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Abstract.  A Bayesian response surface updating procedure is applied in order to update the parameters of 
the covariance function of a random field for concrete properties based on a limited number of available 
measurements. Formulas as well as a numerical algorithm are presented in order to update the parameters of 
response surfaces using Markov Chain Monte Carlo simulations. The parameters of the covariance function 
are often based on some kind of expert judgment due the lack of sufficient measurement data. However, a 
Bayesian updating technique enables to estimate the parameters of the covariance function more rigorously 
and with less ambiguity. Prior information can be incorporated in the form of vague or informative priors. 
The proposed estimation procedure is evaluated through numerical simulations and compared to the 
commonly used least square method. 
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1. Introduction 

 

Material properties of concrete structures have a significant spatial variability due to e.g. effects 

of workmanship, material heterogeneity, environmental influences and other factors. Random field 

theory can be used to model this spatial variability if the covariance function of the random field is 

known. This allows modelling concrete properties in a more realistic way, which might have a 

significant effect on structural reliability quantification. In particular cases, it can be insufficient to 

base such reliability-based calculations on a random estimate of a spatially homogeneous material 

property. Based on an empirical semi-variogram, this spatial variability can be modelled, but 

sufficient data is seldom available to compose a reliable semi-variogram for concrete related 

properties, especially with respect to properties assessed through destructive testing. Hence, often 

assumptions with respect to random field characteristics are made.  

Random fields are frequently used in geotechnical reliability calculations, such as slope 

stability (Griffiths et al. 2011), or bearing capacity of a rigid strip footing on cohesive soil 
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(Griffiths et al. 2002).Applications are also found in mining engineering, e.g. mineral resources 

evaluation (Emery and Cornejo 2010). Usually a considerable amount of data is available to define 

the field properties in these applications. In the case of concrete structures it is often not possible 

to acquire an equivalent amount of data, especially if the data can only be acquired by destructive 

testing. However, random fields aremore frequently applied in structural engineering analyses 

related to concrete. Consider for example the effects of the spatial variability of chloride induced 

corrosion of concrete slabs (Keßler et al. 2010; Straub 2011; Daniel Straub and Fischer 2011), 

spatial uncertainty concerning corrosion-induced cracking or cracking of concrete slaps and beams 

(Firouzi and Rahai 2011; Most and Bucher 2006, 2007)or the spatial uncertainty concerning 

geometrical en material properties when performing structural analyses of reinforced concrete 

(Vasconcellos Real et al. 2003). In most of these references, a value for the correlation length is 

assumed. As can be concluded from Table 1, these assumptions for the correlation length are not 

consistent with eachother. 

This paper deals with the problem of insufficient data to properly define the characteristics of a 

random field. Typically analysis of samples gives an estimate of the mean values and standard 

deviation of the field. However, a third parameter is necessary to describe the spatial variability of 

the field. A common parameter for this is the semi-variogram. The semi-variogram is a function of 

the distance in the field. Evaluated in an arbitrary distance it is a measure for the correlation over 

that distance in the random field. 

In the scope of this paper it is deemed sufficient to consider only Gaussian random fields. Non-

Gaussian fields can be created through transformations of Gaussian fields (Fenton, 1994). 

Gaussian fields are important for two main reasons. First, the Gaussian distribution is well-studied, 

which makes the calculations easier and second the central limit theorem states that the net result 

of many small-order effects is approximately Gaussian (Cressie 1993) even if those small-order 

effects are weakly correlated (Vanmarcke 2010). A Gaussian field can always be transformed to a 

standard normal distributed random field. As such, only standard normal distributed random fields 

are considered in this paper. 

Methods such as the maximum likelihood estimation (MLE) or least-square fitting (LSQ) 

methods require large datasets in order to accurately determine the characteristics of the 

covariance structure of the random field. In cases where only a few measurements are available, 

often assumptions are made about the parameters of the covariance function. However, Bayesian 

updating techniques allow to estimate the parameters of the covariance function more rigorously 

and with less ambiguity as these can be used to update previously obtained information regarding 

parameters of similar random fields. Markov chain Monte Carlo (MCMC) simulations can be used 

to incorporate Bayesian updating based on limited samples in the parameter estimation. Prior 

information (vague or informative) can then be used to update the covariance function based on 

available monitoring data or measurement results. 

In order to verify this method, Gaussian random fields with a known covariance structure need 

to be simulated. Different simulation methods are available and can be classified as exact 

algorithms, where the statistical properties of the field match the properties of the desired model, 

or approximate algorithms, where the statistical properties of the field approximate those of the 

desired model. Exact algorithms comprise a decomposition of the covariance matrix (typically 

using the Cholesky decomposition, which typically has a computational cost of O(n^3 )(Trefethen 

and Bau 1997)). These exact algorithms tend to be time consuming for large random fields. The 

approximate algorithms are often more efficient for practical applications. In this paper the  
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Table 1 Suggested correlation lengths for various concrete properties by different authors 

Concrete property Correlation length [m] Reference 

Concrete cover (𝑐) 

1.0 (D. Straub 2011) 

2.0 (Li 2004) 

3.5 (Stewart & Mullard 2007) 

Chloride surface concentration (𝐶0) 

1.0 (Engelund 1997) 

1.96 (Vu 2003) 

2.0 (D. Straub 2011) 

3.5 ( Duprat 2007) 

Concrete strength (𝑓𝑐) 3.5 (Duprat 2007) 

 

 

Turning Bands Method (TBM) (Matheron, 1973) is used to generate random fields. This 

method allows the simulation of a random field with a zero-mean and a specified covariance 

function using a sequence of one-dimensional zero-mean processes along lines crossing the 

domain (Fenton, 1994). 

The proposed parameter estimation method is based on Bayesian updating of nonlinear 

response surface parameters. A semi-variogram model is fitted on an empirical semi-variogram 

while considering prior information about the model parameters. Since it is typically difficult or 

even impossible to find an analytically closed expression for the posterior distribution, the update 

process relies on Markov chain Monte Carlo simulations. In the following, first some basic 

concepts are explained, an adapted Metropolis-Hasting algorithm is established in order to enable 

Bayesian updating of covariance functions and finally the proposed method is evaluated by 

numerical simulations and compared with the LSQ method. 

 
 
2. Random field theory 
 

2.1 Basic concept 
 

A random field  𝑋 𝑡 , 𝑡  ∈ Ω  is a function whose values are random variables for any 

position 𝑡in the domain Ω ⊂ ℝ𝑑 . In this paper equations are presented for two-dimensional 

random fields, i.e.𝑑 = 2. In general, the characteristics of those random variables can differ for 

each position 𝑡 in the random field. A realisation of a random field is denoted by a deterministic 

function𝑥 𝑡 .Random fields can be decomposed into a mean value of a trend surface 𝑚 𝑡  and a 

residual variation with mean 0. This residual variation usually exhibits some spatial 

structuredescribed by a covariance function 𝐵 𝑡𝑖 , 𝑡𝑗  .  

In general, the mean and the covariance function are not sufficient to specify a random field. 

However, as mentioned, Gaussian random fields are second order stationary.Thus, the mean and 

covariance function are enough to completely specify the field (Cressie 1993). 

The covariance function 𝐵 𝑡𝑖 , 𝑡𝑗  of two random variables on location 𝑡𝑖and 𝑡𝑗  is defined as 

     B(ti,tj) = E[X(ti)-E[X(ti)])( X(tj)- E[X(tj)])]   

= E[X(ti)-X(tj)])- E[X(ti)]E[X(tj)]                    (1) 
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where  𝐸 .   is the expectancy operator. 

When only homogeneous, isotropic and ergodic fields are considered, the covariance function is 

only dependent on the distance between those two location vectors 𝑡𝑖 and 𝑡𝑗 . 

B((ti,tj) = B(ti - tj ) = B()                         (2) 

Note that if 𝜏 = 0 the distance between the two random variables in the random field is zero; For 

second-order stationary fields the covariance will be equal to the variance 𝜍2 of the random field. 

B(0) = σ
2                                                     

(3) 

Different models are available for the covariance function. Commonly used models are the 

exponential or Gauss-Markov covariance function model, the squared exponential or Gaussian 

covariance function model and the Matérn covariance function model. The exponential and 

squared exponential covariance function models are described by only one parameter𝜃. The 

Matérn covariance function model additionally incorporates a smoothness parameter 𝜈.  

The correlation length 𝜌𝑙  is a measure of the distance over which the field is significantly 

correlated. A large correlation length indicates that the field is varying slowly, while a small value 

for ρl indicates a field that is varying rapidly (D. V. Griffiths et al. 2011). The correlation length 

isdefined as the centroid of the surface under 𝐵 𝜏 (Baecher and Christian 2003) 

 
 

  ττB

τττB
ρl

d

d

0

0








                               (4) 

Instead of assigning model parameters to define the covariance function it is more interesting to 

assign the correlation length 𝜌𝑙  as a model parameter. For the exponential covariance function 

this is fairly easy since the correlation length is equal to the model parameter, i.e.,𝜌𝑙 =  𝜃.  The 

model parameters for the other covariance functions can be replaced by a function 𝜃 𝜌𝑙 .An 

overview is given in Fig. 1 and Table 2. 

In spatial data analysis the variogram is used rather than the covariance function. The 

variogram is – like the covariance function – a function describing the degree of spatial 

dependence in a random field. The variogram2𝛾 𝑡𝑗 − 𝑡𝑖  is defined as the variance of the 

difference between two values at 𝑡𝑖  and 𝑡𝑗 in the field. 

        (5) 

where 𝐶𝑂𝑉 𝑋 𝑡𝑖 ,𝑋 𝑡𝑗   = 𝐵 𝑡𝑖 , 𝑡𝑗  is the covariance of 𝑋 𝑡𝑖  with 𝑋 𝑡𝑗   

Under the assumption of homogeneous and isotropic fields, every position in the field has the 

same mean value. Hence, the variogram 2𝛾 ∙  is a function of the increment 𝜏 =  𝑡𝑗 − 𝑡𝑖 . For 

second-order stationary fields all random variables in the random field have the same variance, 

resulting the in following relation between the variogram and the covariance function (see Eqs. 

(1)-(2) and Eq. (3)) 
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Table 2 Overview of common covariance functions for homogeneous, isotropic and ergodic random fields 

Covariance function 𝑩 𝝉 a 
Parameters 𝜽(𝜌𝑙) 

Exponential 𝜍2 exp  −
 𝜏 

𝜃
  𝜃 > 0 𝜌𝑙  

Squared exponential 𝜍2 exp −
 𝜏 2

𝜃2
  𝜃 > 0 𝜌𝑙 𝜋 

Matérn
b 

𝜍2
1

Γ 𝜐 2𝜐−1
 2 𝜐

 𝜏 

𝜃
 

𝜐

𝐾𝜐  2 𝜐
 𝜏 

𝜃
  

 

𝜃 > 0, 𝜐 > 0 
𝜌𝑙
 𝜋Γ 𝜐 + 1 2  

 𝜐Γ 𝜐 
 

a𝜍2is the variance of the field 
b 

Γ ∙ is the Gamma function and 𝐾𝜐 ∙  the 𝐵𝑒𝑠𝑠𝑒𝑙𝐾 𝜐,∙  function 

 

 
Fig. 1 Different covariance functions for 𝜌𝑙 = 5 

 

 
Fig. 2 Visual representation of a random realization of a Gaussian random field with a 

correlation length 𝛽 = 20 on a 150 × 150 grid using the TBSIM.M program 
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(6)

 

For numerical applications random fields are most often defined on a discrete domain, e.g., a 

random field on a regular lattice grid.A continuous random field can be obtained by interpolation 

methods, e.g. Kriging (Cressie 1993). 

 
2.2 Simulation of random fields 

 
The Turning Band Method is used in order to simulate random fields with known properties 

(Matheron 1973). The simulation of the random field 𝑋(𝑡)using this method is based on a 

sequence of one-dimensional processes 𝑌𝑖 𝜉 , 𝜉 ∈ ℝ with a covariance function 𝐵1(𝜉)that cross 

the domain of 𝑋(𝑡). The direction of 𝑌𝑖 𝜉  is given by a unit vector 𝑢𝑖 .𝜉 is measured along 𝑢𝑖 . 
The value of the field in position 𝑡𝑘  is given by 

   k

L

i i

L

1i ikik ζY
L

u,tY
L

)tX(  


1

11
                   (7) 

where 𝐿  is the number of one-dimensional processes and the operator    ,  determines the 

coordinate 𝜉𝑘  of the orthogonal projection of 𝑡𝑘  on 𝑢𝑖 .If 𝑡𝑘  and 𝑢𝑖  have the same origin then 

   ,   is defined by the dot product. 

The covariance function 𝐵1(𝜉) for the one-dimensional processes must be chosen in a manner 

that the covariance function of the field is 𝐵(𝜏). For two-dimensional isotropic processes the 

following relation is suggested (Mantoglou and Wilson 1982) 

 
  


τ

0 22

1 ζ
ζτ

ζB

π

2
τB d)(

                           

 (8) 

Eq. (8) is a Volterra integral of the first kind to be solved for 𝐵1(𝜉)which is usually 

complicated planar random fields (𝑑 = 2).However𝐵1(𝜉) has the following simple solution in 

three dimensions if spherical coordinates are used (Emery & Lantuéjoul, 2006) 

   τB(τ)
τ

τB1
d

d


                             
 (9) 

Emery and Lantuéjoul (2006) implemented this method in a program TBSIM.M, written in 

MATLAB,which will be used to simulateGaussian random fields in this paper. An example of such 

a simulated field is shown in Fig.2. 

 
 
3. Bayesian estimation of response surface parameters 

 

Ba yesian estimation of linear regression models is well-described in literature, e.g. in (Box and 

Tiao 1992; Gamerman and Lopes 2006; Gelman et al. 2003; Ghosh et al. 2010; Gregory 2005; Lee 

664



 

 

 

 

 

 

Bayesian updated correlation length of spatial concrete properties using limited data 

 

2012). However, in most cases observational data is modelled as a nonlinear combination of 

multiple model parameters and variables. Available literat ure on Bayesian nonlinear regression is 

rather limited (see e.g. (Gelman et al. 2003; Gregory, 2005)). See also (Caspeele and Taerwe 2013, 

Van Der Vurst et al. 2014). 

Assume that the true value of the response variable 𝑦  can be predicted by a mathematical 

model M which is a nonlinear function of 𝑅 parameters  𝛽𝑟  (𝑟 = 1,… ,𝑅) and depends on a 

vector 𝑥  which represents a m-dimensional set of input variables. If this model would be 

“perfect” and the true values 𝑥  are exactly known, the model would be able to predict the true 

response value 𝑦  exactly. However, due to the existence of uncertainties, the true value is given 

by
 

                          (10) 

where the error term can be considered as a realization of a Gaussian random variable with mean 0 

and variance 𝜍𝜀
2, representing the measurement and model uncertainties. Hence 

)( 2
εσ0,N ε                                 (11) 

The variance of the error term is assumed to be constant in the domain of the input variables. 

If 𝑁  independent test results 𝑦𝑖  are available for the response variable of 𝑁  sets of 

corresponding input variables𝑥𝑖 , the likelihood of the experimental data can in general be written 

as 

              (12) 

where 𝜙 ∙  is the probability density function (PDF) of the standard normal distribution. 

Based on the Bayesian principle, the prior information (either vague or informative) is given as 

the joint prior distribution𝑓𝐵
′  𝜍𝜀 ,𝛽1 ,… ,𝛽𝑅   of the standard deviation𝜍𝜀  of the error term and the 

model parameters  𝛽1 ,… ,𝛽𝑅 . This prior distribution can be updated towards a posterior 

distribution 𝑓𝐵
" 𝜍𝜀 ,𝛽1 ,… ,𝛽𝑅 by using the likelihood function as follows 

  (13) 

with 𝑐 a normalizing constant and B the domain of the parameters 𝜍𝜀 ,𝛽1 ,… ,𝛽𝑅  that have to be 

updated. It turns out to be difficult or even impossible to solve Eq. (13)analytically. Therefore 

MCMC simulations are applied (i.e. using the Metropolis-Hastings algorithm) to estimate values 

for the model parameters and the standard deviation of the error term. 

 

665



 

 

 

 

 

 

Pieterjan Criel, Robby Caspeele and Luc Taerwe 

 

4. Markov chain monte carlo bayesian updating of response surface parameters 
using an adapted metropolis-Hastings algorithm 
 

Markov chain Monte Carlo methods (MCMC) form a class of numerical algorithms that allow 

obtaining samples from probability distributions based on the construction of a Markov chain. A 

Markov chain is defined in probability theory as a sequence of random variables 𝑥𝑖  for which the 

distribution of 𝑥𝑖 , conditioned on past realizations 𝑥𝑖−1 ,𝑥𝑖−2 ,…, depends only on the previous 

sample 𝑥𝑖−1, i.e. not on 𝑥𝑖−2 ,𝑥𝑖−3 , etc. (Gelman et al. 2003). 

These methods allow to draw a discrete-time homogeneous chain of samples from the posterior 

distribution(Perrin, Pendola, & De Rocquigny, 2007). The idea is to generate iteratively samples of 

a Markov chain, which asymptotically behaves as the probability density function (PDF) that has 

to be sampled. More specifically, the Metropolis-Hastings algorithm (Hastings, 1970; Nicholas, 

Arianna, Marshall, Augusta, & Edward, 1953) is commonly used for generating such Markov 

chains. The practical adaptation of this algorithm for the Bayesian estimation of response surface 

parameters is explained hereafter. More profound information on MCMC simulations can be found 

in e.g. (Gamerman & Lopes, 2006; Gelman et al. 2003; Ghosh et al. 2010; Liu 2008; Robert and 

Casella 2010; Santoso, Phoon and Quek 2011). 

Considering a given PDF𝑓𝑋 𝑥  that is a function of an input vector𝑥, MCMC realizations 

𝑥𝑠 are generated sequentially and independently, starting from an arbitrary chosen starting 

vector𝑥0. In each step, the transition between the states 𝑥𝑠 and 𝑥𝑠+1 is given according to (see 

e.g. (Gelman et al. 2003)) 

              (14) 

where𝑥 is a candidate vector,𝑞 𝑥  | 𝑥𝑠 is called the transition or proposal distribution and the 

acceptance probability𝛼 𝑥𝑠 , 𝑥  is given by (see e.g. (Gelman et al. 2003)) 

                   

 (15) 

Practically, in order to select a candidate 𝑥  – calculated according to Eq. (14) – a random 

number 𝑟𝑠 is generated (i.e. from a uniform distribution 𝑈[0; 1]) and 𝑥  is accepted as the next 

 

 

 
Fig. 3 Visual representation of a Markov Chain, with 𝑞 a transition distribution 

 

x1 x2 xi xn

q1 ( ) q2 | x1( ) qi | xi 1( ) q | xn 1( )
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Fig. 4 Metropolis-Hasting algorithm flow chart. Transition step from 𝑥𝑠 to 𝑥𝑠+1 

 

 
 

Fig. 5 Metropolis-Hasting algorithm flow diagram for Bayesian updating with 

𝛽𝑠 =  𝜍𝜖 ,𝑠 ,𝛽1,𝑠 ,… ,𝛽𝑅,𝑠 . Transition step from 𝛽𝑠 to 𝛽𝑠+1 

 

 

realization of𝑓𝑋 𝑥  with a probability 𝛼 𝑥𝑠 , 𝑥   in case 𝑟𝑠 ≤ 𝛼 𝑥𝑠 , 𝑥   or rejected in the other 

case. In this way, a sequence of random draws 𝑥𝑠  from 𝑓𝑋 𝑥 is generated, even when no 

analytical solution is available for 𝑓𝑋 𝑥 . A flow chart of this algorithm is given in Fig.4. 

In case of the Bayesian estimation of response surface parameters, the transition between two 

estimates  𝜍𝜀 ,𝑠 ,𝛽1,𝑠 ,… ,𝛽𝑅,𝑠  and  𝜍𝜀 ,𝑠+1,𝛽1,𝑠+1 ,… ,𝛽𝑅,𝑠+1 for the posterior set of response 

surface parameters can be rewritten as given in Eq. 16, considering an acceptance probability 𝜓 

which takes into account the posterior belief in the next sampling vector of estimates. 

 

 (16) 
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where𝑞 𝜍 𝜀 ,𝛽 1 ,… ,𝛽 𝑅|𝜍𝜀,𝑠 ,𝛽1,𝑠 ,… ,𝛽𝑅,𝑠  is the transition distribution. A common choice for this 

transition distribution is the random walk algorithm, more specifically by adding a random 

increment𝜎 =   𝜎0 , 𝜎1 ,… , 𝜎𝑅  to the previous estimate according to 

             (17) 

with 𝜎0 , 𝜎1 ,… , 𝜎𝑅  a random vector that does not depend on the previous chain. In practice, it 

is common to choose the values 𝜎𝑖  according to a normal or uniform distribution with mean 0 and 

variance 𝜍𝜎
2 . The random walk algorithm results in a symmetrical transition 

distribution𝑞  𝜍𝜀 ,𝑠 ,𝛽𝑠|𝜍 𝜀 ,𝛽  = 𝑞  𝜍 𝜀 ,𝛽 |𝜍𝜀 ,𝑠 ,𝛽𝑠 . Hence,the transition distribution does not appear 

in the expression for the joint acceptance probability: 

                 

 (18) 

Further, the probability𝜓 is the joint acceptance probability based on the prior probability and 

the likelihood function or in other words the probability that a random sample𝑢𝑃 ∝ U 0; 1  from a 

uniform distribution (defined for values between 0 and 1) is accepted according to the prior 

distribution and that a random sample 𝑢𝐿 ∝ U 0; 1  is accepted according to the likelihood 

function. This probability is generalized for Bayesian estimation of response surface parameters 

according the following equations 

                 (19) 

 

                (20) 

                   (21) 

with the likelihood 𝐿 𝑦1 ,… ,𝑦𝑁  |…  according to Eq. (12) in case of independent response 

measurements. A flow diagram of this adaptation for Bayesian updating is given in Fig. 5. 

The convergence speed of the Markov chain is strongly influenced by the random increment 

𝜎(each 𝜎𝑖either uniform or standard normally distributed) and more specifically by its standard 

deviation𝜍𝜎 . This standard deviation has the property of a scale parameter and has to make sure 
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that the domain over which 𝑓𝐵
" is sampled is properly explored. If the scale parameter is small, 

then the Markov chain will converge slowly, because more iterations are needed to explore the 

entire domain of 𝑓𝐵
". However, if the scale parameter is too large, then the chain will also converge 

slowly, because the acceptance probability is too low. Thus, it is important to make sure that 

theMarkov chain has enough iterations to represent the function 𝑓𝐵
" accurately and to detect the 

length of the burn-in period (the period in the Markov chain where stationary is not yet obtained) 

so that these initial values can be deleted from the samples for 𝑓𝐵
". 

 
 

5. Bayesian estimation of the correlation length based on limited measurements 

 

The method described in Section 3 and Section 4 can be used to estimate the covariance 

function of a random field based on limited measurements by fitting a semi-variogram model to 

the empirical semi-variogram. In case of an exponential of squared exponential covariance 

function the only unknown parameter is the correlation length 𝜌𝑙 .  

Rewriting Eq. (10)in terms of the semi-variogram yields 

                          (22) 

where 𝛾 𝜏  is the empirical semi-variogram, 𝛾 𝜏 | 𝜌𝑙  the semi-variogram model and 𝜀  the 

error term as defined in Eq. (11). 

There are different methods available to compose an empirical semi-variogram based on 

measurement data (Cressie, 1993). In this paper the method-of-moments estimator defined by 

Matheron (1962) is adopted 

                 (23) 

            (24) 

where  𝑇 𝜏   is the number of elements in the set 𝑇 𝜏  and 𝑀 the amount of samples taken. 

𝛾 𝜏  is not continuous as there are only a finite number of distances between the measurement 

points. In order to obtain sufficient samples per set 𝑇 𝜏  to compose a semi-variogram in 

practice, similar distances are grouped in distance classes by adding a tolerance on the distance 𝜏. 

Hence, the set of elements corresponding to a distance class 𝜏 are described as follows 

       (25) 

The tolerance 𝑒 should be carefully chosen so that the empirical semi-variogram is not biased 

and there are enough elements for each distance class𝜏𝑖 . It is pointed out that due the nature of this 

estimator the semi-variogram can show considerable variation for different realisations ofa field as 

is shown in Fig. 6. Of course less measurement points will lead to more variation of the semi-

variogram. 
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The likelihood function defined in Eq. (12) in terms of the semi-variogram can be rewritten as 

         (26) 

The acceptance probabilities 𝛼𝑃 and 𝛼𝐿 as given in Eqs. (21)-(21) respectively can then be 

rewritten as 

                        

 (27) 

 

         

 (28) 

where 𝒇′ 𝝈𝜺,𝝆𝒍  is the joint prior distribution of the correlation length and the error term. 

 

 
 

] 

 
Fig. 5 Metropolis-Hasting algorithm flow diagram for Bayesian updating with 

𝛽𝑠 =  𝜍𝜖 ,𝑠 ,𝛽1,𝑠 ,… ,𝛽𝑅,𝑠 . Transition step from 𝛽𝑠 to 𝛽𝑠+1 
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Fig. 6 Estimated semi-variograms for 10 realisations of a random field on a lattice grid (32 by 

32 positions) with an exponential covariance function and a correlation length 𝜌𝑙 = 10. In each 

field 225 measurement points where sampled over the area of the field) 

 

 
Fig. 7 Sample locations and values of a standard normal random field on a lattice grid (32 by 32 

positions) with an exponential covariance function and a correlation length 𝜌𝑙 = 10 

 

 

(a) (b) 

Fig. 8 (a) Estimated semi-variogram using the MCMC method with a vague prior for 𝜌𝑙  and 𝜍𝜀 . 

(b) Prior and Posterior distribution for the correlation length 
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6. Example of the bayesian estimation of the correlation length 

 

To demonstrate the algorithm, consider a standard normal random field with an exponential 

covariance function and a known correlation length 𝜌𝑙 = 10 defined on a lattice grid (32 by 32  

positions). Only 25 points of a realisation of the random field are evaluated. These points span the 

area of the fields and form a regular pattern to increase the amount of points with a same distance 

apart, see Fig. 7. 

These 25 samples are used to calculate the correlation length of this random field. First the 

empirical semi-variogram𝛾 𝜏  is calculated using Eq. (23).A tolerance of 𝑒 = 1 was allowed on 

the distance classes 𝜏𝑖 .With this empirical semi-variogram, the likelihood function can be 

calculated using Eq. (26).First a vague prior is chosen for the correlation length and the standard 

deviation of the error term within reasonable intervals, respectively 𝜌𝑙 ∝ U 2; 18  and 𝜍𝜀 ∝
U 0; 3 . The joint priordensity function is hence given by 

               (29) 

The above-mentioned MCMC method is used to sample the posterior distribution for the 

correlation length 𝜌𝑙  and the standard deviation of the error term 𝜍𝜀 . For the transition 

distribution a normal distributed increment with a standard deviation 𝜍𝜎  = 0.2is chosen. 10000 

iterations were performed and the first 2000 were withdrawn from the samples. Results are shown 

in Fig. 8. 

The MCMC method results in ρl =14.0 (compared to the reference value ρl =10). As seen on 

Fig. 8(a) this is a good fit to the empirical semi-variogram. In this particular case the estimated 

variogram lies beneath the real semi-variogram. If more measurement points were considered, the 

estimation can be shown to converge to the reference value. 

The above example is repeated, now using an informative prior for the correlation length. As 

prior for the correlation length a lognormal distribution is chosen with a mean value of 10 and a 

standard deviation of 1. For the standard deviation of the error term the same vague prior was 

used. The joint priordensity function is given by: 

            (30) 

with 𝜉 = ln 𝜇𝜌 𝑙 − 1 2 𝛿2 , 𝛿 =   ln  1 +  𝜍𝜌 𝑙 𝜇𝜌 𝑙  
2
 the parameters of the lognormal 

distribution corresponding with 𝜇𝜌 𝑙 = 10and𝜍𝜌 𝑙 = 1 , i.e. 𝜉 = 2.2976 and 𝛿 = 0.0998. The 

same amount of iterations and the same standard deviation 𝜍𝜎  for the candidate values of the 

random walk algorithm were used. Some results are shown in Fig. 9. 

Compared to the first results the estimated semi-variogram with the MCMC method is already 

very accurate with only 25 measurement points. Because an informative prior was used for the 

correlation length, relatively more samples were accepted where the corresponding probability 

density of the prior distribution was high 
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(a) (b) 

Fig. 9 (a) Estimated semi-variogram using the MCMC method with an informative prior for 𝜌𝑙  
and a vague prior for 𝜍𝜀 . (b) Prior and Posterior distribution for the correlation length 

 

 

7. Comparison between the LSQ and the MCMC method 

 

The traditional LSQ method and the currently developed MCMC method are compared. Both 

methods are applied to find the correlation length 𝜌𝑙of a random field on a lattice grid (32 by 32 

positions). In case of the MCMC method 25 measurements are considered, while for the LSQ 

measurements either 25 or 1024 measurements are considered. 100 standard normal distributed 

random fields with a correlation length 𝜌𝑙 = 10 are generated and both methods are applied on 

these simulations in order to find the confidence interval on the estimate of 𝜌𝑙 . Notice that in the 

case of 1024 measurements all available points were used to compose the empirical semi-

variogram and calculate the correlation length with the LSQ method. 

The LSQ method solves Eq.(31) for estimating the correlation length 𝜌𝑙 . 

  2

1

)()(argmn li

N

i

il ρτγτγρ  


                       (31) 

where 𝛾 ∙  is the empirical semi-variogram and 𝛾 ∙ |𝜌𝑙  is the semi-variogram model. No prior 

information about the correlation length is considered.  

In case of the MCMC method a lognormal prior distribution for 𝜌𝑙  is considered with 

𝜇′𝜌 𝑙 = 9 and 𝜍′𝜌 𝑙 = 2 (coefficient of variation 𝛿𝜌 𝑙
′ = 𝜍′𝜌 𝑙 𝜇′𝜌 𝑙 = 0.22). Results are shown in 

Fig. 10. Hence, the prior distribution used for the correlation length was biased. 

Compared to the LSQ method, the MCMC method provides a less uncertain estimation (due to 

the incorporation of prior information) even when the assumed prior distribution for 𝛽 was 

biased. The LSQ estimation improves when more measurement points are available, however a 

large number of measurement points are necessary for achieving a similar accuracy as provided by 

the MCMC method. Such large datasets are often impossible to achieve for certain material 

properties in common structural engineering applications (especially in case of concrete properties 

assessed by destructive testing), hence indicating the importance of the proposed Bayesian 

response surface updating method. 

The confidence interval of the posterior distribution for the correlation length resulting from the  
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Fig. 10 (a) 90% confidence interval for the LSQ and MCMC method using 25 points. (b) 90% 

confidence interval for the LSQ method using all 1024 points en the MCMC method using 25 

points. 

 

 
Fig. 11 Box plots of the LSQ and MCMC results. Different coefficients of variation 𝛿𝜌𝑙

′ are 

considered in case of the MCMC method. An unbiased prior distribution for the correlation length 

was used 

 

 

MCMC method is of course dependent on the uncertainty of the prior distribution. In Fig. 11 box 

plots are given for different coefficients of variation for the prior distribution. When the coefficient 

of variation of the prior decreases, the posterior distribution becomes more precise. Furthermore 

also the results in case of the LSQ method are provided. 

In case of rather precise prior information the confidence interval of the posterior distribution 

for the correlation length will be narrow. The influence of the additional measurement data, used to 

compose a likelihood functions, is in this case negligible. Moreover, in the case of informative 

prior the likelihood function will not be able to correct the prior estimation. 

Results of the estimated correlation length in case of the MCMC method using biased prior 

distributions for the correlation length are shown in Fig. 12. The calculations were executed for 

different coefficients of variation for a lognormal prior distribution with mean 𝜇′𝜌 𝑙 . As the 

coefficient of variation increases, the prior distribution becomes less informative and the influence 

of thebias decreases. 
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Fig. 12 Box plot results for the correlation length using the MCMC method considering biased 

prior distributions for different coefficients of variation; (A) 𝛿𝜌𝑙
′ = 0.1  (B) 𝛿𝜌𝑙

′ = 0.2  (A) 

𝛿𝜌𝑙
′ = 0.5 

 

 

8. Conclusions 

 

 A common problem when estimating the correlation length in common concrete 

engineering problems is a lack of available data. Due to this problem estimated semi-empirical 

variograms show considerable variation. The LSQ method is sensitive to this variation, which 

results in a rather uncertain estimate of the covariance function. The LSQ cannot be a reliable 

method to calculate the correlation length in such cases.Hence,in practice correlation lengths are 

oftenassumed based on literature. 

 Random fields model concrete properties more realistic but the characteristics of these 

fields are based on empirical assumptions. Moreover, theseassumed values for the correlation 

length of concrete properties are not consistent with each other. Available measurement data, even 

if limited, should be considered to update these values. The suggested values for the correlation 

length could be used as prior information in the Bayesian updating framework. 

 A methodology based on Markov Chain Monte Carlo (MCMC) simulations is developed 

in order to estimate the correlation length, (i.e. covariance function), of random fields from 

empirical semi-variograms using Bayesian updating of prior (vague of informative) information. 

This prior information should be based on previous test results or expert judgment, as the 

uncertainty of the prior information of course influences the reliability of the outcome. As the 
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coefficient of variation of the prior distribution of the correlation length increases, the prior 

distribution becomes less decisive and reduces the influence of a possible bias in the prior 

information. 

 The MCMC method enables to obtain a more accurate estimation of the correlation 

length of random fields using considerably less data compared to the commonly used LSQ, which 

is of particular importance when random field characteristics have to be obtained from limited data 

in practical concrete engineering applications.  
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