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Abstract.   To select a most desired mix proportion that meets required performances according to the quality 
of recycled aggregate, a large number of experimental works must be carried out. This paper proposed a new 
design method for the mix proportion of recycled aggregate concrete to reduce the number of trial mixes. 
Genetic algorithm is adapted for the method, which has been an optimization technique to solve the multi-
criteria problem through the simulated biological evolutionary process. Fitness functions for the required 
properties of concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and 
carbon dioxide emission were developed based on statistical analysis on conventional data or adapted from 
various early studies. Then these fitness functions were applied in the genetic algorithm. As a result, several 
optimum mix proportions for recycled aggregate concrete that meets required performances were obtained. 
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1. Introduction 
 

Recycling concrete waste has become more important for sustainable building material due to 
the reduction of waste disposal, depletion of natural resources and the lack of final disposal area. 
However, almost recycled aggregates (RA) made from concrete waste are consumed for roadbed 
gravel and landfill. Therefore, it is significantly important to expand the use of RA for concrete 
such a recycled aggregate concrete (RAC). To obtain various performances that cannot be obtained 
from conventional concrete and by the current mix proportion method, a large number of trial 
mixes are required to select the desired composition of materials that meets desired performances 
for concrete (Wang 2012) 

Design of RAC mix proportion can be solved as the multi-criteria problem to meet the various 
required performance (Shin 2006). In this study, genetic algorithm (GA) that is well known for the 
advantage of solving the combination problem was used to solve the multi-criteria problem like 
mix design of concrete (Lim 2004, Peng 2009, Parichatprecha 2009). GA, known as a very 
efficient heuristic algorithm that has been widely used in the various fields of engineering, is based 
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Fig. 1 Process of genetic calculation on GA 
 
 
on the mechanism of natural selection and natural genetics (Goldberg 1989). The general form of 
GA is composed of three major operators, i.e., selection, crossover, and mutation throughout 
optimizing, learning, and searching algorithms (Holland 1975). GA deal with genotype which is 
coded as a finite-length string with binary digits containing information of various materials of 
concrete. Process of genetic calculation on GA is illustrated in Fig. 1 (Park 2011). 
 
 
2. Pareto optimal solution 
 

Problems of mix proportion for RAC are difficult to solve using the typical methods that 
basically search for the best solution with a single objective function, i.e., linear and non-linear 
problems. The purpose of a multi-objective optimization is to optimize multiple conflicting 
objectives such various required performances at the same time. The general form of a multi-
objective optimization problem (MOP) is as follows (Shin 2006). 

optimize    fi(X), i= 1, . . . , M 

subject to  gj(X) = 0, j= 1, . . . , N 

hk(X) ≥ 0, k= 1, . . . , O 

X = (x1, . . . , xn), xl
(L) ≤ xl  ≤ xl 

(U);  l = 1, . . . , n                              (1) 

where f, g, h, M, N and O represents the objective, the equality constraint, the inequality 
constraint, the number of objectives, the number of equality constraints, and the number of 
inequality constraints. x(L) and x(U) are the lower and upper bounds of decision variable x, 
respectively. And n is the number of variables. To compare the different solutions in a MOP and 
judge the superiority of a solution, Pareto optimality is usually used. The Pareto optimal can be 
defined as follows. In the case of maximization, a solution X is said to dominate another solution 
Y when 

∀i ∈ {1, . . . , M},               fi(X) ≤ fi(Y)                                          (2) 
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Fig. 2 The concept of Pareto-optimal solution 

 

∃i ∈ {1, · · ·,M},               fi(X) ≤ fi(Y)                                          (3) 

(x< py)  =  (∀i)(xi< yi)∧(∃i)(xi< yi)                                              (4) 

If there is no dominating solution, the solutions are “non-dominated (non-inferior)” to each 
other and treated as equally good. The most ideal solution of a MOP is one that dominates the 
others. However, it is impossible to find a single dominating solution due to the conflicting 
relation between objectives. Thus, a practical solution of a MOP is to find a set of mutually non-
dominated solutions (non-dominated set) that approximates the set of efficient solutions (Pareto 
optimal set). Each solution in the non-dominated set corresponds to a different tradeoff among 
multiple objectives. At the final step, therefore, a decision maker is necessary to select a 
recommended solution among the trade-off solutions (Shin 2006).  

According to Pareto optimum definition, if there is a point that is not less than any other by all 
criteria, only the best point will get a better evaluation. If there is no such a point, a set of non-
dominated points will be evaluated. Therefore, the proportioning problem for RAC with GA can 
be applied to MOP (Maruyama 2001). The concept of Pareto-optimal solution is illustrated in Fig. 
2. 
 
 
3. Genetic algorithm 

 
Genetic algorithm (GA) is inspired by Darwin's theory about evolution. Solution to a problem 

solved by genetic algorithms is evolved. GA is started with a set of individuals (represented by 
chromosomes) called population. Individuals from one old population are taken and used to 
generate a new population by genetic operators. The general form of GA is composed of three 
major genetic operators, i.e., selection, crossover and mutation. And the new population will be 
better than the old one by those evolutionary processes as described in the book by Goldberg 
(1989).  
 

3.1 Selection 
 
Basically, the fundamental principle of GA is based on Darwin`s natural selection. The initial 

individuals (chromosomes) are selected by this operator. The selection operator of GA has three 
selection methods, i.e., roulette wheel selection (proportional selection), ranking selection and 
tournament selection. In these methods, this study adapts roulette wheel selection that is the best-
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known selecting method for its simplicity. The basic idea of roulette selection is to determine 
selection probability for each chromosome to be survived to the fitness value (Lim 2004, Eduardo 
2004, Adil 2009). The selecting probability for chromosome with fitness values is calculated as 
follows Eqs. (5)-(7) 

 



N

i
ifF

1

                                                                     (5) 

Ffp ii  （i=1, 2, 3,…, N）                                                   (6) 

 
 


i

j

i

j
iji f

F
pq

1 1

1 （i=1, 2, 3,…, N）                                            (7) 

where Pi is the selection probability of a chromosome from population N, fk is the size of 
population N, F is the size of whole population and qi is accumulation probability. Therefore, a 
wheel can be operated according to these probabilities. The selecting operation is based on 
spinning the roulette wheel population size times. A single chromosome is selected for the new 
population as described in the last selection each time (Shin 2006). 

 
3.2 Crossover 
 
Crossover is one basic operators of GA. And its type and implementation depends on both 

encoding and problem property. In general, binary encoding, permutation encoding, value 
encoding, and tree encoding are representative. Mix problem for concrete can be approached by 
binary encoding. In binary encoding, crossover simulates the child generation (offspring) from two 
parents (1, 2). Also crossover is performed by taking parts of the bit string of the parents 1 and the 
other parts from the parent 2 and by combining both in the child according to crossover rate. This 
crossover rate is defined as the rate of the number of offspring produced in each generation to the 
population size. To undergo the crossover operation, this ratio controls the expected number 
(Crossover rate*Population size) of chromosomes (Lim 2004). The crossover operator of GA has 
three methods, i.e., single-point, two-point and uniform crossover. In these methods, this study 
adapts uniform crossover which has been shown to be superior to traditional crossover strategies 
for combinatorial problem. In uniform crossover, bits in binary encoding are randomly copied 
from the first or from the second parent and then exchanges relative genes between parents 
according to the bits with the same size of chromosome. The uniform crossover is illustrated in Fig. 
3.  
 
 

Chromosome

Substring 1 Substring 2 Substring 3 Substring 4 …

1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 …

Crossover site by random

0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 …

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 …

0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 …

Parent 1

Parent 2

Child 1

Child 2

Fig. 3 Uniform crossover 
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3.3 Mutation 
 
Boundary mutation changes one of the parameters of the parent. While the GA proceeds to 

generate new genotypes, it is always possible to lose the last copy of an allele value. Because the 
crossover operator is able to generate all possible values in case that the population contains only 
copy of a specific allele value. Mutation operator prevents the population of genotypes from losing 
a specific value of an allele. Mutation is performed with a given probability called mutation rate 
which is defined as the percentages of new genes to the total number of genes in the population. 
When mutation rate is too low, many genes that would have been useful are never tried out. 
Meanwhile, when it is too high, there will be as a random perturbation, the next generation will 
start losing their resemblance to the parents. In this study, bit inversion method is used as a 
mutation operator. Bit inversion is that selected bits are inverted according mutation rate. And the 
range of mutation rate is from 1% to 5% in general. In this study adapts 5% mutation rate for case 
study. The mutation operator is illustrated in Fig. 4.  
 
 

1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 …After crossover

1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 …After Mutation
 

Fig. 4 Mutation 
 

N+1
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Yes
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(i=1, 2, …,i)

Final Selection

n 
children

Selection
(Roulette Wheel)

Finish
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(Random)

Temporary generation

Repeat 
from P1
to Pi

criterion

Mutation
(Bit inversion)

Select n Pareto genes

Genotype
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No

[Note]
Pi: required performance
n: the number of genes
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Fig. 5 Genetic algorithm process 
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Encoding
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1bit 11bits 52bits

・・・・

Cement Coarse aggregate Fine aggregate Admixture Chemical agent

ID Info. ID Info. ID Info. ID Info. ID Info.

11 0011・ 10 0011・・ 00 1011・・・ 11 0011・・・ 00 0101・・・

Class: 7 Types, ID: Acceleration/Delay type
Contents: Standard addition, Air volume, Price, etc.

Class: 18 Types, ID: Natural/Recycled aggregate
Info.: Density, Fitness modulus, Size, Absolute volume, Price, etc.

Class: 17 Types, ID: Natural/Recycled aggregate
Info.: Density, Water absorption, Size, Absolute volume, Price, etc.

Class: 3 Types, ID: Admixture No.
Info.: Specific gravity, Blaine, Price, etc.

Class: 4 Types, ID: Cement No.
Info.: Specific gravity, Cement strength, Price, etc.

Genotype

Phenotype

Mix Proportion of Recycled Aggregate Concrete

Water Cement Recycled aggregate Admixture Chemical agent

Slump (cm) Diffusion of CO2

Density (ton/m3･28days) Compressive Strength (MPa)

Dry Shrinkage (µ) E‐modulus (kMPa)

CO2 emission (kg/m3) Price (Yen/m3)

Fitness Function

slumpW

daysD28

shinkageD

cF

cE

2COD

tEcos

Decoding
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Fig. 6 Schematic of GA applied for mix proportion of RAC 
 
 

3.4 Process of genetic algorithm 
 
 The total procedure of evolutionary optimization using GA is shown as follow. After 

generating random population of n chromosomes substituting solutions for mix proportion 
problem for concrete, evaluation on the fitness (Pi) of each chromosome x in the population is 
conducted by the repeating process of selection, crossover, and mutation. Mutate genes by 
reversing arbitrary loci with a constant probability of 5%. Select Pareto individual genes from the 
temporary generation and make the next generation that consists of N individuals. When fitness is 
satisfied, the repeating process is terminated and optimal solution is approached. Process of GA 
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(a) Type 1 (b) Type 2 

Fig. 7 Fitness value and its shapes 
 
 
for mix design in this study is shown in Fig. 5 (Maruyama 2002, Eduardo 2004, Yeh 2007 and 
2009).  
 
 
4. GA application to mix proportion design for RAC 
 

To apply GA to a mix proportion design, genotype and phenotype is used as it can be seen in 
Fig. 1. Genotype is to represent various components and various mixture proportions of each 
chromosome. And each designed genotype has its phenotype which means the properties and 
performances of RAC that are estimated from mixture proportions coded information in the 
genotype. Schematic of GA applied for mix proportion of RAC is shown in Fig. 6 (Maruyama 
2002 and Noguchi 2003). 

The algorithm makes a phenotype (characteristic form and quality in the designed system) from 
each genotype and calculates fitness value from the phenotype in the designed system. Fitness 
value gives the numerical evaluation of both individual and phenotype. According to the fitness 
values, which can be plural in Pareto optimality problem, an individual in the population 
representing the set of individuals will be reproduced with crossover and mutation from generation 
to generation. Thus, when fitness is satisfied, the individuals approach the optimal solution. To 
derive this process, fitness functions are designed as shown in Eqs. (8) and (9), and Fig. 7. 
(Noguchi 2003, Maruyama 2001). 

11 )(1
0.1

0.1
)(

Tux n

e
xf


                                     (8) 

2
2

2 )(2
0.1

0.2
)(

Tux n

e
xf


                                    (9) 

where f(x), x, u and T presents fitness value, fitness function, the parameter representing the 
required performance of concrete mix and T presents the parameter determining fitness function. 
Using this notion of Pareto optimal set of GA developed for MOP is applied to the problem of 
concrete mix proportioning. 
 

4.1 Encoding of genotype 
 
Encoding of chromosomes depends on the problem. To solve multi-objective problem such a 

mix proportion, every chromosome is adjusted to binary encoding method that is the most general  
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Fig. 8 Binary encoding and range of data expression 
 
Table 1 Correction factor according to aggregate, cement and admixture 

r1 

0.7 Crushed limestone 

r2 

0.9 
Fly-ash cement 

1.0 Natural aggregate Early strength cement 
1.2 Lightweight aggregate 

1.0 
Ordinary Portland cement 

1.4 Recycled aggregate 
Portland blast-furnace slag 

cement 

r3 
0.7 Shrinkage reducing agent 

r3 1.0 
None 

0.8 Silica fume Granulated blast-furnace slag 
0.9 Fly-ash  

 
 
because of a string of bits (represented by the digits 0 and 1) to encode information for each 
chromosome even with a small number of alleles. Binary encoding and range of data expression is 
illustrated in Fig. 8. 
 

4.2 Fitness function for phenotype 
 
When a specific mix proportion for RAC needs to be determined, performances of RAC, i.e., 

compressive strength, slump, price etc. are very important characteristics in the process of mix 
design. The fitness functions of various required performance for RAC are essential for GA 
program. In this study, mainly slump, strength, elastic modulus, carbonation resistance, and price 
are determined and these are explained in the following sections (Park 2011).  

 
4.2.1 Slump 
Slump of RAC can be determined by the relation between the relative thickness of excess paste 

and the rheological parameters of fresh concrete as follows Eqs. (10) and (11) by Maruyama 
(2002) and Noguchi (2003). 

b
BW

LogaW cslump 



/1

1
)(                                               (10) 

)075.01( 22.2 pc                                                         (11) 

where W/B, S, τc, τp and   are water to binder ratio, slump, yield value of fresh concrete, yield 
value of cement paste and relative thickness of excess paste. a and b are material parameters. 
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4.2.2 Dry shrinkage strain 
Dry shrinkage strain of RAC can be calculated by formula proposed by AIJ (2006) as follows 

Eqs. (12) and (13), and Table 1. 
18.0)(4.1

0
8.1
0

3
08.0

00 )()(16.0

)(

100
1),(

































SV

shrinkage ttSV

tth
tkttD

                (12) 

321)40482.00.111(   GCWk                                          (13) 

with the notation 
Dshrinkage` (t, t0): : dry shrinkage strain when curing age is (t0) (×10－6) 
W: unit water content (kg/m3) 
C: cement content per unit volume of concrete (kg/m3) 
G: weight of coarse aggregate per unit volume of concrete (kg/m3) 
h: relative humidity (%) (40%≦h≦100%) 
V/S: volume to exposed surface-area ratio (mm) (V/S≦300mm) 

 
4.2.3 Compressive strength 
The factors affecting compressive strength ( cF ) are mortar strength ( mF ), impact factors of 

coarse aggregates ( CAR ) and fine aggregate ( FAR ), impact factor of admixture ( adR ) and impact 

factor of air content ( airR ). In this study, basic fitness function of compressive strength can be 

formulated as shown in Eq. (14). 

airadFACAmc RRRRFF                                                (14) 

Impact factors of mortar strength ( mF ): 

when discussing effect of W/B on compressive strength, mortar strength can be calculated by 
formula proposed by Duff (1910) as follow Eq. (15). 

KbWBaFm  ))/((                                                        (15) 

where B/W is binder to water ratio, and a, b and K are material constants depending on cement. 
Impact factors of coarse aggregate ( CAR ) by Maruyama (2002) and Noguchi (2003) 

  )log(log/1(
10001/

1
1 ACeWBd

V

BW
cRCA 

























                (16) 

where V, C and A are volume of coarse aggregate per unit weight, maximum size of aggregate 
and minimum size affecting strength of aggregate. And c, d and e are material constants. 

Impact factors of fine aggregate ( FAR ) in Eq. (17) 

1kRFA                                                                 (17) 

where k1 denotes the material parameter of fine aggregate type. 1.0 (silicate aggregate) and 0.89 
(others) are used respectively (Jones 1957). 
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Impact factors ( FAR ), when use recycled aggregate in Eq. (18) 

10242.0 




RA
FA

CA W
R

R
                                                   (18) 

where WRA is surface water content per unit weight; 
Impact factors of admixture ( adR ) in Eq. (19) 

when use ground granulated blast-furnace slag 

3.03 C :  
3.0

)(
1

1
1 3

2
1

2

3

2

C
iCh

C
gCfRad 

























                           (19) 

3.03 C : 
4.0

3.0
)( 3

23.0




C
kCjRRad

                                     (20) 

where f, g, h, i, j and k represent the material parameter, C1 is water to binder ratio, C2 is 
specific surface area of slag, C3 is the replacement ratio and R0.3 denotes the value calculated by 
Eq. (6) with C3 of 0.3 by Maruyama (2002) and Noguchi (2003). 

when use fly-ash; 

45.03 C : 31 )(1 CmClRad                                            (21) 

45.03 C : 1adR                                                          (22) 

where l and m represent the material parameter, C3 is the replacement ratio. 
when use silica fume 

2.03 C : 31 1 CRad                                                     (23) 

3.02.0 3  C : 25.12 adR                                                 (24) 

3.03 C : 13 adR                                                       (25) 

where C3 is the replacement ratio. 
Impact factors of air content ( airR ) Eq. (26) 

airair VkR  21                                                           (26) 

where k2 represents the parameter depending on water to binder ratio and type of coarse 
aggregate, and Vair indicates air content per unit volume of concrete. 

 
4.2.4 Modulus of elasticity 
The estimation of the modulus of elasticity of concrete is possible by utilization of formulas 

used for composite materials (Ilker 2007). Those formulas are expressed as a function of 
characteristics of concrete components, mainly mortar and aggregates (Paulo 1991). This study 
used one of those formulas, Hashin’s (1962) model which relates the modulus of elasticity of 
concrete to the modulus as a composite models of the two phases (aggregate and mortar matrix). 
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)1()1(                                               (28) 

cadconcrete ErE                                                            (29) 

with the notation 
Ec, Em, Ep: modulus of elasticity of concrete, mortar and paste 
Econcrete: modulus of elasticity of concrete using admixture 
Eca, Efa: modulus of elasticity of coarse aggregate and fine aggregate 
Vca, Vfa: volume of coarse aggregate and fine aggregate 
rad: correction factor according to admixture 

The modulus of elasticity of paste can be estimated by water to cement ratio (W/C) proposed by 
Kawakami (1994). 

when W/C is in the range of 25~45% in Eq. (30), 









CW
E p /

0.1
log697.43133.3                                        (30) 

when W/C is in the range of 45~65% in Eq. (31) 

          







CW
E p /

0.1
ln553.161.4                                             (31) 

And predicting elastic modulus of aggregate can be estimated by equations suggested by 
Kiyohara (2004) based on the theory composite material. 

4
22.0 10

89.5






aca

fa

AE

E
                                                         (32) 

where Aa is the water absorption ratio of aggregates 
Impact factors of admixture ( adr ) in Eq. (32) 

when use ground granulated blast-furnace slag; 

    4.0/ BW  and 3.03 C : 32.01 Crad                                             (33) 

                         4.0/ BW  and 3.03 C : )3.0(4.006.1 3  Crad                               (34) 

4.0/ BW  and 3.03 C : 32.01 Crad                                             (35) 

4.0/ BW  and 3.03 C : 32.01 Crad                                            (36) 

where W/B is water to binder ratio, C3 is the replacement ratio. 
when use fly-ash 

4.0/ BW : Drad 6.11                                                 (37) 
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Table 2 R3 and R4 

R4 
Natural aggregate 

Plain Air entraining agent 
Air entraining and high-range 

water reducing agent 
Air entrain and  

water reducing agent 
R3 1 0.6 0.36 0.4 

R4 
Recycled aggregate 

Plain Air entraining agent 
Air entraining and high-range 

water reducing agent 
Air entrain and  

water reducing agent 
R3 1.0 1.0 1.0 1.0 

 
 

when use silica fume 

 Drad 6.11                                                                (38) 

4.2.5 Carbonation speed coefficient 
The factors affecting carbonation depth (DCO2) are cement (R1), admixture (R2), chemical agent 

(R3) and aggregate type (R4). The estimation of carbonation speed coefficient can be calculated by 
utilization of formula proposed by Izumi (1984). 

tRRRRDCO  43212 354.0                                               (39) 

And correction factor (R1) in Eq. (39) can be estimated by equation with relationship between 
water to binder ratio and material constants as shown in Izumi (1984). 

baxeR 1                                                                  (40) 

when use ordinary Portland cement or Portland blast-furnace slag cement, 

004.234.3
1

 xeR                                                               (41) 

when use early strength cement, 

004.239.3
1 977.0  xeR                                                       (42) 

when use granulated blast-furnace slag, R2 in Eq. (43) is as follow while fly-ash and silica fume 
are R2=1. 

DR 3.012                                                                 (43) 

where D is replacement ratio of admixture. 
R3 and R4 in Eq. (43) are presented as below Table 2. 

 
4.2.6 Cost for 1 m3 recycled aggregate concrete 
When various mixtures of RAC are derived on GA, cost is one of important required 

performances at the same time. The function of cost  (Ecost) is simply the summation of material 
cost for producing 1 m3 concrete is calculated by combination of each material in RAC mix 
proportion (Eduardo 2004). 

adadAdAdfafacacacct WCWCWCWCWCE cos
                       (44) 
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where Cc, Cca, Cfa, CAd and Cad are prices (Yen) of cement, coarse aggregate, fine aggregate, 
admixture and chemical agent per unit weight. And Wc, Wca, Wfa, WAd and Wad are weight of 
cement, coarse aggregate, fine aggregate, admixture and chemical agent in RAC mix proportion 
derived from GA. 

 
4.2.7 CO2 emission for 1 m3 recycled aggregate concrete 
RAC has become more important for sustainable building material due to reducing carbon 

dioxide (CO2) emission. In this study, CO2 emission is also one of important required 
performances at the same time. The function of CO2 emission cost (ECO2) is simply the summation 
of the amount of CO2 emission for producing 1 m3 concrete in RAC mix proportion derived from 
GA as follow Eq. (45). 

adadCOAdAdCOfaFACOcaCACOcCCOco WCWCWCWCWCE  _____ 222222
             (45) 

where CCO2-C, CCO2-CA, CCO2-FA, CCO2-Ad and CCO2-ad are carbon dioxide (CO2) emission for 
producing cement, coarse aggregate, fine aggregate, admixture and chemical agent per unit weight 
referring to JSCE (2004) and JCI (2010). And Wc, Wca, Wfa, WAd and Wad are weight of cement, 
 
 
Table 3 Set of case study 

 Target aggregate* Use of RAC Required performances for RAC 
Case 1 H, M, L class Structural concrete Workability, strength, durability, cost 
Case 2 M, L class Concrete block Strength, durability, cost, Low CO2 

Case 3 M, L class 
Cast- in-place concrete pile
Road, under-bed concrete 

Workability, strength, durability,  
cost,  Low CO2 

* H, M and L class are recycled aggregates determined by JIS A 5021, 5022 and 5023. 
 
Table 4 Physical property of recycled aggregate 

Classification Class H Class M Class L 
Absolute dry density 

(t/m3) 
RFA More than 2.5 More than 2.2 - 
RCA More than 2.5 More than  2.3 - 

Absorption rate 
(%) 

RFA Less than 3.5 Less than  7.0 Less than  13.0 
RCA Less than 3.0 Less than 5.0 Less than 7.0 

Standard Code JIS A5021 JIS A5022 JIS A5023 
No. JIS A5021 A5022 A5023 

 
Table 5 Required properties and performances 

Property or Performance Unit Case 1 Case 2 
Slump cm 15 15 

Dry shrinkage strain µ 500 500 
Specific gravity t/m3 2.3 2.25 

Strength MPa 36 30 
Modulus of elasticity GPa 24 22 

Carbonation speed coefficient cm/√Year 0.27 0.27 
Cost* Yen/m3 13000 11000 

CO2 emission kg/m3 330 300 
*Cost is assumed comparing with the data about ready-mixed concrete (1 m3) in Japan (2010) 
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coarse aggregate, fine aggregate, admixture and chemical agent in mix proportion. 
 
 
5. Case study and result 
 

5.1 Introduction 
 
Case study is assumed considering various utilization of RAC as it can be seen in Table 3. 

Table 4 presents the physical properties of recycled aggregate. 
Following are three cases optimizing the mix proportion of RAC under its use and required 
performances by GA system as shown in Table 5. 
 

5.2 Results 
 
After operating the mix design system using GA with 200 individuals, 200 generations and 2% 

mutation rate, various mix proportions can be derived regarding with each case. Then, selection of 
individuals which meet required performances in Table 5, is conducted. As a result, several mix 
proportions in each case were listed in Tables 6 and 7. Also the comparison of expected properties 
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Fig. 9 Ratio between expected property and required property of RAC (Case 1) 

 
Table 6 Pareto optimal mix proportions derived by GA (Case 1) 

 W/C Water Air S/A 
Unit weight (kg) 

Cement Sand Aggregate Additive 
Admixture 

1(%/C) 
1 59.20 167.70 2.00 0.48 283.2(EC) 901.2(N) 931.1(M) 0.00 0.42(AE) 
2 59.88 190.97 2.17 0.42 318.9(LC) 658.8(M) 1047.2(N) 3.13(SF) 0.03(SP) 
3 59.19 169.96 2.09 0.41 287.1(OC) 768.4(N) 1051.2(M) 0.00 0.18 
4 58.99 170.62 2.00 0.44 289.2(MC) 713.4(M) 1065.1(N) 0.00 0.44(AE) 
5 58.76 154.36 2.08 0.55 262.6(LC) 1039.9(N) 794.7(M) 50.64(GS) 0.09 
6 59.20 167.70 2.00 0.48 283.2(EC) 901.2(N) 931.1(M) 0.00 0.42(SP) 
7 60.45 199.29 2.21 0.85 329.7(EC) 1264.0(L) 270.6(N) 14.77(FA) 0.41(SP) 
8 48.49 151.62 2.06 0.54 312.7(MC) 878.3(L) 909.4(N) 7.60(GS) 0.13(SP) 
9 58.54 178.58 2.09 0.36 305.0(MC) 573.0(M) 1209.7(N) 14.84(SF) 0.18(SP) 

10 58.99 178.10 2.39 0.53 301.9(LC) 845.1(M) 876.4(N) 0.00 0.02(AE) 
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Table 7 Pareto optimal mix proportions derived by GA (Case 2) 

 W/C Water Air S/A 
Unit weight (kg) 

Cement Sand Aggregate Additive 
Admixture 

1(%/C) 
1 62.09 157.36 2.08 0.43 253.4(OC) 814.6(N) 1011.2(M) 28.31(SF) 0.01(AE)
2 60.92 164.43 2.00 0.38 269.9(EC) 707.2(N) 1075.2(M) 31.57(FA) 0.05 
3 57.86 160.24 2.00 0.46 276.9(LC) 874.8(N) 962.5(M) 23.31(SF) 0 
4 64.35 178.30 2.00 0.52 277.0(LC) 965.6(N) 836.4(M) 0 0.20 
5 60.92 164.00 2.00 0.38 269.2(EC) 623.0(L) 1155.9(N) 36.41(SF) 0 
6 61.42 171.11 2.00 0.52 278.5(MC) 961.0(M) 728.4(M) 89.18(SF) 0.29 
7 64.03 154.32 2.29 0.51 240.9(EC) 854.3(L) 961.8(N) 33.88(FA) 0.05(AE)
8 56.40 183.71 2.00 0.56 325.6(EC) 998.1(N) 736.8(L) 22.60(SF) 0 
9 60.87 162.44 2.86 0.38 266.8(EC) 722.0(N) 1068.0(M) 19.01(SF) 0.17(AE)
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Fig. 10 Ratio between expected property and required property of RAC (Case 2) 

 
 
of each case is shown in Figs. 9 and 10. As shown in the examples presented in Tables and Figures, 
it is found that the mix design method for RAC using GA program can derive the appropriate mix 
proportions. 

where EC, LC, OC and MC represent early strength cement, low heat cement, ordinary 
Portland cement and moderate heat cement, N is natural aggregate, H, M and L represent recycled 
aggregate classes, SF, FA and GA indicate silica fume, fly-ash and blast-furnace slag and AE and 
SP are air entrain agent and superplasticizer. 
 
 
6. Conclusions 

 
This paper proposes a new design method for the mix proportion of recycled aggregate 

concrete to reduce the number of trial mixes. The results of this paper can be summarized as 
follows: 
1. In this paper, GA system using the concept of Pareto optimality was newly developed for 
solving the MOP of mix proportion for RAC. 
2. With the concept of Pareto optimality, various fitness functions for the required properties of 
concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and CO2 
emission were adapted based on statistical analysis on conventional and various early studies. 
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3. From the GA system for RAC, several optimum mix proportions for RAC that meets required 
performances could be obtained. The utility of GA system to expand use of RAC was confirmed 
comparing with case studies considering various utilization of RAC.  
4. It is thought that a new design method for RAC mixtures can minimize the number of trial 
mixes and provides a reasonable mix proportion. It is indicated that this method is expected to be a 
new and alternative method for new concrete material design such a RAC. 
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