behaviour. Thompson and Park (1980), Naaman et al. (1986), Cohn and Riva (1991) 
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conducted the theoretical moment-curvature analysis of conventional prestressed concrete sections 
with bonded prestressing steel. Carreira and Chu (1986) presented a general nonlinear method to 
compute the moment-curvature relationship of conventional reinforced concrete (RC) members. A 
numerical method for the moment-curvature analysis of RC beams, which takes into account the 
nonlinear stress-strain relationship as well as stress-path dependence of the constitutive materials, 
has been developed and applied to conventional rectangular beams (Ho et al. 2003, Bai and Au 
2013) and flanged beams (Kwan and Au 2004). Many other researchers also studied the nonlinear 
behaviour of conventional sections, e.g., Whitehead and Ibell (2004), Havaei and Keramati (2011), 
Barros and Martins (2012), Pandey (2013), Lee (2013), Chen et al. (2015a), but relatively little has 
been done on the present type of bridges. 

In this study, the full-range behaviour of reinforced concrete and partially prestressed concrete 
(PPC) sections with corrugated steel webs is evaluated by means of a nonlinear numerical method 
which uses the actual stress-strain curves of the materials and considers their stress-path 
dependence. An extensive parametric study is undertaken to clarify the effects of various 
parameters such as the section shape, grade of concrete, steel content, partial prestressing ratio, 
prestressing force ratio, etc. on the ductility, deformability and strength of the bridge section. The 
numerical results will also be examined in the light of available experimental results. 
 
 
2. Method of analysis 

 
2.1 Constitutive models of materials 
 
The stress-strain relationship for concrete in compression as proposed by Attard and Setunge 

(1996) and Attard and Stewart (1998), which applies to a broad range of in-situ concrete 
compressive strength from 20 to 130 MPa, is adopted in the study. The stress-strain relationship 
for concrete in tension is assumed to be linear with a slope equal to the elastic modulus in 
compression at zero stress.  The tensile strength of concrete is determined according to Carreira 
and Chu (1986). To consider the post-cracking resistance in tension, the model proposed by Guo 
and Zhang (1987) is adopted. To consider strain reversal of concrete, it is assumed that the 
unloading path of the stress-strain curve is linear and has the slope proposed by Elmorsi et al. 
(1998). The typical loading and unloading curves of concrete adopted are shown in Fig. 3(a), in 
which Ec is the initial modulus of elasticity of concrete; fco is peak compressive stress (in-situ 
uniaxial compressive strength) of concrete, co is the strain at peak stress of concrete; ft is the 
tensile strength of concrete; and εt is the tensile strain at tensile strength of concrete. 

The stress-strain curve recommended by Mander et al. (1984) is used for the non-prestressed 
reinforcement and corrugated steel web. The curve comprises an initial linearly elastic portion, a 
flat yield plateau and a nonlinear strain hardening portion. To cater for strain reversal, it is 
assumed that the unloading path of the stress-strain curve is linear and has the same slope as the 
initial elastic portion. The typical loading and unloading curves of non-prestressed steel applied 
are shown in Fig. 3(b), in which Es is the modulus of elasticity; fy is the yield strength; fu is the 
ultimate strength; εsh and Esh are the strain and tangent modulus when strain hardening just begins. 
Strain hardening in the compression reinforcement is not considered as local buckling normally 
occurs earlier than strain hardening at inelastic stage. 

The stress-strain formula for prestressing steel proposed by Menegotto and Pinto (1973) with 
empirical parameters recommended by Naaman (1985) is adopted. It is assumed that the unloading 
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path of the stress-strain curve is linear and has the same slope as the initial elastic modulus. The 
loading and unloading curves of the prestressing steel adopted are shown in Fig. 3(c), in which Ep 
is the modulus of elasticity of prestressing steel; fpu and pu are the ultimate stress and strain 
respectively of prestressing steel; and fpy and pu are the “yield” stress taken as 0.85 fpu and the 
corresponding strain of prestressing steel respectively. 

 
 

 

(a) Concrete 
(b) Non-prestressed reinforcement
and steel web 

(c) Prestressing steel 

Fig. 3 Stress-strain relationship of materials with stress path dependence 
 

 
 
2.2 Method of analysis 

 
The assumptions adopted are: (a) the stress-strain relationships of concrete, non-prestressed and 

prestressing steel are as given by the constitutive models adopted; (b) the non-prestressed 
reinforcing steel and internal prestressing steel are perfectly bonded with surrounding concrete; (c) 
the corrugated steel webs are perfectly bonded with concrete flanges; (d) the flexural rigidity of 
corrugated steel webs is negligible; and (e) the shear deformation in concrete flanges is negligible. 
The interaction between shear deformation and local bending of concrete flanges may cause 
significant stress concentration in concrete flanges in the vicinity of the diaphragm and point load. 
Except for these local regions, the interaction effects are normally insignificant and therefore the 
assumption of linear normal strain distribution over section depth is roughly valid over there as the 
conventional beam sections. Hence, the assumption of linear strain distribution is adopted in 
Section 3 for the general cases. The interaction effects are discussed in Section 4 where a 
secondary curvature is introduced to account for these effects. 

A computer programme based on the numerical approach of Ho et al. (2003) is developed with 
proper modification for such bridges. In this study, apart from ordinary non-prestressed 
reinforcement, prestressing steel has also been incorporated so that the computer programme can 
cover both RC and PPC sections. For a section with negligible interaction effects, in each iteration 
cycle, the strain variation is determined assuming linear strain distribution over the section depth 
according to the prescribed curvature ϕ as shown in Fig. 4(a), and the stresses in the concrete and 
steel components are evaluated from their respective constitutive models accordingly. When the 
interaction effects need to be considered especially in the vicinity of the point load or diaphragm, 
in addition to the primary curvature ϕ1 that is based on the average axial strain of each of the 
concrete flanges, the secondary local curvature ϕ2 in concrete flanges as shown in Fig. 4(b) is 
needed to account for the additional curvature due to interaction effect. An iterative process is 
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adopted such that the primary curvature ϕ1 is prescribed incrementally and the secondary local 
curvature ϕ2 is determined accordingly from sectional and structural equilibrium. The total 
curvature ϕ is the sum of the primary curvature ϕ1 and the secondary local curvature ϕ2, i.e., ϕ=ϕ1+ 
ϕ2. Axial equilibrium is used to determine the neutral axis depth, dn, after which the resisting 
moment is calculated. This iterative process is repeated until sufficient length of the full-range 
moment-curvature curve has been obtained. 

 
 

 
 

(a) Without interaction effects (ϕ2=0) (b) With interaction effects (ϕ2≠0) 

Fig. 4 Strain distribution over section depth 
 

Fig. 5 Configuration of specimen P-1 tested 
 
 

2.3 Verification of the numerical model 
 

The numerical model developed is verified by experiments. A PPC beam specimen with a 5 
mm thick single corrugated steel web, denoted by “P-1”, was fabricated for testing over a span of 
4500 mm as shown in Fig. 5. The specimen was 4700 mm in length, 300 mm in both depth and 
breadth, and pre-tensioned by two prestressing steel strands located in the lower flange at 20 mm 
above the soffit. Embedment connections were provided between the concrete flanges and 
corrugated steel web. To prevent or delay bond-slip between the prestressing strands and their 
surrounding concrete, the end anchorages for prestressing were retained. 

The effective prestressing force of specimen was 186 kN. The specimen was simply supported 
and tested by third-point loading by displacement control as shown in Fig. 6. Linear variable 
differential transformers (LVDTs) were used to measure displacements during the loading test.  
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Table 1 Properties of materials from tests (unit: MPa) 

 Concrete Steel reinforcement Prestressing strand Steel web

Initial Young’s modulus 30962 192277 206780 196056 

Yield strength - 559 - 267 

Ultimate strength 67.7 (cube strength) 672 2008 399 

 

Fig. 6 Test setup of specimen P-1 Fig. 7 Moment-curvature curve for mid-span 
section of specimen P-1 

 
 

Routine tests of the materials were carried out to identify the quality of materials and the results 
are tabulated in Table 1. 

The moment-curvature curve for the mid-span section obtained by the numerical model is 
compared with experimental result as shown in Fig. 7, in which good agreement is observed. Due 
to the relatively soft local aggregates used in Hong Kong, the initial Young’s modulus of concrete 
is relatively lower. Hence, the measured initial Young’s modulus of concrete is adopted in the 
numerical model instead of the value suggested by the concrete model of Attard and Setunge 
(1996). The ductility factors  from experimental and numerical results are 9.816 and 9.315 
respectively in accordance with the method proposed by Park (1988) and Au et al. (2011), i.e.  

 yu    (1) 

where ϕu and ϕy are the equivalent ultimate curvature and yield curvature respectively. 
 
 

3. Nonlinear sectional analysis 
 
3.1 Full-range behaviour of typical sections 
 
3.1.1 Sections analysed 
To evaluate the ductility of the section with corrugated steel webs, its nonlinear behaviour is 

compared with conventional box girder and rectangular concrete sections with the same overall 
dimensions. Four PC or PPC sections are analysed in this study as shown in Fig. 8. Section I is a 
section with corrugated steel webs. Sections II and III are conventional box girder sections with 
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total web widths bw of 900 mm and 1800 mm respectively. Section IV is a rectangular section. 
These four sections have the same overall dimension of depth H=1800 mm and breadth bu=6000 
mm. The lower flanges of Sections I - III have the same width of bl=4000 mm. The upper and 
lower flanges of Sections I - III are 350 mm thick. The centroids of both the non-prestressed 
reinforcement and prestressing tendons are 175mm above the soffit. 

 
 

 
Fig. 8 Typical bridge sections analysed 

 
 
To improve the behaviour under service condition, prestressing steel tendons may be provided 

in addition to the non-prestressed reinforcement. The partial prestressing ratio, PPR, is defined as 

    yspyppyp fAfAfA PPR  (2) 

where Ap is the cross-sectional area of prestressing steel; and As is the area of non-prestressed 
tension reinforcing steel. The equivalent tension steel area Ase is defined here as 

   yyspypse ffAfAA   (3) 

The equivalent tension steel area at which balanced failure (or simultaneous failure in tensile 
yielding of steel and crushing of concrete in compression) occurs is taken as the equivalent 
balanced steel area and denoted by Ase,b. The equivalent tension to balanced steel ratio is defined as 
Ase/Ase,b  and may be considered as a measure of the degree of the section being under- or over- 
reinforced.  

As pointed out by Au et al. (2011), the traditional definition of ductility factor of prestressed or 
partially prestressed sections may give misleading results in some cases and deformability may be 
a more reliable indicator of safety. The deformability indicator is proposed as ϕuH, which can be 
evaluated as a simple function of the neutral axis depth ratio dn,peak/d, where dn,peak is the neutral 
axis depth at peak resisting moment; and d is the effective depth to centroid of tension steel. 
Limiting the ratio dn,peak/d is a popular method in design codes for flexural ductility design of RC 
and PPC beams. 

 
3.1.2 Complete moment-curvature curves 
For example, the in-situ concrete compression strength fco, the yield strength fy of 

non-prestressed tension reinforcement, and the ultimate strength fpu of prestressing steel are taken 
as 50 MPa, 500 MPa, and 1860 MPa respectively. The Young’s moduli of non-prestressed and 
prestressing steel are assumed to be 200 GPa. The prestressing force ratio fpe/fpu is taken as 0.7, 
where fpe is the effective prestress. The strain hardening of non-prestressed reinforcement is 
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neglected here for simplicity. 
The same amount of equivalent area of tension steel Ase=0.15 m2 is provided in all the sections 

analysed. The parameters are so chosen that the tensile stress at transfer of the concrete fibre does 
not exceed the tensile strength at transfer taking into account the bending moment caused by the 
self-weight of bridge. For example, the self-weight is calculated assuming the section analysed is 
at the mid-span of a simply supported bridge with a span of 30 m. The densities of concrete 
flanges and steel web are assumed to be 25 kN/m3 and 78 kN/m3 respectively. 

The complete moment-curvature curves of Sections I - IV in Fig. 9 show that, when the same 
amount of equivalent tension steel area is used, the moment-curvature curves for these four 
sections display similar peak moments irrespective of PPR, as all four sections are 
under-reinforced. 

 
 

(a) RC sections (PPR=0) (b) PPC sections (PPR=0.5) 

Fig. 9 Complete moment-curvature curves of sections with same overall dimensions and amount of 
equivalent tension steel area 
 
 
During the elastic and cracked elastic stages, the moment-curvature curves of all four sections 

follow almost the same bi-linear path. After the yielding of non-prestressed reinforcement, they 
develop a relatively flat yield plateau before the resisting moments drop significantly. The 
moment-curvature curve of Section I with corrugated steel webs drops very sharply. Sections II 
and III also display a relatively sharp drop in the moment-curvature curves but slightly less rapid 
compared to Section I. Thus Sections II and III have slightly higher ductility factors than Section I. 
As the post-peak branch of rectangular Section IV is much smoother and without a sudden drop, 
its ductility is the highest. It is evident that the concrete in web of Sections II and III contributes 
little to the peak resisting moment, but it does contribute to the residual resisting moment at the 
post-peak stage, thus benefitting their ductility. Hence Section III with thicker concrete webs has 
slightly higher ductility. As pointed out by Kwan and Au (2004), the concrete near the section 
centre contributes significantly to the flexural ductility of the beam section. At the post-peak stage, 
when the resisting moment decreases after reaching its peak value, the concrete near the extreme 
compression fibre is gradually losing its strength and the neutral axis of the section moves towards 
the tension reinforcement. Consequently at the post-peak stage, the concrete near the section centre 
develops much higher compressive stresses than before and contributes significantly to the 
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residual moment resisting capacity of the section. Therefore, a rectangular section having the most 
concrete near the centre is the most ductile. In other words, although a flanged section has higher 
structural efficiency in terms of flexural strength, it has lower flexural ductility. Because of the 
negligible flexural rigidity of the corrugated steel webs of Section I, it can be taken as an extreme 
case of flanged section with no concrete web. Actually Section IV being wasteful of materials is 
unrealistic for practical use in bridges. The box girder versions of Sections I - III all provide 
similar flexural strength and ductility. Comparing Figs. 9(a) and (b), the applied prestressing force 
has also delayed the cracking of the PPC sections compared with the RC sections. 

The effects of prestressing force ratio on the moment-curvature curve of Section I with 
corrugated steel webs are shown in Fig. 10. The ultimate curvatures are almost the same for cases 
with different prestressing force ratios fpe/fpu therefore giving almost the same deformability 
indicators. However, the higher the prestressing force ratio is, the earlier the moment reaches the 
peak value, and hence the lower the yield curvature and the higher the ductility. As the value of 
PPR increases from zero to unity, the section gradually changes from an RC section to a fully 
prestressed section. The moment-curvature curves of Section I with corrugated steel webs for 
different values of PPR in Fig. 11 show that, the higher the PPR is, the later the moment reaches 
the peak value and the faster it drops, which cause the lower ductility and deformability. At the 
same equivalent tension steel area Ase, the peak moments are almost same irrespective of the 
prestressing force ratio and PPR. Similar conclusions can be drawn for Sections II - IV. For 
convenience of comparison, the curvature at the beginning of loading is taken as zero in Figs. 10 
and 11.  

 
 

Fig. 10 Complete moment-curvature curves of 
Section I with different prestressing force ratios 

Fig. 11 Complete moment-curvature curves of 
Section I with different PPR 

 
 
3.2 Flexural ductility and deformability of typical sections 

 
Although Fig. 9 shows that, at the same overall dimensions and equivalent tension steel area, 

the sections with corrugated steel webs have lower ductility factor and deformability indicators, a 
fair comparison can only be carried out by considering the equivalent tension to balanced steel 
ratio Ase/Ase,b in view of the large differences in concrete area. In the comparison, the overall  
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(a) With equivalent tension steel area (b) With equivalent tension to balanced steel ratio 

Fig. 12 Variation of ductility factor of sections analysed 
 

(a) With equivalent tension steel area (b) With equivalent tension to balanced steel ratio 

Fig. 13 Variation of deformability indicator of sections analysed 
 
 

dimensions and material properties of the sections analysed are kept unchanged. Both the 
prestressing force ratio fpe/fpu and partial prestressing ratio PPR are assumed to be 0.5. 

Figs. 12(a) and (b) show the variation of the ductility factor μ with the equivalent tension steel 
area Ase and the equivalent tension to balanced steel ratio Ase/Ase,b, respectively, for RC and PPC 
versions of Sections I-IV. With the increase of the equivalent tension steel area Ase or the 
equivalent tension to balanced steel ratio Ase/Ase,b, the ductility factor decreases.  At the same 
equivalent tension steel area Ase, generally Section I with corrugated steel webs has the lowest 
ductility factor, followed by Sections II-III of conventional concrete box girder construction, while 
Section IV of solid construction has the highest ductility factor, because Section I is relatively 
heavily reinforced as its equivalent balanced steel area is the smallest. However, at the same 
equivalent tension to balanced steel ratio Ase/Ase,b below 1.0, Section I with corrugated steel webs 
has the highest ductility factor, followed by Sections II and III of conventional concrete box girder 
construction, and then Section IV of solid construction. When the equivalent tension to balanced 
steel ratio exceeds 1.0, the ductility factors become stable with negligible difference.  
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Figs. 13(a) and (b) show the variation of the deformability indicator ϕuH with the equivalent 
tension steel area Ase and the equivalent tension to balanced steel ratio Ase/Ase,b, respectively, for 
the sections analysed. Regarding the variation of deformability indicator ϕuH, conclusions similar 
to those for the ductility factor μ can be drawn. At the same tension steel area, generally Section I 
with corrugated steel webs has the lowest deformability indicator ϕuH, while at the same 
equivalent tension to balanced steel ratio Ase/Ase,b below 1.0, Section I with corrugated steel webs 
has the highest deformability indicator ϕuH. 

Figs. 14(a) and (b) show the effects of the neutral axis depth ratio dn,peak/d on the ductility factor 
μ and deformability indicator ϕuH respectively for RC and PPC versions of Sections I-IV. With the 
exception of the solid sections, the curves tend to come close to one another, and this phenomenon 
is more obvious for deformability indicator. Therefore, the deformability indicator ϕuH can be 
evaluated as a simple function of the ratio dn,peak/d better than the ductility factor μ, whether the 
concrete sections are reinforced or partially prestressed. In other words, it is possible to develop 
empirical formulae to predict the ductility and deformability based on the neutral axis depth ratio 
at peak resisting moment. 

 
 

(a) On curvature ductility factor (b) On deformability indicator 

Fig. 14 Effects of dn,peak/d ratio of sections analysed 
 
 
3.3 Flexural strength - ductility and flexural strength - deformability performance 

 
The overall dimensions and material properties of the sections analysed are kept unchanged. 

Both the prestressing force ratio fpe/fpu and partial prestressing ratio PPR are assumed to be 0.5. 
The equivalent tension to balanced steel ratio Ase/Ase,b  is varied from 0.3 to 1.3 at an interval of 
0.05. The peak moment, ductility factor and deformability indicator are calculated for each given 
equivalent tension to balanced steel ratio. 

Figs. 15 and 16 show the flexural strength - ductility and flexural strength - deformability 
performance, respectively, of sections having the same overall dimensions but different section 
shapes. The flexural strength is expressed in terms of Mp/bud

2 so as to account for the size effects 
and facilitate convenient comparison. In this manner of caparison, the flexural strength - ductility 
and flexural strength - deformability curves of the sections with corrugated steel webs are lower 
than those of conventional concrete box girder sections or solid sections. Therefore, at the same  
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Fig. 15 Flexural strength - ductility performance 
at same overall dimensions 

Fig. 16 Flexural strength - deformability 
performance at same overall dimensions 

 

Fig. 17 Flexural strength - ductility performance 
at same concrete area 

Fig. 18 Flexural strength - deformability 
performance at same concrete area 

 
 

overall dimensions, the flexural strength - ductility and flexural strength - deformability 
performance of Section I with corrugated steel webs is inferior to that of conventional concrete 
box girder sections or solid sections. 

The above comparison is based on the premise that all the sections analysed have the same 
overall dimensions. To be fair, comparison should be carried out for the same concrete sectional 
area in view of its large variation among sections. To study the performance at the same concrete 
sectional area, the ductility factors and deformability indicators are plotted against Mp/Acd, where 
Ac is the concrete sectional area above the centroid of the tension steel reinforcement. 

Fig. 17 and 18 show the flexural strength - ductility and flexural strength - deformability 
performance, respectively, of sections having the same section concrete area. Obviously, at the 
same concrete sectional area, the flexural strength - ductility and flexural strength - deformability 
performance of Section I with corrugated steel webs is much better than that of Sections II and III 
of conventional concrete box girder construction or Section IV of solid construction. 

Taking into account the self-weight, the RC and PPC sections with corrugated steel webs 
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provide the best flexural strength - ductility and flexural strength - deformability performance. 
 
 

4. Effects of interaction between shear deformation and local bending of flanges 
 
The interaction between shear deformation and local bending of concrete flanges may cause 

secondary bending moment M2 and secondary shear force V2 to be resisted by the pair of concrete 
flanges and hence stress concentration in the concrete flanges, especially in the vicinities of the 
point load and diaphragm (Chen et al. 2015b).  

For example, the loaded section of a simply supported bridge under a vertical point load F at 
mid-span as shown in Fig. 19 is considered. By symmetry, only analysis of the right half is carried 
out with the origin taken at mid-span. According to the extended sandwich beam model proposed 
by Chen et al (2015b), the secondary bending moment M2 and secondary shear force V2 due to the 
interaction between shear deformation and local bending of concrete flanges are solved as 

          xxlFM  sinhcoshtanh22   (4) 

         xlxFV  sinhtanhcosh22   (5) 

where   gfw BBBS2  ; Bf is the sum of the local bending stiffnesses of the flanges about  
their respective centroidal axes; Bg is the global bending stiffness of the flanges about the 
centroidal axis of the entire beam assuming uniform stress in each flange; B is the total flexural 
rigidity; β is equal to h / hw as shown in Fig. 1; Sw is the equivalent shear rigidity of the corrugated 
steel webs; and l  is the distance from the point load F to the right support. The value of tanh(αl) 
in Eqs. (4) and (5) increases exponentially to approximately unity at values of l  at about 5. With 
tanh(αl)=1, Eqs. (4) and (5) become 

    xeFM   22  (6) 

   xeFV  22  (7) 

which indicate that the secondary bending moment M2 and secondary shear force V2 diminish 
exponentially to almost zero at distance x≥5/α along the bridge in accordance with the exponential 
function as shown in Fig. 20. From Eqs. (6) and (7), the secondary bending moment M2 and 
secondary shear force V2 due to interaction effects reach the peak values M2,peak=F/(2α)

 
and 

M2,peak=−F/2, respectively, at mid-span. 
The secondary curvature ϕ2 of the concrete flanges caused by the interaction effects is obtained 

as 

 fBM22   (8) 

The secondary bending moment M2 and secondary shear force V2 are carried by the pair of 
concrete flanges. To consider the interaction effects in section analysis, the secondary curvature ϕ2 
associated with additional local bending induced in the concrete flanges is determined upon 
application of the primary curvature ϕ1 to the entire section as shown in Fig. 21, in which the 
values of α and Bf are updated accordingly to account for material nonlinearity as necessary. 
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Fig. 19 A simply-supported bridge under a vertical 
point load F at mid-span 

Fig. 20 Exponential function of dissipation 

 
 
For beam sections with significant interaction effects, possible shear failure of concrete flanges 

should be taken into account. Shitou et al. (2008) carried out shear tests on full- and half-scale 
models and found that the contribution of corrugated steel web to shear increased with the 
propagation of cracking of concrete flanges. In this study when the shear force carried by a 
concrete flange reaches its strength, the concrete flange is assumed to fail immediately due to its 
brittle character (Inel and Ozmen 2006) and the corrugated steel webs then carry the additional 
shear force. After shear failure of the concrete flanges, the secondary curvature ϕ2 still continues to 
develop to meet the local compatibility requirement. The zone with significant secondary effects 
may form a local plastic hinge, which is closely related to the exponential dissipation of the 
concentrated secondary bending moment M2 and shear force V2. The equivalent length lps of local 
plastic hinge, over which the secondary curvature ϕ2 is considered to be constant at the peak value, 
can be estimated by equating the hypothetical rectangular area of the plastic hinge to the actual 
area of secondary curvature distribution. When the bridge remains elastic and hence the parameter 
α is a constant, the equivalent length lps can be obtained as lps≈2/α based on properties of the 
function in Fig. 20, which reflects the secondary bending moment on one side of the plastic hinge. 
In the plastic stage when  the parameter α varies along the length of local plastic hinge due to 
material nonlinearity, a trial and error process is needed for determination of lps.  

A section with corrugated steel webs at the mid-span of a simply supported bridge of span L=30 
m with cross-sectional dimensions as shown in Fig. 8 is analysed. The tension steel area As and  
compression steel sA  are assumed to be 0.15 m2 and 0.05 m2 respectively and evenly distributed  
in two layers of each flange. Each layer of steel is at 70 mm from its nearest horizontal concrete 
surface. The in-situ concrete compression strength fco, the yield strength of non-prestressed 
reinforcement and the yield strength of corrugated steel webs are 50 MPa, 500 MPa, and 400 MPa 
respectively. The Young’s modulus of both non-prestressed reinforcement and corrugated steel 
webs are 200 GPa. The thickness of corrugated steel webs is 20 mm. The complete 
moment-curvature curves of the mid-span section considering interaction effects are obtained and 
compared with that ignoring interaction effects as shown in Fig. 22, which shows that interaction 
has little effect on the ultimate curvature and deformability, but significantly increases the yield 
curvature and decreases the ductility. The total curvature ϕ considering interaction effects is found 
to reverse when the resisting moment M drops significantly, i.e., “snap back” phenomenon. It is 
because the secondary curvature ϕ2 decreases with the drop of resisting shear force V and bending 
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moment M. However, this should be treated with caution, as the upper concrete flange may be 
crushed thereby creating a kink and violating the assumptions made in the numerical model. 
However, the effects of curvature reversal on strength, ductility and deformability of the section 
are insignificant. 

 
 

Fig. 21 Flow chart of section analysis 
considering interaction effects 

Fig. 22 Complete moment-curvature curves 
considering interaction effects 

 
 
The strain distributions over section depth at different stages as shown in Fig. 23 indicate that 

the interaction effects decrease as the primary curvature ϕ1 increases. Firstly, as the primary 
curvature ϕ1 increases, the local flexural stiffness Bf decreases due to material nonlinearity and 
therefore the parameter α increases. Secondly, after the yielding of steel, the primary curvature 
continues to increase, while the resisting moment remains roughly the same. Therefore the 
resisting shear force and associated secondary curvature ϕ2 only vary a bit, causing the ratio of 
secondary curvature to total curvature to decrease. As the interaction effects are quite localized, it 
is difficult to verify these effects by tests. However, the zigzag distribution of normal strain over 
section depth has been observed in some tests, e.g., Ikeda et al. (2002), Kadotani et al. (2002), 
Chen et al. (2015b). 

The interaction effects are sensitive to the span L and the parameter α. Fig. 24 shows that, as 
the span L decreases, the yield curvature increases thereby reducing the ductility. With a shorter  
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(a) At ϕ1= 6×10-5 radian/m 
(before cracking) 

(b) At ϕ1= 1.59×10-3 radian/m (after 
cracking but before yielding) 

(c) At ϕ1= 6.66×10-3 radian/m 
(after yielding) 

Fig. 23 Strain distributions over section depth 

 

Fig. 24 Effect of span L on interaction Fig. 25 Effects of total thickness of corrugated 
steel webs on interaction 

 
 

span L, the dominant shear causes significant interaction effects between shear deformation and 
local bending of concrete flanges. The parameter α is approximately equal to the square root of the 
ratio of the equivalent shear rigidity β2Sw of the entire section to the local bending stiffness Bf of 
concrete flanges. For convenience, the parameter α is varied by changing the total thickness of 
corrugated steel webs. Fig. 23 shows that, with the reduction of total thickness tw of corrugated 
steel webs, the yield curvature increases, which reduces the ductility. As the total thickness tw and 
parameter α reduce, the larger shear deformation causes more significant interaction effects. Any 
other changes causing variation in parameter α, e.g. local bending stiffness Bf, will also affect the 
interaction effects. 
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5. Conclusions 
 
The ductility, deformability and strength of RC and PPC sections with corrugated steel webs 

are studied and compared with those of conventional sections. The analysis considers the 
equilibrium of section, and the actual stress-strain curves of materials with possible strain reversal. 
The interaction effects between shear deformation and local bending of concrete flanges are 
studied by considering the secondary curvature in concrete flanges. The numerical results also 
agree well with experimental results. 

The following conclusions can be drawn: (a) Concrete bridges with corrugated steel webs 
perform reasonably well in respect of flexural ductility and deformability; (b) In comparison with 
concrete box girder sections and solid concrete sections, concrete bridges with corrugated steel 
webs still perform well in respect of flexural ductility and deformability provided that those with 
the same concrete sectional areas are compared; (c) The effects of prestressing force ratio on the 
deformability indicator are insignificant; (d) Increase in PPR tends to adversely affect the ductility 
factor and deformability indicator; (e) The interaction effects between shear deformation and local 
bending of concrete flanges are sensitive to the arrangement of span and loading, and sectional 
properties; and (f) The interaction effects on ultimate curvature and deformability are insignificant. 
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