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Abstract.  The seismic safety of concrete dams is one of the important problems in the engineering due to 
the vast socio-economic disasters which may be caused by collapse of these infrastructures. The accuracy of 
the risk evaluation associated with these existing dams as well as the efficient design of future dams is highly 
dependent on a proper understanding of their behaviour due to earthquakes. This paper develops an 
anisotropic damage model for arch dam under strong earthquakes. The modified Drucker-Prager criterion is 
adopted as the failure criteria of the dynamic damage evolution of concrete. Some process fields and other 
necessary information for the safety evaluation are obtained. The numerical results show that the seismic 
behaviour of concrete dams can be satisfactorily predicted. 
 

Keywords:  damage analysis; high-arch dam; seismic response; safety evaluation 

 
 
1. Introduction 

 

The seismic safety of arch dam is a widely discussed topic because the failure of an arch dam 

can result in unimaginable loss of human lives and substantial property damage (Wang et al. 

2011). The accuracy of the risk evaluation associated with these existing dams as well as the 

efficient design of future dams is highly dependent on a proper understanding of their behaviour 

due to earthquakes (Valliappan et al. 1999). Because of the large differences between the design 

acceleration and the peak ground accelerations (PGA), which can actually occur during a strong 

earthquake, and because of the uncertainties in estimating the ground motion of very strong 

earthquakes at a dam site, mechanisms are needed that ensure that a dam will not fail if the design 

acceleration is exceeded substantially. Although many studies have been done on the earthquake 

behaviour of arch dams by many researchers, past and present (Sevim et al. 2011; Akköse et al. 

2007; Oliveira and Faria 2006; Alves and Hall 2006; Shahkarami et al. 2004; Lotfi and Espander 

2004; Du et al. 2009), however, because of the lack of experimental and practical results and also 

because of existing differences between the results obtained from different numerical models, it is 

difficult to choose an appropriate numerical model to evaluate the seismic safety of dams 

(Mirzabozorg and Ghaemian 2005). Therefore, it is still necessary to develop analytical procedures 
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for evaluating the adequacy of a given design against a particular ground motion.  

It is well known that the damage of concrete and foundation rock body as quasi-brittle non-

homogeneous materials is a result of continuous developing of random distributed microcracks.  

Although the simplicity and efficiency of a scalar damage representation is indeed very 

attractive, the orientation-independent isotropic damage variable is subsequently found to be 

inaccurate. It has been shown that the nucleation and growth of voids as well as the orientation of 

fissures and their lengths observed in the process of material damage depend significantly on the 

direction of the applied stresses or strains and, hence, damage is in general anisotropic. Some 

researchers have studied the seismic response of concrete dams using Continuum Damage 

Mechanics (CDM). Their results indicate that non-linear analysis based on CDM generally gives 

responses which fall within the realistic range but are also conservative. Chow and Wang (Chow 

and Wang 1988) reported that isotropic damage models usually predict lower strength of materials 

compared to the theory of anisotropic damage, and the importance of the directional nature of 

material damage in controlling final rupture becomes more pronounced under dynamic loading 

conditions. An analysis without taking into account the damage-induced material anisotropy may 

therefore lead to questionable results. Therefore, the main purpose of this article is to provide such 

a model in the framework of Continuum Damage Mechanics (CDM). The modified Drucker-

Prager criterion is adopted as the failure criteria of the dynamic damage evolution of concrete. The 

numerical results show that the seismic behaviour of concrete dams can be satisfactorily predicted. 

This will provide a reasonable theoretical support on the safety evaluation of the capability for 

concrete arch dams against earthquake loading. 

 

 
2. Damage stress-strain relationship 
 

The constitutive relationship in the principal anisotropic coordinate system is presented as (Xue 

2008) 

   *= D                                  (1) 

where   
and   

are Cauchy stress and Cauchy strain. 
*D   is stiffness with the influence 

of anistropic damage.  
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in which 
i , i =1, 2, 3 are the principal values of damage tensor. In the case of brittle materials, 

the constitutive relationships defined above have to be modified depending on whether the 

principle stresses are tensile or compressive, for example, in the case of compressive principal, 

undamaged properties will be adopted. 

 
 
3. Damage evolution equation 
 

It is well known that concrete and geomaterials eventually exhibit strain softening, leading to a 

complete loss of strength. In these materials, the secant modulus decreases with increasing strain 

(Lubliner et al. 1989). A widely used assumption has been to adopt a triangular stress-strain 

diagram for uniaxial loading. This gives a linear strain softening relationship. But various 

experimental evidences indicate that it is more realistic to assume a strain softening curve with a 

steep initial decline followed by an extended tail (Lubliner et al. 1989). Thus, an exponential strain 

softening model yields 

       
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        (5) 

where tf  is the tensile strength and 
0 is the corresponding strain threshold, D is the modulus of 

elasticity and a is a dimensionless constant. In the above relations, a maximum strain cr has been 

adopted that may not be exceeded in strain softening, and is consistent with the study carried out 

by Bazant (1987). In the present study, the value of cr is calculated when its corresponding stress 
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is equal to 0.02
tf  , which is a reasonable value.  

Based on the hypothesis of strain energy equivalence, the anisotropic damage parameters can 

be defined in terms of Young's modulus as 

1 i
i

i

D

D




                                (6) 

Hence, from equation (5) the proper definition of damage variable for uniaxial case is 

(Valliappan et al. 1999) 

     0
0 01 2exp exp 2a a


    



 
          

 
            (7) 

It should be noted that in the case of three dimensions, there will be three damage variables in 

the three principal directions.  

Earthquake loading being cyclic, when the sign of the stresses change from tension to 

compression, cracks tend to close. During this change, concrete cannot recover all of its 

deformation. Dahlblom and Ottosen (1990) introduced a fraction  =0.2 of the maximum 

developed principal strain to be inelastic. Hence the total strain is divided into two parts: elastic 

e and inelastic
in : 

maxe in e       
                          

 (8) 

It should be pointed out that equation (8) applies to the principal strains and in 3-D, there will 

be three such equations. Also, when the stress state changes from tension to compression, the 

maximum tensile principal strain obtained before will remain the same and due to closure of 

cracks, the material is assumed to have its original stiffness characteristics. Reloading of the crack 

follows the unloading path until the principal strain is greater than
max . Also when the strain is 

less than 
in it is supposed that the crack is closed.  

The constitutive law and the damage model described in the previous sections have been 

implemented in a dynamic Lagrangian non-linear finite element code. In this method, the damage 

evolution in each element can be determined, thus making it possible to model both damage 

propagation and damage growth. The stress-strain law adopted for the brittle materials is as 

follows: the local definition of damage variable for each point is slightly modified to refer to the 

behaviour of an element. The strains are computed at each integration point and the average at the 

Gaussian point is taken as the representative behaviour of the whole element. It is assumed that 

cracking initiates at a point when the maximum tensile principal strain is greater than 0 . The 

direction of a crack is assumed to be orthogonal to that of the maximum tensile principal stress at 

the damaged point. After computing the total displacement at every iteration, the strains are 

calculated and averaged at the center of an element and then its corresponding principal strains are 

determined. Next, two different cases may happen (Valliappan et al.1999): 

(1) If the element is already damaged during last time steps, depending on the value of the 

principal strain, , three different cases may arise: 
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① If 
max  , the element is in a loading stage. Calculate damage value from equation (7), 

update 
in   and

max  . 

② If 
maxin    , the element is in an unloading stage, but cracks are open. Use damage 

value at previous time step as a current damage:
old  . 

③ If 
in  , the cracks are closed and the element is in compression. Assume undamaged 

state in calculations.  

(2) If the element is not damaged and the principal strain is less than
0 , elastic properties for 

the undamaged element should be used. Otherwise, if
0  , among all the candidate elements 

that would initiates softening at a particular iteration, the one with highest tensile strain energy 

density is used first. Then, just one new softening element per iteration is allowed, i.e. several 

iterations may be performed in a particular time step. After calculating the damage variable, the 

constitutive matrix and the stresses are calculated.  

 
 

4. Modification of drucker-prager criterion 
 

According to the classical plasticity theory, the yield criterion determines the stress level at 

which plastic deformation begins. The damage plastic yield criterion can also be defined in a 

similar manner such that the yield condition determines the effective (net) stress level at which 

plastic deformation begins. This means that it is only necessary to replace the Cauchy stresses in 

the standard yield function by the effective stresses. The damage plastic yield function can be 

rewritten in the general form as 

     *, , , 0F R F R                         (9a) 

or 

       *,f f R    
                      

(9b) 

where f is a function to be used to determine the effective stress level at which the plastic 

deformation begins.  R  is the hardening function associated with the cumulative hardening 

parameter . Commonly, the hardening rule can be considered as the power rule  

 
1

0
mR R k                               (10) 

The damage yield function can conveniently be expressed in the form of stress invariants as 

   * * *

1 2 3, ,f I J J R                            (11) 

where 

637



 

 

 

 

 

 

Xinhua Xue and Xingguo Yang 

* * * *
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 (14) 

where I1, J2,J3 are the first, second, third stress invariables, respectively. 
m is the average 

stress. 

For numerical computations, it is convenient to rewrite the yield function in terms of alternative 

stress invariants. The present formulation is modified based on Nayak and Zienkiewicz (Nayak 

and Zienkiewicz 1972) since its main advantage is that it permits the computer coding of the yield 

function and the flow rule in a general form and necessitates only the specification of three 

constants for any individual criterion. The effective principal stress vector can be given by 

summation of the effective deviatoric principal stress vector and the effective mean hydrostatic 

stress vector as 

 
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                  (15) 

where  
* * *

1 2 3     and 
*/ 6 / 6     . The term 

*  is essentially similar to the Lode 

angle.  

The influence of a hydrostatic stress component on yielding was introduced by inclusion of an 

additional term in von Mises expression to give 

   
1

* * 2
1 2 0oF I J R                            (16) 

This yield surface has the form of a circular cone. In order to make the Drucker-Prager criterion 

with the inner or outer apices of the Mohr-Coulomb hexagon at any section, it can be shown that 

 

2sin

3 3 sin
o






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 (17) 
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 
 

6 cos

3 3 cos

c
R








                          (18) 

where “+” for inner apice, “” for outer apice. Substituting Eqs. (17), (18) into Eq. (16), it gives 

 
 

 

1
* * 2
1 2

2sin 6 cos
0

3 3 sin 3 3 cos

c
F I J

 

 
   

 
              (19) 

Substituting Eqs. (13) and (14) into Eq. (19), the modified Drucker-Prager criterion in terms of 

invariants of Cauchy stress deviator is represented as 

 
 

 
 

1

2
1 2

2sin 6 cos
1 0

3 3 sin 3 3 cos

c
F I J

 
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 
    

 
          (20) 

where the cohesion c also can be equivalently expressed by the hardening rule R() as 

 
 

3 3 sin

6cos
c R









                        

 (21) 

and when = 0, it gives R|=0 = R0, and c|=0 = c0 =     03 3 sin 6cos R  , we can obtain  

  1

0

3 3 sin

6cos
mc c k







 

                       

 (22) 

 

 

5. Dynamic equilibrium equations 
 

The equations of motion for the discretized dam for specified free-field ground acceleration are 

                       
(23)

 

where u, u  , and u  are the displacement, velocity, and acceleration relative to the free-field 

ground motion, gu ; M is the mass matrix including the added mass for the reservoir, P is the 

restoring forces obtained from the finite element discretization, R is the influence matrix for gu , 

and F
st
 are the static loads from self-weight of the dam and the hydrostatic pressure on the 

upstream face.  

In the finite element analysis procedure, the restoring force P is assembled from the element 

contributions. For each element the restoring force, Pe is given by the integral of the stress field in 

the element domain V, as governed by the rate-dependent constitutive model: 
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                    (24) 

where N is the matrix form of the strain-displacement operator, and  is the contribution of the 

damping to the restoring stress.  

The dam reservoir interaction problems can be analyzed using the three basic approaches: the 

Westergaard (1933), Euler and Lagrangian approaches. In the Westergaard approach, fluid-

structure interaction is simply represented by an added mass attached to structure. In the Eulerian 

approach, displacements are variables in structure, while pressures are variables in fluid. Since the 

variables in fluid and structure are different, a special-purpose computer program for the solution 

of coupled systems is required. In the Lagrangian approach, variables in fluid and structure are 

identical. Hence, compatibility and equilibrium are automatically satisfied at nodes along 

interfaces between the fluid and the structure. This makes Lagrangian displacement-based fluid 

element very desirable since special interface equations are not required. However, the 

disadvantage of Lagrange is that the coordinate system can become severely distorted or tangled in 

an extremely deformed region, which can lead to adverse effects on the integration time step and 

accuracy. Because the added-mass concept for an incompressible reservoir has been used as the 

standard method in the earthquake response calculation of most dams and it gives a fair 

approximation of hydrodynamic pressure for many practical problems. Therefore, the 

hydrodynamic pressure due to dam-reservoir interaction is estimated using the Westergaard added 

mass technique in this study. The results obtained by Westergaard are very well approximated by 

(Bull 1994): 

                       (25) 

where
w is the mass density, H the depth of reservoir and u  the imposed ground acceleration. 

Having in mind the expressions for the inertia forces, the term inside the square bracket is 

usually called an added mass, and will be referred to as mA
.However, arch dams have surfaces 

with double curvature and the acceleration, gu , is generally not normal to the surface, so it is 

necessary to perform some modifications in Eq. (25) before it can be applied. 

Considering a point at the dam-reservoir interface, where n denotes the normal unit vector to 

the dam surface and gu the total acceleration, the corresponding normal acceleration, gu , can be 

obtained by: 

n)n,ecos(uu g

n

g
                             (26) 

where gu / gu  

So, the hydrodynamic pressure, p , can be evaluated as: 

                             (27) 

With this pressure at the upstream face of a given finite element, the corresponding vector of 
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nodal forces permits the calculation of the additional mass of water at each nodal point. This mass 

is then added to the mass matrix previously determined for the concrete, to constitute the mass 

matrix of the ensemble dam and reservoir.  

Based on the above mentioned formulations, the finite element computer code DADAP (Dam 

Anisotropic Damage Analysis Program) was written and compiled and adopted to verify the 

accuracy of the modeling. 

 
 

6. Case study 
 

The Buxi arch dam which is 145m in height and 237m in arc length of the dam crest is 

analyzed. The thicknesses at the crest and base (maximum) of the dam are 6 and 30 m, 

respectively. The normal depth of reservoir water is 143 m. The dam is located in a seismic region 

with horizontal peak ground acceleration on rock of 0.243g (Dang 2008). Safety evaluation of the 

dam subjected to the design earthquake is a crucial factor for the project. As we know that, the 

dam safety is controlled by the tensile stresses during earthquakes, while compressive stresses 

usually do not approach the compressive strength of concrete in most cases. Consequently, for 

simplification, only the tensile damage of concrete is considered in this study.  

The time history curve of earthquake acceleration is shown in Fig. 1. The model of the Buxi 

arch dam can be found in Fig. 2. As shown in Fig. 2, 8-node solid elements with 2×2×2 Gauss 

integration are applied in the finite element discretization of the dam-foundation system. The 8-

node solid elements have three degrees of freedom at each node that are translated in the x,y, and z 

directions. The total number of elements in the dam-foundation system is 6772. In this model, if 

the height of the dam is indicated as “H”, the foundation is extended as “4H” in the transverse 

river direction, “2.5H” in the downstream direction and “2H” in the gravity direction. The 

foundation rock is assumed as linear elastic. The density of the dam ρ=2700kg/m
3
, Poisson’s ratio 

v=0.17, cohesion c=2.72MPa, friction angle of concrete =53.9º. The density of rock foundation 

ρ=2700kg/m
3
, and Poisson’s ratio v=0.25. The elastic moduli of rock foundation and concrete are 

20 and 25GPa, respectively. The tensile strength tf  is 1.5MPa (Dang 2008). For a dynamic 

analysis, the damping   in the numerical simulation should attempt to reproduce the energy 

losses in the system when subjected to dynamic loading. In rock and concrete, material damping is 

mainly hysteretic (i.e. independent of frequency), but it is difficult to reproduce this type of 

damping numerically because of the problem with path dependence. Traditionally, the typical 

values of intrinsic damping used by the structural engineers are 2% for steel and 5% for concrete 

building (Nor and Abdul, 2010). Therefore, a 5% structural damping ratio is assumed in the 

analyses.  

It is necessary to study on the natural vibration properties of the arch dam before dynamic 

analysis. After calculation, the first four order natural frequencies under the normal storage level 

can be obtained and they are listed as follows: 1.6196Hz, 1.9611Hz, 2.5765Hz, and 3.0716Hz, 

respectively. Fig. 3 shows the corresponding mode shapes. From here we can see that the first 

order mode (along the stream direction) plays a principal role in the whole dynamic analysis. 

Consequently, for simplification, only the results along the stream direction are considered in this 

study.  

Fig. 4 shows the contours of displacements in stream direction distributed on the face of 

upstream at time 9.2s. The calculated results in Fig. 4 show that the maximum displacement in  
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Fig.1 The acceleration components of the design earthquake across the river (a) , along 

the river (b) and in vertical direction (c) (unit: m/s
2
)  
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Fig. 2 The model of Buxi arch dam 

 

  
(a) First order mode (b) Second order mode 

  
(c) Third order mode (d) Fourth order mode 

Fig. 3 The first four lower-order modes of Buxi arch dam 
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Fig. 4 Contours of u distributed on the face of upstream at time 9.2s (Unit: m) 

 

 
Fig. 5 Time-displacement curve of point A in stream direction 

 

 
Fig. 6 Contours of principal stresses on upstream face of dam at time 9.2s (Unit: Pa) 
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Fig. 7 Time-stress curve of point B in stream direction 

 

 
Fig. 8 Contours of y  at the end of computational time 

 

 
Fig. 9 Contours of

x at the end of computational time 
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Fig. 10 Contours of 

z at the end of computational time 

 

 

stream direction may reach the quantity of u=3.3cm, which agrees well with the results presented 

in Ref. (Dang 2008) (3.6cm). Fig. 5 shows the time-displacement curve of point A in stream 

direction. These results show that the damage model presented in this article is reasonable and 

feasible. 

Fig. 6 shows the contours of principal stresses on upstream face of dam at time 9.2s. It can be 

seen that the phenomenon of stress concentration is quite distinctness. The maximum tensile stress 

of 1.41MPa is obtained in the upstream face near the left dam shoulder, which is smaller than the 

static tensile strength of the concrete and it agrees well with the results presented in Ref.(Dang 

2008) (1.1MPa). Fig. 7 shows the time-stress curve of point B in stream direction. This indicates 

that the tensile stresses are the main reason to cause the damage of an arch dam under earthquake 

loading.  

Fig. 8 shows the contours of 
y  at the end of computational time. It can be seen that the 

maximum damage value along stream direction may reach the quantity of 
y =0.43304, which 

occurs at the top near the left dam shoulder. 

Fig. 9 shows the contours of 
x  at the end of computational time. It can be seen that the 

maximum damage value in the cross stream direction may reach the quantity of 
x = 0.28611, 

which occurs at the crest of the dam body.  

Fig. 10 shows the contours of 
z  at the end of computational time.  It can be seen that the 

maximum damage value in vertical direction may reach the quantity of z =0.16055, which 

occurs at the dam-foundation rock interface.  

From the above we can see that the higher values of the damage may occur at the crest of dam. 

Accordingly, the horizontal cracks might develop in the upper zone of an arch dam under strong 

earthquake, which has been verified by experimental studies (Zhou et al. 2000; Wang and Li 

2007).  

 
 
7. Conclusions 
 

The simulation of damage process of high arch dam subjected to strong earthquake shocks is 

significant to the evaluation of its performance and seismic safety. This paper presents an 
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anisotropic damage model to simulate the safe behavior of an arch dam. Some process fields and 

other necessary information for the safety evaluation are obtained. The numerical results show that 

the seismic behaviour of concrete dams can be satisfactorily predicted. From these studies, 

following conclusions and understandings may be drawn:  

(1) The anisotropic damage model developed in this paper is effective and feasible in 

simulating the safe behavior of an arch dam subjected to earthquake engineering. 

(2) Numerical results show that the Buxi arch dam has a good performance of resisting seismic 

under designed earthquake and normal working conditions. Also it reveals that the damage of Buxi 

arch dam mainly owes to tension of concrete. 

(3) In the present study, the anisotropic damage model should be subject to multifaceted 

experiments before their innovative significance can be fully verified. However, this research work 

has not been done due to the limitations of time, conditions, funds, etc. As such, there is still room 

for further refinement of the damage constitutive model of concrete in future studies. 
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