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Abstract. This paper presents an algorithm for the evaluation of stresses in reinforced concrete sections
under service loads. The algorithm is applicable to any section defined by polygonal contours and is
based on an analytical integration of the stresses. The nonlinear behaviour of concrete is represented by
the parabola-rectangle law used in the Eurocode-2 for the ultimate concrete design. An integrated
definition of the strains in concrete and steel is possible by the use of Heaviside functions, similarly to
what is done for ultimate section design in Barros et al. (2004). Other constitutive equations for the
definition of the stresses in the concrete or steel can be easily incorporated into the code. The examples
presented consist in the evaluation of resulting axial load and bending moment in an irregular section and
in a section in L shape. The results, for service stresses, can also be plotted in terms of design abacus; a
rectangular doubly reinforced section is presented as example.

Keywords: reinforced concrete; serviceability limit state; stress control; analytical solution; design abacus.

1. Introduction
 

The design of reinforced concrete structures considers two levels of loads, namely ultimate and

service loads. Ultimate conditions correspond to the rupture of the section usually evaluated in

terms of maximum bending moment and axial load. In general, that is, if are excluded the cases in

which the stress-strain diagrams have descending branches, the rupture of a section under maximum

loading can occur either by attaining ultimate strain in concrete or in steel. The authors (Barros et

al. 2003, 2004), present a method that permits the use of unique expressions defining the concrete

strain in the most stressed fibre of the section, as needed for ultimate design. The method is general

and is independent of the stress-strain laws used to define concrete and steel stresses. In Eurocode-2

the concrete stress-strain relation used is the parabola-rectangle law, with different parameters that

depend on the concrete strength. Other nonlinear expressions are indicated in MC90, namely for the

nonlinear analysis of concrete structures under service limit states. A comparative analysis of the

provisions in ACI 318-05 and Eurocode 2 (EC2-94) is made by Hawileh et al. (2009), identifying

differences in these codes in what regards to flexural concrete design. Campion (2008) presents a

model to predict the response of concrete columns under variable confinement stresses. In

Papadakis (2007) an evaluation is made of the concrete service life using fundamental mathematical
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models that simulate the deterioration mechanisms, such as carbonation and chloride penetration.

Lou et al. (2008) perform the integration the tangent stiffness by dividing the section into several

concrete trapezoids. Sadjadi et al. (2010) implement a fiber element model into a computer program

and a tri-linear stress-strain relationship for steel behaviour. Chaudhary et al. (2007) develop closed

form expressions for stiffness matrix, load vector and mid-span deflection of beam elements under

service loads. In Lam et al. (2009) formulas are developed for the direct evaluation of the

maximum axial load level and minimum confining pressure in order to guarantee a nominal flexural

ductility in high-strength concrete columns. Alnuaimi (2007) presents an experimental and analytical

study of partially prestressed concrete beams under the combined effect of bending, shear and

torsion loads. Design tables of concrete sections and a procedure to design reinforced concrete

structures are proposed in Fragiadakis and Papadrakakis (2008). A new generic fiber model

algorithm is implemented by Charalampakis and Koumousis (2008), allowing the integration of

stress within composite sections. In Pallares et al. (2009) is developed a numerical method to iterate

a system of equations obtained in the design of reinforced concrete sections subjected to axial forces

and biaxial bending. In Sousa et al. (2007) a procedure for the analytical integration of section

resistant forces and tangent moduli in reinforced concrete frames is presented. Bonet et al. (2006)

make a comparative analysis between numerical and analytical integration of concrete stresses for

ultimate design. Ruiz et al. (2007) present a closed form solution of the bond stresses in reinforced

concrete.

In the algorithm developed by Barros et al. (2006), the concrete section is divided into triangles

with exact integration of stresses in each one. Since the section is defined by an arbitrary polygonal

line, the model can be used in any type of section. The present paper is an improvement of this

work, Barros et al. (2006), with the analysis of the section under increasing service stresses up to

the ultimate state. The conditions of rupture of a reinforced concrete section are stated in terms of

concrete or steel maximum strain with parametric equations. These conditions are solved in an unique

equation by the use of Heaviside functions and implemented into the mathematical manipulation

software MAPLE. The expressions of these equations for the force F and stress , are shown on

appendix A. Similar but longer expressions are obtained for the moments  and . To show the

application of the model, several examples consisting of arbitrary shape, L and rectangular sections

are presented. The integration procedure is used in the evaluation of interaction surfaces for the

ultimate design of reinforced concrete columns, Barros et al. (2005).

An advantage of the work here presented consists of the possibility of making the exact integration of

the stresses in the compressed concrete considering a section with any arbitrary shape. This is

relevant since it can be applied to T-sections, L-sections and others. In the work of Silva et al.

(2009) the integration procedure is applied to the ultimate design of reinforced concrete sections

under axial load and biaxial bending moment. Another advantage is the fact that this algorithm

allows, for service limit states, the consideration of any nonlinear constitutive law. In the present

case the parabola-rectangle law as defined in the Eurocode 2 is adopted. The method is particularly

attractive in dealing with service limit states, once that it is current in practice, for these situations,

to use linear laws. 

Examples are presented that show the applicability of the method in obtaining the exact solution

to any desired degree of accuracy.

σs

Mx My
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2. Integration of compressive stresses in concrete

The reinforced concrete section to be studied in this work can be defined by an arbitrary

polygonal line, as represented in Fig. 1(a). In this figure, G represents the centroid of the concrete

section, the reference axis x and y being therefore baricentric. The neutral axis is represented by

(na). 

Denoting by β the angle of the neutral axis with the x axis and by n the ordinate at the origin, the

neutral axis is defined by the following linear equation

 (1)

Fig. 1(b) shows a lateral vue of the section after deformation, satisfying a linear variation of

strains. The strain in the most compressed concrete fibre, located at a distance X from the neutral

axis, is denoted by . The strain in the opposite steel, at a distance d, is denoted by . The non

dimensional parameter α is defined by

 (2)

2.1 Strain deformation of the section under ultimate conditions

To evaluate the rupture of the reinforced concrete section it is supposed that the deformation attains

certain limits. Failure occurs whenever one of the following mechanisms is satisfied, (see Fig. 2):

(1) Rupture by the steel when, at the most stressed fibre, the strain  is equal to 1%, line 1

y x( ) n tgβx+=

εc εs

α
X

d
---=

εs

Fig. 1 (a) Geometry of the section and (b) Deformed section with strains in concrete  and steel εc εs

 Fig. 2 Deformed section in rupture
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(contains point A);

(2) Rupture by the concrete when the strain  equals the ultimate value , line 2 (contains point B);

(3) Rupture with the whole section under compression and the strain at point C equal to 0.2%,

line 3 (contains point C).

The use of Heaviside functions, denoted by H(.), allows the definition of a sole equation for ,

as described by Barros et al. (2004), that is

(3)

The strain  at the most stressed steel fibre is obtained by the compatibility condition. It is given

by the following function of the concrete strain 

(4)

and contains Heaviside functions as well.

 

2.2 Compressed concrete and stress integration

The neutral axis divides the section in two zones, one in compression, the other in tension. In

order to integrate the stresses in the compressed concrete, the section is divided into triangles, as

represented in Fig. 3. For simplicity the neutral axis in this figure is drawn outside the section, but

it can lay anywhere.

The triangles, Fig. 3, are numbered starting by the one more distant to the neutral axis, as 1, 2 and

3. A general triangle is then considered denoting by A the more distant node and numbering the

others in the direct sense such as AFB.

Let us consider a general triangle AFB, represented in Fig. 4. In order to perform the integration,

this triangle is subdivided by drawing a line parallel to the neutral axis through B or F, into triangles

T1 and T2.

Considering the triangle T1, any arbitrary point P within this triangle can be defined in area

coordinates termed L1, L2 and L3, such that

(5a,b,c)

where A is the area of triangle T1, and A1, A2 and A3 are its subdivisions as indicated in Fig. 5. The

εc εcu

εc

εc
1

100
---------

α

α 1–
----------- H α

εcu
εcu 1%+
-------------------–⎝ ⎠

⎛ ⎞ εcu
α

100 α 1–( )
------------------------+⎝ ⎠

⎛ ⎞– H X h–( ) εcu
X

X 3 7h⁄–
-------------------0.2%–⎝ ⎠

⎛ ⎞+=

εs
εc

εs εc
d X–

X
-----------=

L1

A1

A
-----= ; L2

A2

A
-----= ; L3

A3

A
-----=

Fig. 3 Decomposition of the section into triangles
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deformation ε at this general point P is given by

 (6)

and is only function of coordinate L1. This is due to the fact that side 23 is parallel to the neutral

axis and the strain is constant at all points located at the same distance to this axis. In this equation

 represents the strain at point 1;  represents the strain at points 2 or 3, since they are the same.

In this formulation the stress  is also a function of L1

(7)

The resulting force F in the triangle 123 is obtained by the following integration

(8)

Performing this integration it is found that

(9)

where det J represents the Jacobian of the transformation, equal to 2∆, where ∆ is the area of

triangle 123. The formula for F is presented in Appendix A.

The bending moment over the side 23, termed M23 in Fig. 6, is given by

(10)

where λ is the height of the triangle 123, Fig. 6. Performing the integration it becomes

ε L1 ε1 ε2–( ) ε2+=

ε1 ε2
σ ε( )

σ σ L1( )=

F σ L1( ) aread
Area
∫=

F σ L1( ) 1 L1–( )det J L1d

0

1

∫=

M23 σ L1( )λL1 aread
Area
∫=

 Fig. 4 (a) and (b) Decomposition of triangle AFB

 Fig. 5 Elementary triangle
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 (11)

Considering that point 4 is located at the middle of segment 23 and denoting by θ the angle

between this segment and direction 41, see Fig. 6, the bending moment M4, in the direction normal

to 23, is given by

 (12)

2.3 Tensile zone

If the neutral axis intersects the section, the triangles in the tensile zone are not considered in the

summation of force and bending moments, since tension in concrete is not considered in the

ultimate design. If a triangle is intersected by the neutral axis, there are different possibilities to be

studied, as represented in Fig. 7. In Figs. 7(a) and (b) a subdivision into triangles 1 and 2 is

considered and in Fig. 7(c) only triangle 1 is necessary. The integration process is performed for the

new triangles as described previously.

2.4 Bending moments at the centroid of the section

The bending moments at the centroid of the section and directions x and y, termed Mx and My, are

obtained by the following transformations, according to Fig. 6

(13)

(14)

 
where x4 and y4 are the coordinates of point 4. 

M23 σ L1( )λL1 1 L1–( ) et J  d L1d

0

1

∫=

M4 M23 tanθ⁄=

Mx M23cosα M4sinα Fy4++=

My M23 sinα M4 cosα– Fx4–=

Fig. 6 Bending moments at point 4

 Fig. 7 (a), (b) and (c) Triangles intersected by the neutral axis
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3. Service stresses

To evaluate the conditions of the reinforced concrete under service load it is necessary to obtain

the stresses due to imposed bending moment M and axial load N. For this purpose the neutral axis

position (na), defined by n and angle β in Eq. (1), must be known as well as the maximum concrete

strain εc, as shown in Fig. 8.

This is a difficult task due to the fact that concrete stresses are described by nonlinear equations that

are integrated over a variable domain because of the change of the neutral axis. In the present work

the mathematical manipulation program is solved for the inverse problem. The bending moment M

and axial load N are obtained for given positions of neutral axis, defined by the non dimensional

parameter  (since X is easily related to n and ) and increasing strain εc varying within

the range of 0 up to the ultimate value, that is , as shown in Fig. 8. This procedure ends at

the ultimate section design load, that corresponds to the rupture values Mrd and Nrd.

4. Algorithm of solution

The algorithm of solutions consists of the following steps:

(1) Geometry definition

 − Read the number of points defining the shape of the section

 − Read the coordinates of the contour points

(2) For an arbitrary neutral axis defined by Eq. (1)

 − Define the deformation with Eq. (3)

 − Evaluate the distance of contour points to the neutral axis

 − Evaluate the maximum and minimum distance of contour points

 − Decompose the section in triangles

(3) For each triangle i

 − Evaluate the integral Eq. (9), defining Fi 

 − Evaluate moments Mxi and Myi by Eqs. (13) and (14)

(4) Accumulate the contributions of each triangle 

α X d⁄= β 0=

0 εc εcu≤ ≤

F ΣFi= Mx ΣMxi= My ΣMyi=

 Fig. 8 Deformed section and corresponding concrete stresses
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5. Numerical results

As mentioned before the model permits any type of constitutive Eq. (7) in defining concrete

stresses. The work developed here uses the parabola-rectangle law of EC2 that, using Heaviside

functions, becomes

(15)

The parameters used in the examples are κ=2,  and .

5.1 Square section

The model is used in the evaluation of resulting force and bending moment in the square concrete

section of Fig. 9(a) with sides 2 m × 2 m. The parameters for the definition of the concrete stress

are n=2, ,  and .

In Figs. 9-12(a) are represented the section and different positions of the neutral axis. Figs. 9-

12(b) represent the corresponding stress diagram in the compressed concrete.

Table 1 summarizes the force and bending moments obtained with the model and the analytical

results for the case of Fig. 10. These results are coincident up to eight digits.

σ L1( ) fcd 1 1
εcL1

εc2
---------+⎝ ⎠

⎛ ⎞
κ

–⎝ ⎠
⎛ ⎞H εc2 εcL1+( )–⎝ ⎠

⎛ ⎞ fcdH εc2– εcL1–( )–=

εc2 0.002= εcu 0.0035–=

fcd 25.0 MPa= εcu 0.0035–= εc2 0.002=

Fig. 9 (a) Square section and neutral axis position  and  and (b) Corresponding stressesα π 4⁄–= n 0=

Fig. 10 (a) Neutral axis position  and  and (b) Corresponding stressesα 0= n 1–=
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5.2 Irregular section

We consider now the irregular section represented in Fig. 13(a), in which the dimensions are

defined in meters. The section is divided into the triangles indicated and the stresses are represented

in Fig. 13(b). The resulting force is  MN and bending moments 

MNm and  MNm.

F 105.9676901–= Mx 107.8344365=

My 408.8386702=

Fig. 11 (a) Neutral axis position  and  and (b) Corresponding stressesα 0= n 2–=

Fig. 12 (a) Neutral axis position  and  and (b) Corresponding stressesα 0= n 20–=

Table 1 Resulting force and bending moments

α n (m) F (MN)  Mx (MNm) My (MNm)

/4 Fig. 9 n = 0 -33.67346938 -14.56754129 -14.56754129

 Fig. 10
n = −1

Analytical
-80.952381
-80.952381

-13.605442
-13.605442

0.1 10-7
0

 Fig. 11 n = −2 -94.58201068 -3.86999243 0

 Fig. 12 n = −20 -99.93868271 -0.04379806 -0.1 10-7

n = −100 -99.99751959 -0.00177214 0

n =∞  -100 0 0

α π–=

α 0=

α 0=

α 0=

α 0=

α 0=
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5.3 Section in L shape

The section in L shape represented in Fig. 14(a) is also analysed using the same type of concrete.

Figs. 14 and 15(a) show the neutral axis position and Figs. 14 and 15(b) show the stresses in the

section.

In Table 2 are summarized the results for this section showing a coincidence of eight digits for the

Fig. 13 (a) Neutral axis position  and  and (b) Corresponding stressesα π 4⁄–= n 0=

Fig. 14 (a) Neutral axis position  and  and (b) Corresponding stressesα π 4⁄–= n 0=

Fig. 15 (a) Neutral axis position  and  and (b) Corresponding stressesα 0= n 2–=
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force and seven for the bending moment.

5.4 Abacus for service stresses in rectangular section

The algorithm is applied to a rectangular reinforced concrete section with reinforcement ratio 

 and . Reduced axial load is  and reduced bending

moment is . The maximum stress in concrete is .

In Fig. 16 can be observed that strain  increases progressively until it reaches the ultimate

w A( A′) bhfcd( )⁄ 0.1=+= A′ A⁄ 1.0= ν N bhfcd( )⁄=

µ M bh
2
fcd( )⁄= α′fcd 1.0fcd=

εc

 

Table 2 Resulting force and bending moments in L section

α n (m) F (MN) Mx (MNm) My (MNm)

/4 Fig. 14 -75.76530615 57.59475220 155.925650

 Fig. 15
Analytical

-156.67163
-156.67163

77.80169
77.80169

88.10764
88.10764

α π–= n 0=

α 0=
n 2–=

Fig. 16 Interaction diagram for constant values α and increasing , with  and εc A′ A⁄ 1.0= w 0.1=

Fig. 17 Stress  at reinforcing steel A obtained for variable  and ασs εc
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interaction diagram that is the contour diagram for the indicated section.

Fig. 17 represents the stress  at steel A obtained as a function of  and , obtained from Fig.

16. The formula for  is summarized in Appendix A. To evaluate the stress in the steel for given

values of  and , the reduced bending moment µ1 and axial load  are calculated. Then Fig.

16 is used to find the corresponding  and  by interpolation; the abacus of Fig. 17 gives the

stress in the steel A. 

The abacus in Fig. 16 can be obtained from the interaction diagram for concrete in Fig. 18 added

to the abacus in Fig. 19 multiplied by , since this figure is made for .

Other abacuses can be obtained, for instance Fig. 20 represents the abacus for  and

. Multiplied by the w of the section and adding it to the interaction diagram for concrete in

Fig. 18, different design abacus for reinforcement ratio  can be constructed.

σs εc α

σs

M1 N1 ν1

εc( )
1

α1

w 0.1= w 1.0=

A′ A⁄ 0.5=

w 1.0=

A′ A⁄ 0.5=

Fig. 18 Interaction diagram for constant values α and increasing εc for the section without reinforcing steel

Fig. 19 Interaction diagram for constant values α and increasing εc for the section with reinforcing steel
 and A′ A⁄ 1.0= w 1.0=
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6. Conclusions

A model for the integration of concrete stresses in a section under axial force and biaxial bending

moment is presented. The model can be used in any section described by a closed polygonal line.

The model is implemented into a mathematical manipulation program and the results obtained are

coincident to the theoretical values up to the desired number of digits. 

With this model design abacus for ultimate as well as service stresses in different reinforced

concrete sections can be obtained. It is our intention to extend this work to sections with curved

boundaries, in particular circular sections.
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Appendix A.

The formula for F and σs are the following 

F ( fcd
ec2 e2+( )4

4 e1 e2–( )2ec2
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------------------------------
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1 1
e2

ec2

------+⎝ ⎠
⎛ ⎞ e1 e2–( )

ec2
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ec2
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--------------------–
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3 e1 e2–( )2
----------------------------------------------------------------------------------------------–––=

+

1– 1
e2

ec2
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2
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⎛ ⎞

2 1
e2

ec2
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⎛ ⎞ e1 e2–( )

ec2

----------------------------------------- ec2 ec2+( )2–
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------------------------------------------------------------------------------------------------------------

ec2 e2+
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----------------
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e2

ec2

------+⎝ ⎠
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----------------------------------------)Heaviside ec2 ec+( )+–
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