Computers and Concrete, Vol. 1, No. 3 (2004) 227-248 227
DOI: http://dx.doi.org/10.12989/cac.2004.1.3.227

An experimental-computational investigation of
fracture in brittle materials

K. De Proft

Mechanics of Materials and Constructions, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

G. N. Wells#, L. J. Sluys#

Department of Faculty of Civil Engineering and Geosciences, Delft University of Technology,
Stevinweg 1, 2628 CN Delft, The Netherlands

W. P. De Wilde

Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Pleinlaan 2, 1050
Brussels, Belgium
(Received August 13, 2003, Accepted July 12, 2004)

Abstract. A combined experimental-computational study of a double edge-notched stone specimen
subjected to tensile loading is presented. In the experimental part, the load-deformation response and the
displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI)
is used to obtain the local displacement field. The experimental results are used to validate a numerical
model for the description of fracture using finite elements. The numerical model uses displacement
discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for
monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading.
Both local and global results from the numerical simulations are compared with experimental data. It is
shown that local measurements add important information for the validation of the numerical model.
Consequently, the numerical models are enhanced in order to correctly capture the experimentally
observed behaviour.

Keywords: cohesive zone models; combined damage-plasticity.

1. Introduction

A variety of computational techniques exist to describe the fracture behaviour of quasi-brittle
materials. These numerical models must be able to simulate the behaviour of quasi-brittle materials
under different loading conditions. Therefore, experimental data is very important to verify models.
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Firstly, experimental data is needed to determine if the proposed numerical models are capable of
simulating the observed behaviour. Secondly, experimental data is necessary to obtain model
parameters. Conversely, numerical simulations can be used to improve experiments. The link
between experimental and computational work is extremely important. In this paper, a combined
experimental-computational study of a double-edge notched (DEN) stone specimen subjected to
tensile loading is presented. In the first section, the experimental set-up is presented and
experimental results are discussed. Monotonic as well as cyclic loadings are considered. Then, a
discontinuous finite element formulation, in combination with a plasticity-based cohesive model and
a combined damage-plasticity cohesive model, is introduced for the simulation of the DEN-tensile
tests. Finally, the numerical results are compared with experimental data.

2. Experimental set-up

For the experiments, a natural limestone named Massangis is used. This type of limestone is
frequently used for restoration purposes. The stone Massangis is available in several varieties and is
mined in Massangis, France. The variety Massangis Roche Jaune is used for the experiments.

All specimens are 120 mm high and 50 mm wide. The thickness is 11 mm. Notches 7 mm deep
and 1 mm wide are sawn in the middle of both sides of the specimen. The geometry of the
specimen is shown in Fig. 1. Two Linear Variable Differential Transducers (LVDT) are used for the
measurement of the deformation. The LVDT’s are placed over the notches on each side of the
specimen, as indicated in Fig. 1. The vertical measuring range of the LVDT’s is 20 mm. Due to the
notches, the crack will initiate within the range of the LVDT’s. When a macro crack starts to grow,
the deformations tend to localize, with other parts of the specimen unloading. When the crack is not
within the range of the LVDT’s, or when the measuring range of the LVDT’s is too large, a snap-
back will occur, making the measurement of the post-peak behaviour impossible. When the crack is
situated within the range of the LVDT’s, the measured deformation increases gradually. In this case,
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Fig. 1 Geometry of the specimen (all dimensions in mm) and placement of LVDT
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the average signal of the LVDT’s can be used as the control signal for the test. The average signal
(CMOD — Crack Mouth Opening Displacement) is also used in the load-deformation response. The
experiments are performed with an INSTRON 4505 testing bench. The specimens are glued directly
to the loading platens, so that the boundaries of the specimen cannot rotate. Tensile loading is
applied by means of a uniform vertical displacement of the boundary. For the cyclic loading cases,
two unloading-reloading sequences are carried out in the post-peak regime. All tests were performed
under displacement control at a rate of 0.3 um/s. An Electronic Speckle Pattern Interferometer
(ESPI) device was used to record the local displacement field at different load steps. The specimen
was illuminated by laser light and speckles appear on the lighted surface. A CCD camera captures
the reflected light. By subtracting different speckle patterns, interference fringes are formed. These
fringes contain information about the displacement of the studied specimen. Unlike strain gauges,
there is no contact with the specimen and the strain field (which can be computed with the supplied
software) of a section of the specimen can be studied. A user-defined border restricts the measuring
area of the ESPIL. Within this border, a reference point is defined. The displacements of all material
points situated inside the border are relative to the reference point. In order to make a comparison
with numerical results, five paths are defined along which the displacements are monitored at
several load steps. The different load paths and the position of the reference point are shown in Fig. 2.
Subtracting the displacements in the y-direction along path 1 from the corresponding displacements
along path 2 gives the deformation between those two paths.

3. Experimental results
3.1 Monotonic loading

A typical measured load-deformation response is shown in Fig. 3. The behaviour is nearly linear
until the peak load. Just before peak load, the response deviates slightly from the linear path. This
indicates that some micro-cracking is occurring before the peak load has been reached. After the
peak load, a sharp drop is observed, indicating a brittle response. At this stage, deformation
localizes in a single macro crack and the behaviour is highly non-linear. Apart from the load-
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Fig. 2 Position of the reference point and paths for ESPI measurement
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Fig. 4 (a) Deformations measured between path 1 and path 2, (b) displacements along path 3, (¢) path 4 and
(d) path 5 referred to the reference point
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Fig. 5 Crack opening at right notch (circles), left notch (squares) and middle (triangles) for different load
levels

deformation response, the displacement field in the vicinity of the crack tip is also recorded. Black
dots in Fig. 3 indicate load levels at which snapshots of the displacement field within the defined
border were taken. The deformations for various load levels, measured in the y-direction between
path 1 and 2 are shown in Fig. 4(a). For load level I, the deformations are uniform. For all other
load levels, the recorded deformations are highly non-uniform, indicating crack growth from the left
to the right notch. The location of the crack tip during loading can be inferred from the
deformations along each path. Near load level VI, the crack has crossed the complete specimen.
Figs. 4(b)-4(d) show the displacements measured along path 3, 4 and 5. The values are relative to
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Fig. 6 Load-deformation response for cyclically loaded specimen
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the reference point, hence no quantitative conclusions can be made, and no vertical axis is shown.
Nevertheless, the results are very useful. As can be seen in Fig. 4, the crack which started at the left
notch induced a jump in the displacements along path 3 (Fig. 4(b)). In the middle of the specimen
(Fig. 4(c)) and at the right notch (Fig. 4(d)), the displacements are still continuous. At load level 1V,
the crack has reached the centre of the specimen, while the crack has crossed the entire specimen at
load level VI. From the profiles in Fig. 4, the magnitude of the displacement jump can be
computed. Again, by computing the relative difference, the influence of the reference point is
eliminated. Fig. 5 shows the evolution of the crack opening on the left side (squares), the middle
(triangles) and the right side (circles) of the specimen as a function of the load level.

The crack opening measured at the left notch first increases. At load level 1V, a crack opening in the
middle of the specimen is measured. Finally, at load level VI, the crack has reached the right notch. At
this time, the crack opening at the left notch decreases again. This can also be observed in Fig. 4(a).
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Fig. 7 Deformations before and after unloading and after reloading for (a) the first cycle and (b) the second cycle
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Fig. 8 Evolution of the displacements along path 5 for (a) the first cycle and (b) the second cycle
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3.2. Cyclic loading

The DEN specimens were also subjected to cyclic loading. In all tests, two unloading cycles were
introduced. A typical measured load-deformation response is shown in Fig. 6. Examining the load-
deformation response, three issues should be emphasized:

- after complete unloading, crack closure is not complete;

- the unloading stiffness reduces with increasing deformation; and

« during the unloading/loading cycle, a small amount of energy is dissipated.

Black dots represent loads at which a snapshot of the displacement field was taken. The
displacements along the predefined paths are extracted from the measurements. Only snapshots
before and after unloading are shown. Again, the relative deformation between path 1 and path 2 is
computed in order to remove the influence of the reference point. Fig. 7(a) shows the deformations
before (4) and after (4') unloading and after reloading (A4"). It is clear that, before unloading, a
crack is growing from the right notch. As was the case for monotonic loading, the deformations are
highly non-uniform. Then, the tensile loading is decreased until 2 =300 N. When the deformations
are studied after unloading (Fig. 7(a) - 4'), it is clear that the specimen is divided into two regions:

- a first part where deformations are vanishing when the load is decreasing, indicating elastic or

damage behaviour;

- a second part where, after unloading, permanent deformations occur.

After reloading (Fig. 7(a) - 4"), the deformations return to approximately the same levels as before
unloading (note that the difference between A4 and A" in Fig. 7(a) is due to the difference in CMOD
when the snapshot was taken). The loading-unloading-reloading cycle is repeated further in the
post-peak branch. Examining Fig. 7(b), the same conclusions can be drawn. Note that the
permanent deformations after unloading have increased, compared with the first cycle (compare A
in Fig. 7(a) with B’ in Fig. 7(b)).

Displacements along path 5 (see Fig. 2) are shown in Fig. 8. The values are referred to the
reference point and are only as an indication of the evolution of the displacement jumps. From Figs.
8(a) and 8(b), it is clear that after unloading the crack does not completely close.
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Fig. 9 Body Q crossed by two discontinuities
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4. Numerical model
4.1. Discontinuous finite elements based on partitions of unity

A cohesive zone model, with elastic continuum, is used to model the failure. A discontinuous
finite element formulation which can represent arbitrary discontinuities is used for the description of
fracture within finite elements. Discontinuous functions are added to the approximation basis,
allowing discontinuities to propagate through the finite element mesh (Moés, er al. 1999, Wells and
Sluys 2001). This is a very important advantage over interface elements, which allow
discontinuities to propagate only along element boundaries.

Consider the body Q in Fig. 9 which is crossed by discontinuities. A discontinuous displacement
field can be decomposed as (for non-intersecting discontinuities):

u=u+ _ZHnﬁ, (1)

where u is the displacement field, @t and @ are continuous functions and Hp is the Heaviside
function (Hr =1 if xUQ,, Hr = 0 otherwise), and m is the number of discontinuities. The
infinitesimal strain field is obtained by taking the symmetric gradient of Eq. (1):

e= 00+ ZHDu + Z 5 (i, 0n)’ @

where n, is the normal to discontinuity surface 7 and O is the Delta function corresponding to
discontinuity surface /. In terms of a finite element basis, the displacement field can be interpolated
as:

u=Na+ iHrle, 3)

where N is the matrix containing the finite element shape functions, a are the ‘regular’ degrees of
freedom and b, are the ‘enhanced’ degrees of freedom related to crack i. For each crack, an
additional set of degrees of freedom are added. The resulting linearized governing equations can be
expressed as:

I
K K K 0 g g ext, +a U Dfam”lD
aa ab, ab,, E da % Efa tt E E .”E
K,. K, ... K db g
e Sk b g S 0= 9 g O )
o, 00 " goln
Kbma b,b, b,b,| O dbm O 0O 0 00 fhinl,l 0
o " 0o

where
K,, = [,B'C'BdQ (5a)
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K, = J’QHFIBTC“BdQ (5b)

K,, = J’QHFIBTCCBdQ (5¢)

Ky = [Hr Hr B'C'BdQ (5d)
K,; = [,B'C'BdQ + J’r/NTDNdF (5¢)

where C° is the elastic continuum material tensor (in matrix form) and D is the material tangent for
the cohesive law on the discontinuity. Note that all stiffness contributions in Eq. (5) are very similar.
The crucial difference between the terms in Eq. (5) is the presence of the Heaviside function. This
makes the finite element implementation relatively simple. It is assumed that the considered element
is crossed by discontinuity j and influenced by discontinuity i. During a simulation, discontinuities
can be extended by activating ‘enhanced’ degrees of freedom. Detailed information on the
discontinuity model can be found in Wells (2001) and De Proft (2003).

4.1.1. Implementation aspects

For the propagation of a discontinuity, a criterion is evaluated in the elements in front of the crack
tips. For mode-1 cracking, a discontinuity can be initiated perpendicular to the maximal principal
stress direction when the tensile strength in the element is exceeded. More generally, a yield surface
can be used to determine whether a discontinuity should propagate. In this case, a bifurcation
analysis may be necessary to compute the propagation direction. Discontinuities are allowed to
develop at the end of a time step. As was stated by Wells (2001) this procedure ensures quadratic
convergence of the Newton-Raphson solution process. Once a discontinuity has been extended, the
nodes of the crossed element are enhanced. The nodes on the element edge touched by a
discontinuity are restrained, so that the displacement jump at the tip is zero. During a computation,
only one discontinuity is allowed to cross an element. When a discontinuity enters an element
which is already crossed by a discontinuity, the discontinuity is stopped. When two discontinuities
reach the same elastic element, the discontinuities can join. In order to ensure adequate integration
of crossed elements, the integration scheme is changed in these elements (Mo€s, et al. 1999, Wells
and Sluys 2001).

4.2. A plasticity based cohesive zone model

The behaviour at a discontinuity is described by a plasticity-based cohesive zone model. The
adopted plasticity model was proposed by Carol, et al. (1997) for use in interface elements.
Consequently, the plastic yield function is given in the traction space. A hyperbolic yield surface
is introduced according to:

f=1T'=(c—T,tan@)’ + (c —ftan @)’ (6)

where T = (7,, T,) are the normal and tangential component of the traction vector, ¢ is the
cohesion, f; the tensile strength and ¢ the internal friction angle of the material. For tension, an
associative flow rule is adopted. The evolution of the yield surface is governed by the decrease in
tensile strength and cohesion throughout the computation according to:
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W,

£ = fod - =4 (7a)
Gy
W,

c:%g-dg (7b)
f

where f, and ¢, are the initial values for the tensile strength and the cohesion, G; is the mode-I
fracture energy, Gf[ is the mode-Il fracture energy and W, is the energy dissipated in the
development of a unit area of traction free crack. The energy dissipated incrementally is defined as:

aw,, = T,dN" + T,dn" (8)

where A = {A{Zl, N ]} are the normal and tangential components of the plastic separation vector.
Eq. (7) ensures that the total mode-1 fracture energy/mode-11 fracture energy is dissipated when the
tensile strength/cohesion vanishes. Furthermore, the decrease in tensile strength and cohesion is
coupled; when a material is damaged due to tensile loading, both the tensile strength and the
cohesion decrease.

The tangential stiffness and the stress update are obtained with classical elasto-plastic equations.
The tractions are defined through:

T = D°(A-A") )
where D¢ is the elastic stiffness of the discontinuity. The plastic deformation rate is defined as:
A" = jm (10)

where A is the plastic multiplier rate and m = 9f/0T is the direction of plastic flow. The plastic
deformation rate can be introduced in Eq. (9), leading to:

T = D(A—Am) (11)

The plastic multiplier rate can be obtained through the consistency equation:

T e A
: A
j=-mD2 (12)
mDm-#4
where 4 is the hardening/softening modulus. Inserting the result for the plastic multiplier into
Eq. (11) yields the tangential stiffness:

_ D‘mm’D*

m'D‘m—#
The tangential stiffness can be inserted into the finite element equations (see Eq. (5)). The elastic penalty
stiffhess is chosen to be very high, in theory infinite, in order to suppress spurious elastic deformations at
the discontinuity. Since a discontinuity is only inserted when the yield surface is violated, the jump is

completely inelastic. It can be shown that when including a high elastic stiffness, Eq. (13) is reduced to
the strong discontinuity equation, (De Proft 2003, Simo, ef al. 1993, Oliver, et al. 2003, Oliver 2000):

T = [D"’ JA = DA (13)
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. s - af
u [ = Az= 14
(@0m) = AL (14
where 7\ bounded plastic multiplier rate and £ is the yield function. Eq. (14) implies that the jump
in the discontinuity is completely plastic.

4.3. A combined damage-plasticity cohesive zone model

In order to model the decrease in unloading stiffness and the accumulation of permanent
deformations for the case of cyclic loading, a combined damage-plasticity model is used. A
continuum model is degenerated to a constitutive relationship on a surface. The combined model
uses the effective stress concept and the principle of strain equivalence. During loading, microcracks
develop in the material. Due to these microcracks, the stresses are redistributed over the undamaged
material bonds. Plastic deformations can only occur in the intact material. The stress in the intact
material, the effective stress, is connected to the homogenized stress by a damage variable d,

o
(1-4d)

where O is the effective stress tensor, and O is the homogenized stress tensor. As plastic
deformations develop in an undamaged material skeleton, the constitutive relation can be written in
terms of effective stresses,

o=

(15)

o=C¢ =C'(e-¢&" (16)
where & is the elastic strain tensor. The yield function is formulated in the effective stress space

7= ®6)-o (k") (17)

where @ is a scalar-valued function, @ is the yield strength of the material and k” is a strainlike
internal variable.
Assume the following one dimensional yield surface:

1= o=(fu+hk") (18)

where O is the homogenized stress in the material, 4 is the hardening modulus, 7 is the initial
tensile strength. The yield surface given in Eq. (18) must be rewritten in the effective stress space.
If damage and plasticity are assumed to start simultancously, the damage variable is equal to zero
when the yield surface is first reached (when k”=0). The projection of the initial value for the
tensile strength into the effective stress space is given by

fo = ﬁ = fo (19)

and the yield function (18) can be expressed in effective stresses:
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7= a=(fig+hk?) (20)

The plasticity model must be completed with a damage model. The damage in a material must grow
when the damage loading function is violated:

= -k 0 1)

where £ is a scalar ‘equivalent strain’ and K “isa history parameter. The equivalent strain is an
invariant of the strain tensor. The model will later be degenerated to a cohesive surface relationship,
and it is physically intuitive to make the damage-driving scalar a function of the displacement jump.
The internal variable represents the largest value of the equivalent strain reached. When damage
grows (Eq. (21)), the damage variable is updated via

d 1

d
d=1-"Loxp[-Bk'—K)] = TGS BT (22)
K K

where K, is the threshold of damage iitiation, 8 is a model parameter and g(K d) is a function
defined as :

gk’) = Kexp[-Bk~Kk)] K>k (23)

Combining Eqgs. (15) and (16) and assuming an additive strain decomposition, the constitutive
relation is written as

o= (1-d)C'(e-€") (24)

The proposed continuum damage-plasticity model should be consistent with an incorporated
discontinuity. The kinematical description for the strain field (2) is inserted into Eq. (24), yielding

D A m o~ m ~ s
o= ((1-d)C'Mu+ ZHF O'w, + Zér (u;0n) —e% (25)
O i : ‘! O

The stress field must remain bounded everywhere, which means that the delta function must cancel.
For classical continuum plasticity models, the delta function is cancelled by making the plastic
multiplier unbounded (Simo, et al. 1993). Following this line of reasoning, it can be assumed that
the plastic strain field can be written in the same manner as the total strain field and that the
continuum plastic strain is zero (since the continuum is assumed to remain elastic):

o .. m . m . ) m - D
o= (1-d)C'ITu+ Y H O'u, + O (u,0n)' =5 & (0 On,)0 (26)
0 iZI g iZl " iZl " 0

For a damage model, Oliver (2000) proposed to eliminate the Dirac-delta distribution by making
the internal damage variable unbounded. In this case, the internal damage variable K" can be
written in the following form:
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K= K+ 8K Q7)

[~ —d . . . . ~ .
where k¢ and k* are bounded. As was the case with the plastic multiplier, Kk “is set to zero
assuming an elastic response in the continuum. Combining Eq. (22), Eq. (26) and Eq. (27), the delta
function is eliminated and the stress at discontinuity i becomes:

-d
o= Q(Rd JeT@,0n) @ 0T for k>0 28)

The tractions can be computed from the stress field at the discontinuity, Eq. (28), according to

d
_q(K) e rn o~ d
T, = ©=—n,C’n,[u,—uf] for Kk >0 (29)
or, K
T, = (1 -w)Q[u,—u] for kK'>0 (30)

where w is the discrete damage variable and Q; = n,C’n, is the elastic acoustic tensor. Eq. (30) is
very similar to the constitutive equation used in continuum problems (Simo and Ju 1987). The
degenerated damage variable @ is analogous to the continuum damage variable, and the elastic
material tensor is replaced by the elastic acoustic tensor. A major difference with continuum models
is that the separation of the discontinuity is completely inelastic. The separation is decomposed into
a damage (recoverable) part and into a plastic (irrecoverable) part. The plasticity model is solved in
the effective traction space. The adopted yield surface is

£7= To—hk” G1)

where 7, is the effective normal traction, 4 is the hardening/softening modulus and K’ is the
internal plastic variable. The evolution of damage is coupled to the damage loading function. This
function is written in terms of an equivalent strain. However, strains are not defined in the
discontinuity, so a new equivalent strain measure must be found. Based on intuitive reasoning, the
positive normal separation opening is used, resulting in

= n,-« (32)

where A, is the normal separation of the discontinuity and k' is the degenerated internal damage
variable. Hence, damage is drive by normal opening only. When the damage loading function is
violated, the degenerated damage variable is updated via

w=1 —_%exp[—ﬁ(k")] K'> K (33)

K

where K; is the damage threshold and (8 is a model parameter.
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5. Numerical simulations vs experimental results

In this section, numerical simulations are performed with the discontinuous finite element model.
Six-noded triangular elements are used. The mesh independency of this solution has already been
discussed in Wells and Sluys (2001) and De Proft (2003). Focus here is placed on the careful
comparison of experimental en computational results.

5.1. Monotonic loading

Simulations of the monotonic loading cases are performed with the plasticity-based cohesive zone
model presented in section 4.2. For the first simulation, the following model parameters are
adopted: fo=6.2 MPa, ¢q=20MPa, @=26.35, G; = 0.04N/mm and G;] = 0.IN/mm. The
computed load-deformation response is shown in Fig. 10. As can be seen, a good fit between
numerical simulations and experimental results is obtained. The computational response deviates
slightly before the peak load from the experimental response. The peak load is captured well, while
the experimental post-peak behaviour is more brittle. Apart from the global response, the growth of
the crack and the displacements in the fracture zone have been considered. Fig. 11 compares the
experimental deformation profiles at different load levels with the numerically computed values.
Fig. 11(a) shows the deformation profile in the elastic stage. The numerical simulation is symmetric
and in good agreement with measured deformations. Fig. 11(b) is a snapshot just after peak load.
Clearly, the experimental deformation profile shows asymmetric crack growth, while for the
numerical simulation the profile remains symmetric. In Figs. 11(c) and 11(d), the asymmetry in the
experimental result increases, while the numerical simulations predict symmetric deformations. The
model is not able to capture the experimental observations. The symmetric crack growth is a logical
solution since the boundary value problem is symmetric about the centreline of the specimen. The
numerical model needs to be modified in order to capture the experimentally observed
deformations. Non-symmetric crack growth can be numerically triggered by:

- introducing an imperfection at a notch; or

- introducing bending, resulting in a non-uniform stress state.
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Fig. 12 Load-deformation response for non-symmetric crack growth due to a weaker element
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Firstly, an element at the left notch is made slightly weaker. The tensile strength is decreased by
5%. Consequently, the crack starts earlier in this element and crack propagation may be non-
symmetric. The model parameters are: f,=6.7 MPa, co=20MPa, @=26.35, G; = 0.03N/mm
and G;I = 0.IN/mm. The computed load-deformation response is shown in Fig. 12. Examining
Fig. 12, two remarks can be made:

- the peak load is captured correctly; and

- just after the peak load, the computed post peak behaviour is more ductile. Around load level P =
1350 N, a drop in the load-deformation curve is observed. After the drop, the computed post
peak behaviour is close to the experimentally measured response.

When the deformation profiles in Fig. 13 are studied, the sudden drop in the load deformation
response may be explained. In the beginning, the computed deformation profiles follow the
experimentally obtained curves. For the last load level, Fig. 13(d), the computed deformation profile
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Fig. 15 Deformation profiles obtained for eccentric loading for (a) load level L, (b) load level I, (c) load level
I and (d) load level IV (solid lines represent numerical results)
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Fig. 16 Comparison of experimental and
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Fig. 18 Comparison of experimental and numerical (with added bending) obtained load-deformation response
for cyclic loading

returns to a more uniform distribution. This is connected to the drop in the load-deformation curve.
The drop is explained by the transition from a non-symmetric mode into a more uniform
deformation mode.

The second way to incorporate non-symmetric crack propagation, eccentric loading, is is now
examined. An eccentricity of ¢ =2.2 mm is adopted and the following model parameters are used:
fo=7.3 MPa, ¢, = 20MPa, ¢=26.35, G; = 0.035N/mm and G, = 0.IN/mm.

The load-deformation response is shown in Fig. 14, and again the peak load is reproduced well.
Furthermore, the drop in the load-deformation curve, already observed in Fig. 12, is also present
and is more pronounced. The numerically obtained deformation profiles are compared with
experimental results in Figs. 15(a)-15(d). For all load levels, the computed profiles are close to the
experimental curves. Even after the drop in the load-deformation response, the computational results
follow the experimental results remarkably well.

5.2. Cyclic loading

The cyclically loaded specimen is also simulated. The numerical modelling is performed with the
combined damage-plasticity model, defined in section 4.3.

In a first simulation, non-symmetric crack growth is triggered by a weakened element at the right
notch. The adopted model parameters are: f,=6.5 MPa, #=27000 N/mm’ and B=400. The
experimentally and numerically obtained load-displacement responses are plotted in Fig. 16.
Obviously, the proposed combined damage-plasticity model can capture the decrease of stiffness
and the appearance of permanent deformations. The post peak behaviour of the numerical
simulation is more ductile. The steep descent in the beginning of the post peak was not captured.

The computed deformation profiles are compared with experimental measured curves in Figs.
17(a)-17(d). Snapshots are taken at the beginning and the end of the unloading branches. For
unloading branch 1, the deformation profiles are similar. After unloading (see Fig. 17(b)) the
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Fig. 19 Deformation profiles for (a) begin and (b) end unloading branch 1 and (c) begin and (d) end unloading
branch 2 (solid lines represent numerical results)

calculation shows permanent deformations at the left side of the specimen while the experimental
deformations largely disappear. This means that during the calculation, a discontinuity is already
introduced at the left side, while in reality, the behaviour is still elastic. For the second unloading
branch the difference is even more pronounced. The same simulations are repeated for non-
symmetric crack growth triggered by an additional bending moment. The adopted model parameters
are: f,o=7.8 MPa, #=27000 N/mm® and = 400. The obtained load-deformation curve is compared
with the experimental result in Fig. 18. Again, the computed peak load is comparable with the
experimental measured value, while the computed post peak behaviour is more ductile. The
experimental and computed deformation profiles are compared in Figs. 19(a)-19(d). Compared with
Fig. 17, the deformation profiles after unloading (Fig. 17(b)-Fig. 18(b)) are better captured when a
bending moment is introduced. Furthermore, the computed deformations are higher than the
measured ones.
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6. Conclusions

In this paper, a combined experimental-computational study of the tensile behaviour of limestone
has been presented. Both monotonic as well as cyclic loading was performed, with global and local
measurements recorded. Globally, the load-deformation response was captured and locally, the
displacement field around the crack tip was measured. It was shown that with the use of the ESPI
technique, important information can be recorded. Moreover, the ESPI technique is very useful
since there is no contact with the specimen, and consequently, the measurement does not interfere
with the experimental process. Measurements showed that a displacement jump is present across the
crack, motivating the use of a cohesive zone model. Measurements also showed that the obtained
deformations are non-symmetric, and after unloading, permanent deformations were present.

For the numerical simulations, discontinuous finite elements were used in combination with a
plasticity-based and a combined damage-plasticity cohesive zone model. For monotonic loading, the
simulations were performed with a plasticity-based model, while for cyclic loading a combined
damage-plasticity model was used. The combined model was necessary in order to correctly capture
the decrease in the unloading stiffiness and the permanent deformations after unloading. However, it
was shown that the experimental observations could not be captured with the numerical model and
consequently, the problem must be modified. Therefore, an imperfection or an additional bending
component was added. It was shown that, with the modification, the experiments were simulated
more accurately. This paper shows that comparing numerical simulations with experimental data
should be done with great care. A fit of the simulations to the global data is not sufficient to
conclude that the model can capture the real response. Local data in computations and from
experiments should be compared. Consequently, the derivation of the material parameters from an
experiment is not straightforward.
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