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 Technical Note

Reliability of column capacity design in shear
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Abstract. The capacity design of shear forces is one of the special demands of EC8 by which the ductile
behavior of structures is implemented. The aim of capacity design is the formation of plastic hinges
without shear failure of the elements. This is achieved by deriving the design shear forces from equilibrium
conditions, assuming that plastic hinges, with their possible over-strengths, have been formed in the
adjacent joints of the elements. In this equilibrium situation, the parameters (dimensions, material properties, axial
forces etc) are random variables. Therefore, the capacity design of shear forces is associated with a
probability of non-compliance (probability of failure). In the present study the probability of non-compliance
of the shear capacity design in columns is calculated by assuming the basic variables as random variables.
Parameters affecting this probability are examined and a modification of the capacity design is proposed,
in order to achieve uniformity of the safety level.

Keywords: reliability; shear; capacity design; columns.

1. Introduction

The capacity design rule for shear forces of EC8 (2004) aims to prevent the brittle shear failure of

building elements (beams, columns and walls). Avoiding shear failure provides structures the ability

to dissipate energy through the formation of plastic hinges. According to the capacity design rule,

the formation of plastic hinges can be ensured if the shear resistance of the elements is larger than

the shear force corresponding to the development of plastic hinges at both ends of the element. The

design values of shear forces are equal to the shear forces that must be developed in order for the

equilibrium condition to be satisfied in the seismic design situation. In this equilibrium condition the

moments at the ends of the elements are considered equal to the resisting moments multiplied by

partial safety factors which give the desirable overstrength to the shear resistance.

The success of the capacity design rule to fulfil its scope depends on the effectiveness of the shear

strength and flexural strength models that are used to predict the corresponding resistances. Several

studies have dealt with the assessment of these models using specimen results (e.g. Yoshimura 2008

examined the behaviour of half-scale model specimens of columns designed to fail in shear or in

flexural yielding and in NCHRP 2005 the large experimental database, consisting of 878 RC and

481 prestressed concrete members was used to compare the shear strength estimated according to

different design codes with the test results). Specially for the shear strength, the studies have

revealed that the shear models used in codes fail to predict the strength with satisfactory small

values of coefficients of variation (Mwafy and Elnashai 2008) and thus new formulas for calculating the
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shear strength of reinforced concrete elements are proposed by many authors (e.g. Ghiassi and

Soltani 2010, Bentz et al. 2006, Collins et al. 2008).

In the present study the capacity design of shear forces of EC8 is examined under a probabilistic

point of view in order to take into account all these model uncertainties with all other material

uncertainties. The success of the capacity design rule of beam-column joints of EC8 has also been

examined by the authors (Thomos and Trezos 2011). The variables that affect the capacity design

(concrete strength, steel strength, dimensions etc.) are considered as random variables and the

probability of shear failure to appear before the formation of plastic hinges is calculated for columns

for which the shear capacity design has been implemented. This corresponds to the non-compliance

(or failure) of the shear capacity design. 

More precisely, failure of the capacity design for shear forces of columns is considered as the

event in which “the shear force induced from the formation of plastic hinges at the ends of the

columns (or at the beams connected to the joints into which the columns ends frame, if the plastic

hinges form there first) is greater than the shear resistance of the considered member”.

The aim of this study is to investigate the safety level of the capacity design of shear forces of

columns. The safety level is quantified by the probability of non-compliance (called also “probability of

failure”). Parameters affecting this probability are determined and a modification of the partial

safety factor of the capacity design of shear forces of columns is proposed, in order to achieve

uniform safety level. 

2. Methodology

2.1 Capacity design rule for shear forces of columns

According to EC8, the design values of shear forces of columns shall be determined in accordance

to the capacity design rule. For columns with fixed ends the design value of shear force is

Vd,c = (M1d + M2d)/lc (1)

Where,

lc is the length of the column and

Mi,d (with i = 1,2 denoting the end sections of the column) are the end moments (calculated from

the relation (2)) that correspond to plastic hinge formation for positive and negative directions of

seismic loading. Plastic hinges should be formed either at the end of the column or at the end of the

beam connected to the joint into which the column frames 

Mi,d = γRd MRd,c,i min (2)

Where,

γRd is the safety factor accounting for overstrength due to steel strain hardening and confinement

of the concrete of the compression zone of the section, taken as being equal to 1.1 for DC M

(medium ductility ) columns and 1.3 for DC H (high ductility) columns.

MRdc,i is the design value of the column resisting moment at the end i in the direction of the

seismic moment under the seismic action considered.

 is the sum of the design values of the resisting moments of the columns framing in the joint and

1
ΣMRd b,

ΣMRd c,

----------------,⎝ ⎠
⎛ ⎞

ΣMRd c,
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 is the sum of the design values of the resisting moments of the beams framing in the

joint.

The shear strength (VRd) and the resisting moments of relation (2) are affected by many

parameters such as model uncertainties, concrete strength, steel strength and dimensions etc. that are

random variables. Therefore, there is a probability (“probability of failure”) of the shear strength

being less than the shear force developed during plastic hinges formation (although relation (1) has

been used for calculating the shear force design value). This probability of failure, pf, can be written

for a column (Fig. 1) as

(3)

Where 

VR is a random variable that represents the shear strength of the column

M i
R,b,left M i

R,b,right, M i
R,c,up and M i

R,c,down are random variables that represent the resisting moments

of the members with the directions that are shown in Fig. 1.

The Monte Carlo simulation can be used for calculating relation (3). Assuming that the probability

function of the resisting moments and the shear resistances may be approximated by the normal

distribution, the probability of failure can be directly related to the safety index β 

 (4)

with

r = min(VR)- (4a)
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Fig. 1 Directions of the resisting moments for calculating relation 3
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Where,

PHI( ) is the cumulative distribution function of the standard normal distribution. 

In the following, the safety index β is used instead of the probability of failure pf, for alleviating

the presentation (large values of β correspond to small probability of failure).

In order to examine the influence of basic variables to the probability of failure of the capacity

design of shear forces of columns, the cases shown in Table 1 have been examined. The beams of

the upper joint and the beams of the lower joint (see Fig. 1) have been considered to have the same

dimensions and reinforcement. Moreover, the two columns framing in a joint have been considered

to have the same cross section and the same reinforcement. 

The shear capacity design is applied to each column of Table 1: The design value of shear force

(Vd,c) is calculated using the relation (1). The shear reinforcement is calculated according to EC2

(2004). The design method used in EC2 is known as the variable strut inclination method and is

based on a truss model (see Fig. 6.5 of EC2). For columns with vertical reinforcement the shear

resistance VRd is the smaller value of 

VRd,s = Asw/s⋅0.9⋅d⋅fywd⋅cotθ, [(6.8) of EC2] (5)

and 

VRd,max = bw⋅0.9⋅d⋅0.6⋅fcd/(cotθ + tanθ) [(6.9) of EC2] (6)

Where

Asw is the cross-sectional area of the shear reinforcement 

s is the spacing of the stirrups

d, bw are the effective depth and the width of the column

fywd is the design yield strength of the shear reinforcement

Table 1 Examined cases

Columns Beams

γRd
Number 
of casesSection/

dimensions

Longitudinal 
reinforcement 
ratio ρtot (%)

Height 
of the 

column

Axial 
force
(ν)

Dimensions beff (m)
Reinforcement 

ratio ρt=ρc

(%)

1.0, 2.0,
3.0, 4.0 

1.5
2.0
3.0
4.5

0.00
0.20
0.40
0.60

0.25/0.50

2.00
(with thickness 

of the plate 
0.16 m)

0.18
0.45
0.74
1.22

1.1
1.3
1.7

768

1.0, 2.0,
3.0, 4.0 

1.5
2.0
3.0

0.00
0.20
0.40
0.60

0.25/0.50

2.00
(with thickness 

of the plate 
0.16 m)

0.18
0.45
0.74
1.22

1.1
1.3
1.7

768

1.0, 2.0,
3.0, 4.0 

1.5
2.0
3.0

0.00
0.20
0.40
0.60

0.25/0.50

2.00
(with thickness 

of the plate 
0.16 m)

0.18
0.45
0.74
1.22

1.1
1.3
1.7

768

Total: 2304
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θ is the angle between the concrete compression strut and the column axis perpendicular to the

shear force.

For cotθ, the recommended limits of EC2 have been used (1 ≤ cotθ ≤ 2.5) in the present study.

For a given design shear force the required amount of shear reinforcement is dependent upon cotθ.

The largest possible value of cotθ should be used in order to minimize the amount of stirrups

required. This value can be calculated by equating the design shear force to the maximum shear

resistance. This consideration leads to the below procedure which describes how the shear reinforcement

is calculated in order the column to resist the design value of shear force (Vd,c).

Step 1: Calculate ω: ω(= cotθ + tanθ) = bw⋅0.9⋅d⋅0.6⋅fcd/Vd,c

Step 2: if ω > 2.9 then cotθ = 2.5

         if 2.0 ≤ ω ≤ 2.9 then cotθ = 

         if ω < 2.0 the dimensions of the column must be changed.

Step 3: Calculate Asw/s: Asw/s = Vd,c/(0.9⋅d⋅fywd⋅cotθ), where cotθ the calculated value of step 2.

Once the columns have been designed and the shear reinforcement has been calculated, the

probability of failure is calculated using the procedure shown in Fig. 2. The random variable

simulation is implemented using the technique of Latin Hypercube Sampling (LHS) (Ayyub and Lai

1989, Iman and Conover 1980, McKay et al. 1979, Nowak and Collins 2000). It was found, by

examining different sizes simulation results, that a sample size of 500 offers an adequate accuracy

level for the present analysis problem, as the results for the index β do not change from simulation

to simulation. 

3. Random variables

Many probabilistic models for random variables are given in the international literature (Ditlevsen

and Madsen 1996, Melcher 1999, Joint Committee on Structural Safety 2001, Gardoni et al. 2002,

Epaarachchi and Stewart 2004, Lu et al. 2005). In the present study consideration of random

variables is based on probabilistic models that have been thoroughly investigated by Thomos and

Trezos (2006). In the following, the assumed distributions are presented.

3.1 Materials

The stress-strain diagrams of the materials are shown in Fig. 3. For the conventional design, the

σ-ε diagrams in the left column of Fig. 3 were used, while for the simulation, the diagrams in the

right column of Fig. 3. 

ω ω
2

4–+

2
--------------------------

Fig. 2 Methodology for calculating the probability of failure of the capacity design of shear forces of columns



512 George C. Thomos and Constantin G. Trezos

3.1.1 Unconfined concrete

The models of concrete properties for a particular element i in a particular floor, are (see Fig. 3)

Compressive strength: fc,i = fco,i ⋅ Y1 (7)

Modulus of elasticity: Ec,i = 10.5·fc,i
1/3·Y2 (8)

Ultimate strain: εcu,i = 6·10−3· fc,i
−1/6·Y3   (9)

Where, 

fco,i a normal random variable with mean value related to the 5% characteristic value of the compressive

strength fco,i,k: E[fco,i] = fco,i,k/(1−1.64⋅Cov[fco,i]) and coefficient of variation: Cov[fco,i] = 0.15 (Joint Committee

on Structural Safety 2001)

Y1,: log-normal variables reflecting floor to floor variation of casting conditions with mean value 1

and coefficient of variation 0.06 (Joint Committee on Structural Safety 2001).

Y2, Y3 lognormal variables reflecting factors not well accounted for by concrete compressive strength

(e.g. gravel type and size, chemical composition of cement and other ingredients, climatic conditions) with

mean value 1 and coefficient of variation 0.15 (Joint Committee on Structural Safety 2001).

3.1.2 Confined concrete

The deterministic model for the confinement, proposed Tassios and Lefas (1984) adopted in CEB-

FIP Model Code 1990 (1993), has been used for simulating the confined concrete. This model has

been converted to a probabilistic model by introducing random variables Yconf,1, Yconf,2, Yconf,3, taking

into account the uncertainties of the model (Eqs. (10)-(12)).

Fig. 3 Stress-strain diagrams of concrete and steel
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 (10)

  (11)

 (12)

Where:

εco,i : 0.002, deterministic value corresponding to the maximum stress (strength) of the unconfined

concrete

α : confinement effectiveness factor 

ωw: mechanical volumetric ratio of the transverse reinforcement

Yconf,1, Yconf,2, Yconf,3: lognormal random variables representing model uncertainties with a mean

value of 1 and coefficients of variation 0.15, 0.10 and 0.50 respectively (Thomos and Trezos 2006).

3.1.3 Steel properties 

Yield stress fsy,i (see Fig. 3):normal random variable with mean value related to the 5% characteristic

value of the yield stress: E[fsy,i] = fsy,i,k/(1−1.64⋅Cov[fsy,i]) and Cov[fsy,i] = 0.05

Tensile strength fsu,i : perfectly correlated to the yield stress, fsu,i = 1.15⋅fsy,i

Ultimate strain: normal variable with mean value E[εsu,i] = 0.05 and a coefficient of variation of

Cov[εsu,i] = 0.1 (Joint Committee on Structural Safety 2001).

3.2 Dimensions

The cross-sectional dimensions are modeled as random variables that follow a normal distribution

with mean values equal to the nominal values E[Xi] = Xi,nom and standard deviations σXi = 4 mm+

0.006⋅Xi,nom. 

Areas of re-bars are assumed to be independent normal random variables with mean values equal

to the nominal values E[As,i] = Asi,nom and coefficient of variation Cov[As,i] = 0.02 (Joint Committee

on Structural Safety 2001). 

3.3 Shear capacity

The shear strength of a column is calculated by choosing the value of cotθ in such a way to

maximize the shear strength

VRs,max=max{min[VRs, VR,max]}=

= max{min[Asw,i/si⋅0.9⋅di⋅fy,wd,i⋅cotθ, bw,i⋅0.9di⋅0.6⋅fc,i/(cotθ + tanθ)]}, with 1 ≤ cotθ ≤ 2.5 (13)

Eq. (13) leads to the following relations depending on the magnitude of VRs and VR,max (see Fig. 4)

VR' = Asw,i/si⋅0.9⋅di ⋅fy,wd,i⋅2.5, for case A (14a)

VR' = bw,i⋅0.9di⋅0.6⋅fc,i/2, for case B (14b)

VR' = Asw,i/si⋅0.9⋅di ⋅fy,wd,i⋅cotθ, where 

cotθ = [(bw,i⋅0.9di⋅0.6⋅fc,i)/(Asw,i/si⋅0.9⋅di⋅fy,wd,i)−1]0.5 for case C (14c)

f c i,

*
Yconf 1, fc i,

1 2.5 α ωw  for…ωw, 0.1 α⁄≤⋅ ⋅+

1.125 1.25 α ωw  for…ωw 0.1 α⁄>,⋅ ⋅+⎩
⎨
⎧

⋅ ⋅=

εco i,

*
Yconf 2, εco i, f c i,

*
fc i,⁄( )

2

⋅ ⋅=

εcu i,

*
Yconf 3, εcu i, 0.1 α ωw⋅ ⋅+( )⋅=



514 George C. Thomos and Constantin G. Trezos

The model uncertainties of the shear capacity are taken into account by inserting a random

variable (YVR) into the shear strength model of EC2. YVR is supposed to be lognormal random

variable with a mean value of 1 and coefficient of variation equal to 0.35 (Mwafy and Elnashai

2008). The shear strength is calculated as

VR = YVR·VRs,max (15)

4. Results

In Fig. 5 the safety index β for the 1728 cases of Table 1 is shown, as a function of the partial

safety factor γRd. For the code values of γRd = 1.1 and γRd = 1.3 the variation of the safety index β is

significant. The values of β vary from -1.16 to 0.76 for γRd = 1.1 and from -0.5 to 1.44 for γRd = 1.3

corresponding to probabilities of failure 88%, 22% and 69%, 7% respectively. So it is clear that the

probability of “the shear force induced from the formation of the plastic hinges to be greater than

Fig. 4 Calculating of shear strength according to EC2

Fig. 5 Safety index β as a function of γRd
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the shear resistance” is quite large for many of the examined columns although the shear capacity

design (as it is proposed by EC8 with γRd = 1.1 or 1.3) has been satisfied. 

In order to investigate the parameters affecting the probability of failure of the capacity design, the

diagrams 6, 7 and 8 have been plotted. In these diagrams the safety index β is presented as a function of

the ratio αc and the reduced axial force ν for γRd = 1.1, γRd = 1.3 and γRd = 1.7 respectively. The ratio αc is

defined as

(16)αc

ΣMRd b,

ΣMRd c,

----------------=

Fig. 6 Safety index β as a function of αc and v, for γRd = 1.1

Fig. 7 Safety index β as a function of αc and v, for γRd = 1.3
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For the examined cases (of Table 1), the values of αc are the same for the upper and the lower

joint of the column, having common nominal cross-section and nominal reinforcement. If αc is

larger than 0.77 (=1/1.3) the joint corresponds to cases where the capacity design of joints (relation

(4.29) with safety factor 1.3 of EC8) has not been satisfied. If ac is smaller than 0.77 the capacity

design of joints has been fulfilled.

Comparing Figs. 6, 7 and 8 it can be seen that values of β increase when γRd increases. From

Figs. 6, 7 and 8 it also can be seen that the values of β are affected from the axial force ν and the

factor ac. Fig. 9 describes this behavior.

From Fig. 9, it can be seen that when αc is significantly larger than 1, the safety factor β

decreases for increased values of ν (this is due to the fact that the ratio of mean value to design

value of the resisting moment (MR,m/MRd) increases when v increases (Trezos 2000)). When αc is

smaller than 1, the probability of failure depends only on the resisting moments of beams as the

plastic hinges are expected to be formed at the ends of the beams connected to the joints into which

the column frames. This can be seen from relation 4.1: using common values for M i
R,b,left, M

i
R,b,right,

M i
R,c,up and M i

R,c,down for the joints 1 and 2 and assuming that  the relation becomes

independent of the resisting moments of columns. So, for these cases, the axial force does not affect

ΣMR b, ΣMR c,<

Fig. 8 Safety index β as a function of αc and v, for γRd = 1.7

Fig. 9 Schematically presentation of β as a function of ν and αc. β is also affected from γRd and cotθ, β takes
larger values when γRd increases and when cotθ decreases
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the safety index β because the resisting moments of columns are not taken into account in the

calculation of β. 

Values of β are also affected from the value of cotθ that has been used for calculating the stirrups

of the columns. The shear strength of the columns for which the value of cotθ = 2.5 has been used

for calculating the shear reinforcement is, probably, calculated through the relation 14.1 while the

shear strength of the columns designed with cotθ < 2.5 is calculated through relation 14.3 (Relation

14.2 refers to extremely rare cases. For deterministic variables, relation 14.2 refers to not allowed

cases because of the relation 6.12 of EC2 which gives the maximum shear reinforcement). The use

of these two different relations affects the probabilistic characteristics of the results of the simulations in

such a way that values of β to increases when cotθ decreases. The increase of the safety index β

when cotθ decreases, can be observed in Fig. 10 in which the safety index β is presented as a

function of cotθ for the cases of columns that have been designed with γRd = 1.7. 

Relation 17 has been inspired from Fig. 9. Several functions have been examined by applying

nonlinear regression analysis to the data of Table 1 and the results of the simulations. Relation 17

turned up as the most suitable. It gives the estimated value of the safety index β as a function of the

partial safety factor γRd, the axial force ν and the beam to column resisting moment ratio ac. 

β = 2.19·lnγRd + 2.22·ν2· +(1.76−0.70·cotθ) (17)

(with R2 = 0.96, standard error = 0.09)

where

ν the average axial force of the column [ν = 0.5(νup + νdown), positive for compression]

cotθ the value that has been used for calculating the shear reinforcement

In the diagram of Fig. 11, the values of β calculated from the simulation are compared to the

values of β derived from Eq. (17).

Relation (17) takes into account the parameters that affect mainly the safety index β. There are

other parameters such as the dimensions, the confinement aωw, ρtot etc. that also affect the safety

index β. These parameters are not taken into account in relation (17) because they affect insignificantly

and with a non systematical way the safety index β.

Relation (17) could be used for modifying the shear capacity design in such a way that the

exp exp
ac 1.28–

0.14
-------------------⎝ ⎠

⎛ ⎞–⎝ ⎠
⎛ ⎞ 1–

Fig. 10 Values of β as a function of cotθ for γRd=1.7
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probability to be satisfactory small and uniform for all types of columns. Using a value of β as the

desirable value, the necessary value of the safety factor γRd can be calculated with relation (17). The

use of the calculated value of γRd in the shear capacity design would lead to cases of columns with

β equal to the desirable value.

In the design practice, the calculation of cotθ depends on the value of Vd,c which is calculated

from relation (1). Relation (1) contains the safety factor γRd which depends, as is it is shown from

relation (17), from cotθ. Therefore, although relation (17) provides the means for predicting the

safety level of the shear capacity design, it is not easy to be implemented in the design practice as it

contains the parameter cotθ, which is the result of the shear capacity design. To bypass this

difficulty, relation (17) is changed to (18) in which the parameter (1.76−0.70·cotθ) has been neglected.

This relationship is less accurate than relationship (17), as the safety index β is actually influenced

by cotθ, but it is more useful as it does not include unknown parameters. Besides, relation (18)

gives larger values from relation (17) as the value of cotθ that corresponds to 1.76−0.70·cotθ = 0 is

cotθ = 1.76/0.7 = 2.5 (the maximum permitted value). So, it is a more conservative relation.

β = 2.19·lnγRd + 2.22·ν2·  (18) 

Using relation (18) a modification of the shear capacity design of columns can be proposed. The

scope of the modified design is for all cases of columns to yield a common value of the safety

index β. The common value of β is considered equal to 0.24 for DC M (medium ductility) columns

and 0.57 for DC H (high ductility) columns. These values correspond to the values of β that are

given from relation (17) if the values γRd = 1.1, ν = 0 and γRd = 1.3, ν = 0 are used respectively. The

exp exp
ac 1.28–

0.14
-------------------⎝ ⎠

⎛ ⎞–⎝ ⎠
⎛ ⎞ 1–

Fig. 11 Values of β calculated from Eq. (17) and simulation

Table 2 γRd values for achieving a uniform safety level for the shear capacity design of columns (β = 0.21 for
DC M columns and β = 0.57 for DC H columns)

DC M (medium ductility) columns DC H (high ductility) columns

0 ≤ ν < 0.2 0.2 ≤ ν < 0.4 0.4 ≤ ν ≤ 0.6 0 ≤ ν<0.2 0.2 ≤ ν < 0.4 0.4 ≤ ν ≤ 0.6

αc < 0.7 1.10 1.10 1.11 1.30 1.30 1.31

0.7 ≤ αc<1.4 1.14 1.27 1.53 1.35 1.51 1.81

1.4 ≤ αc 1.15 1.29 1.58 1.36 1.53 1.87
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values of the safety factor γRd that must be used for any case of column are presented in Table 2, in

order for the safety level of the shear capacity design to be equal to 0.63 for DC M columns and

1.74 for DC H columns. These values of γRd have been calculated using the relation (18). 

Each value of Table 2 is the value of γRd that corresponds to the most critical case of each region.

For example the value of 1.27 is the value of γRd that corresponds to a column with ν = 0.4, αc = 1.4. If

the value 1.27 is used for a different column of this region, larger values of β would result.

In Table 3, an example of how the proposed modification of the shear capacity design can be

implemented is presented. The transverse reinforcement is calculated for DC M and DC H columns

with the relation (1) of EC8 and with the proposed modified values for γRd of Table 2. 

The results show that the shear reinforcement required in the example according to the proposed

modification is almost 50% higher than the shear reinforcement calculated with the relation of EC8

(45% increase for DC M and 46% increase for DC H columns). This is a logical result that would

be expected for any kind of column, as the proposed values of γRd of Table 2 are larger than the

values of 1.1 and 1.3 of EC8. 

5. Conclusions

In the present study, the safety level of the shear capacity design of columns has been examined.

The case of “shear failure to appear before the formation of the plastic hinges at the ends of the

elements” is considered as failure (or non-compliance) of the capacity design. A methodology based

on simulation techniques (Monte Carlo, LHS) has been developed for calculating this probability.

The methodology has been used for calculating the probability of failure for 2304 columns (for

Table 3 Example of implementing the proposed shear capacity design

Columns Beams

Section/dimensions/
reinforcement

Height of the 
column

Axial force
(ν)

Dimensions
beff

(m)
Reinforcement 
ratio ρt=ρc (%)

ac

3 m ν = 0.6 25/50 2.0
6Φ14 

(ρt=ρc=0.7%)

ΣMRd,b/ΣMRd,c= 
366.7/249.9

=1.47

Shear capacity design as proposed by EC8 Modified shear capacity design

DC M 
(medium
ductility)
columns

Shear capacity design with γRd=1.1: Vd,c

=1.1·249.9/3.0=91.63 kN,
ω=0.3·0.9·0.28·0.6·20000/1.5/
91.63=6.6>2.9, so Asw/s=91.63/
(0.9⋅28⋅50/1.15⋅2.5)=0.033 cm2/cm,
needed stirrups Φ8/30 (ρw=0.0011)

ν=0.6, αc=1.47→γRd=1.58:
Vd,c=1.58·249.9/3.0=134.61 kN, 
ω=0.3·0.9·0.28·0.6·20000/1.5/134.61=4.5>2.9, so
Asw/s=134.61/(0.9⋅28⋅50/1.15⋅2.5)=0.049 cm2/cm,
needed stirrups Φ8/20 (ρw=0.0016)

DC H 
(high ductility) 

columns

Shear capacity design with γRd=1.3: Vd,c

=1.3·249.9/3.0=108.29 kN,
ω=0.3·0.9·0.28·0.6·20000/1.5/108.29
=5.6>2.9, so Asw/s= 108.29/
(0.9⋅28⋅50/1.15⋅2.5)=0.0395 cm2/cm,
needed stirrups Φ8/25 (ρw=0.0013)

ν=0.6, αc=1.47→ γRd=1.87:
Vd,c=1.87·249.9/3.0=155.77 kN, 
ω=0.3·0.9·0.28·0.6·20000/1.5/157.77=3.8>2.9, so
Asw/s=155.77/(0.9⋅28⋅50/1.15⋅2.5)=0.057 cm2/cm,
needed stirrups Φ8/17.6 (ρw=0.0019)
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which the shear capacity design, as proposed by EC8, had been implemented).

The results showed that the shear capacity design of columns does not offer a uniform level of

safety as the values of β vary from -1.16 to 0.76 for the code value of γRd = 1.1 and from -0.50 to

1.44 for the code value of γRd = 1.3. So a modification of the shear capacity design is proposed in

order to make uniform the safety level. Appling regression analysis to the data and to the results of

the examined columns a relation that gives the safety level of the shear capacity design as a

function of the partial safety factor γRd and the parameters of the columns was found. This relation

is used for calculating the proper values of partial safety factors for each case of column in order

for the safety level to be uniform (Table 2). 
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