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Abstract.  In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation 

is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually 

across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential 

equations are derived for the rotating FG nanobeam by applying the Hamilton’s principle in the framework of Euler-

Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape 

frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by 

angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material 

graduation. 
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1. Introduction 
 

Functionally graded materials (FGMs) are composed from a mixture of metal and ceramic and 

have a continuous material variation from one surface to another which is designed to reach the 

desirable and practical characteristics. Recently, many paper have been published concerning with 

analysis of FG nanostructures. Among them, Eltaher et al. (2012) explored free vibration behavior 

of nonlocal FG nanobeams using finite element method. Thermal loading influences on stability 

and vibrational behavior of nanoscale FGM beams is performed by Ebrahimi and Salari (2015c, d), 

Ebrahimi and Barati (2016a) employed nonlocal third order beam theory to vibration analysis of 

nanoscale FG beams. Ahouel et al. (2016) investigated size-dependent mechanical behavior of 

functionally graded trigonometric shear deformable nanobeams including neutral surface position 

concept. Vibration and buckling analysis of smart piezoelectrically actuated FG nanobeams 

subjected to magneto-electrical field is explored by Ebrahimi and Barati (2016b-d), In the case of 

rotating nanobeams, Ebrahimi and Shafiei (2016) examined the application of Eringen’s nonlocal 

elasticity theory for vibration analysis of rotating FG nanobeams. Also, Ghadiri et al. (2016) 

displayed the surface effects on vibration behavior of a rotating FG nanobeam based on nonlocal 

elasticity theory. 
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According to the nonlocal continuum theory, strain/stress state at any reference point is a 

function of corresponding states of other points of the continuum body. Narendar and 

Gopalakrishnan (2009) investigated small scale influences on wave propagation of multi-walled 

carbon nanotubes. Wang (2010) researched the wave propagation analysis of fluid-conveying 

single-walled carbon nanotubes applying strain gradient theory. Yang et al. (2011) investigated 

wave propagation of double-walled carbon nanotubes on the basis of size-dependent Timoshenko 

beam model. Wave propagation analysis of single-walled carbon nanotubes exposed to an axial 

magnetic field in the framework of nonlocal Euler–Bernoulli beam model studied by Narendar et 

al. (2012). Aydogdu (2014) performed longitudinal wave dispersion of carbon nanotubes. Also, 

Filiz and Aydogdu (2015) explored wave propagation analysis of functionally graded nanotubes 

conveying fluid embedded in elastic medium. A review on nonlocal elastic models for bending, 

buckling, vibrations, and wave propagation of nanoscale beams explored by Eltaher et al. (2016). 

Nonlocal strain gradient theory accounts the stress for both nonlocal elastic stress field and the 

strain gradient stress field. It must be mentioned that the nonlocal strain gradient theory captures 

the true effect of the two length scale parameters on the physical and mechanical treatment of 

small scale structures. Also, nonlocal differential model is an approximate model. A closed form 

solution for a nonlocal strain gradient rod in tension is reported by Zhu and Li (2017), Li et al. 

(2016) investigated vibration analysis of nonlocal strain gradient FG nanobeams. Also, Şimşek 

(2016) examined nonlinear vibration behavior of FG nanobeams employing nonlocal strain 

gradient theory and a novel Hamiltonian approach. The effect of thickness on the mechanics of 

nanobeams is explored by Li et al. (2018) based on nonlocal strain gradient theory. In these works, 

both stiffness-softening and stiffness-hardening effects on mechanical behavior of FG nanobeams 

are reported. 

Rotating nanostructures such as nanoscale molecular bearings, nano-gears, nano-turbines and 

multiple gear systems have gained great attention in research community (Srivastava 1997, Zhang 

et al. 2004).Thus, vibration and wave propagation analysis of such structures are very important 

for their accurate design. Pradhan and Murmu (2010) employed a nonlocal beam model to 

demonstrate the flapwise bending-vibration characteristics of a uniform rotating nanocantilever. 

Narendar and Gopalakrishnan (2011) reported the wave dispersion behavior of a rotating nanotube 

using the nonlocal elasticity theory. They mentioned that wave characteristics of rotating nantube 

is significantly affected by the angular velocity. Alizada and Sofiyev (2011) explored the modified 

Young’s moduli of nanomaterials and works on the mechanical behavior of nano scale systems. 

Aranda-Ruiz et al. (2012) investigated free vibration of rotating nonuniform nanocantilevers 

according to the Eringen nonlocal elasticity theory. Ghadiri and Shafiei (2015) studied nonlinear 

bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential 

quadrature method. Recently, Mohammadi et al. (2016) examined vibration analysis of a rotating 

viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal 

environment. 

Also in recent years the mechanical behavior of FG nanoplates is investigated based on various 

plate shear deformation plate theories (Ebrahimi and Barati 2016f-i, Ebrahimi et al. 2016d, 

Ebrahimi and Dabbagh 2016, Ebrahimi and Hosseini 2016a, b) while the analysis of nano-

structure’s mechanical behaviors is one of recent interesting research topics. (Ebrahimi and Barati 

2016j-p, Ebrahimi and Barati 2017a). It can be seen that, most of the researches are devoted to 

buckling, static and vibration of FG nanobeams and just a few researchers are working in the field 

of wave propagation of FG small scale beams. Flexural wave propagation in size-dependent 

functionally graded beams based on nonlocal strain gradient theory is performed by Li et al. 
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(2015), In another work, Ebrahimi and Barati (2016e) explored flexural wave propagation analysis 

of embedded S-FGM nanobeams under longitudinal magnetic field. Narendar (2016) investigated 

Wave dispersion in functionally graded magneto-electro-elastic nonlocal rod. According to the 

literature, wave propagation analysis of temperature-dependent rotating FG nanobeams in thermal 

environment based on nonlocal strain gradient theory is a novel topic that has not been worked 

until now. 

In this paper the wave propagation analysis of a spinning temperature-dependent functionally 

graded (FG) nanobeam is presented in thermal environment. The nonlocal strain gradient theory, in 

which the stress numerates for both nonlocal stress field and the strain gradient stress field is 

employed. Mori-Tanaka distribution model is considered to express the gradually variation of 

material properties across the thickness. The Hamilton’s principle along with the Euler-Bernoulli 

beam theory is employed in order to derive the governing equations as a function of axial force 

due to centrifugal stiffening and displacements. The dispersion relations of rotating FG nanobeam 

are obtained by applying an analytical solution and solving an eigenvalue problem. It is concluded 

that the temperature change, wave number, angular velocity, gradient index, and nonlocality 

parameter have significant effects on the wave dispersion characteristics of rotating FG nanobeams 

and thus the results of this research can provide useful information for the next generation studies 

and accurate deigns of nanomachines. 
 
 

2. Theory and formulation 
 

2.1 Mori-Tanaka FGM nanobeam model 
 

Material properties of an FG nanobeam with the length L, width b and the thickness h are 

assumed to vary according to Mori-Tanaka model about the spatial coordinate. Mori-Tanaka 

homogenization technique represents the local effective material properties of the FG nanobeam 

including effective local bulk modules Ke and shear modules μe in the form 
 

1 ( ) / ( 4 / 3)

e m c

c m m c m m m

K K V

K K V K K K 




   
 

(1) 

 

1 ( ) / [( (9 8 ) / (6( 2 ))]

e m c

c m m c m m m m m m m

V

V K K

 

       




       
(2) 

 

where, subscripts m and c denote metal and ceramic, respectively and their volume fractions are 

related to each other in the following form 
 

1c mV V 
 (3) 

 

In which 
 

1 1
( ) , 1 ( )

2 2

p p

c m

z z
V V

h h
    

 
(4) 

 

Here p represents the gradient index which explains gradual variation of material properties 

through the thickness of the nanobeam. Finally, the effective Young’s modulus (E), poison ratio (v) 
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and mass density (ρ) can be represent by 
 

( )
9
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e e
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zE
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(5) 
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( ) c c m mVz V   
 (7) 

 

And thermal expansion coefficient (α) and thermal conductivity (κ) may be expressed by 
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 
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(9) 

 

Also, temperature-dependent coefficients of material phases can be expressed defined by the 

following relations (Ebrahimi et al. 2016b, 2017b) 
 

1 2 3

0 1 1 2 3
( 1 )P P P T P T P T P T




    

 
(10) 

 

where, P-1, P0, P1, P2 and P3 are the temperature-dependent constants which are tabulated in Table 

1. The top and bottom surfaces of FG nanobeam are fully ceramic (Si3N4) and fully metal 

(SUS304), respectively. 
 

 

Table 1 Temperature-dependent coefficients for Si3N4 and SUS304 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 

E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

α (K-1) 5.8723e-6 0 9.095e-4 0 0 

ρ (kg/m3) 2370 0 0 0 0 

κ (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

v 0.24 0 0 0 0 

SUS304 

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

α (K-1) 12.330e-6 0 8.086e-4 0 0 

ρ (kg/m3) 8166 0 0 0 0 

κ (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

v 0.3262 0 -2.002e-4 3.797e-7 0 
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In this study, the temperature varies nonlinearly through the thickness. Temperature 

distribution function can be obtained by dissolve the steady-state heat conduction equation with 

the boundary conditions on bottom and top surface of the nanobeam across the thickness 
 

( , ) 0
d dT

z T
dz dz


 

   
 



 
(11) 

 

Considering the boundary conditions as follows 

 

,
2 2

c m
h h

T T T T
   
      
   

  

 
(12) 

 

By solving the above equations, we have 

 

2

2

2

1

( , )
( )

1
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dz
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
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


 

(13) 

 

where, ΔT = Tc ‒ Tm in the temperature distribution. 

 

2.2 Kinematic relations 
 

In the framework of Euler-Bernoullibeam theory, the displacement field of nonlocal 

functionally graded nanobeam at any point given as 
 

   ,xu x z u x
w

x
z 


  
(14) 

 

( , ) ( )zu x z w x
 (15) 

 

where, u and w defines the components correspond to the longitudinal and bending displacement 

of a point on the beam’s mid-surface, respectively. By considering some small deformations, non-

zero strains of present beam model can be expressed as 
 

2xx

2u w

x x
z  

 

   

(16) 

 

Also, Hamilton’s principle states as 
 

0
( ) 0

t

U V K dt     
(17) 

 

Here U is strain energy, V is work done by external forces and K is kinetic energy. The virtual 

strain energy can be written as 
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( )ij ij xx xx
v v

U dV dV          
(18) 

 

Substituting Eq. (16) into Eq. (18) yields 
 

2

20
( )

L d u d w
U N M dx

dx dx

 
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(19) 

 

In which the new variables that used in above equation expressed as follows 
 

,xx xx

A A

N dA M z dA   
 

(20) 

 

The first variation of the work done by external forces can be written in the following form 
 

0

( ) ( )
(( )( ))

L
T R b bd w d w

V N N dx
dx dx


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(21) 

 

where, NR and NT are applied force due to rotation and temperature respectively, which are defined 

by the following relations 
 

/2
2

/2
( ( ) )

L h
R

x h
N b z A x dxdz


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(22) 

 
/2

0
/2

( , ) ( , ) ( )
h

T

h
N E z T z T T T dz


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(23) 

 

where, Ω and T0 denote the angular velocity and reference temperature, respectively. In this study, 

we suppose a uniform rotating nanobeam and maximum axial force is considered (Narendar and 

Gopalakrishnan 2011) 
 

/2
2

max
0 /2

( ( ) )
L h

R

h
N b z A x dxdz


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(24) 

 

The variation of kinetic energy can be defined as 
 

2 2

0 1
0

2 2

2

( [ ( )( )] ( )

( ))

L d u d wdu dw du d w d w d u
K I I

dt dt dt dt dt dxdt dxdt dt
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(25) 

 

where 
 

2

0 1 2( , , ) ( )(1, , )
A

I I I z z z dA   
(26) 

 

Then, by inserting Eqs. (19)-(25) into Eq. (17) and setting the coefficients, the following Euler-

Lagrange equations were obtained 
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2 3

0 12 2

N u w
I I

x t x t
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 
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(27) 

 
2 2 2 3 4
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N N I I I
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(28) 

 

2.3 The nonlocal FG nanobeam strain gradient model 
 

Nonlocal strain gradient elasticity theory, (Li et al. 2015) enumerates the stress for both 

nonlocal elastic stress and strain gradient stress fields. Hence, the stress can be defined as follows 
 

(1)
(0) ij

ij ij

d

dx


  

 

(29) 

 

where the stresses 𝜎𝑥𝑥
(0)

 and 𝜎𝑥𝑥
(1)

 are correspond to strain 𝜀𝑥𝑥  and strain gradient 𝜀𝑥𝑥 ,𝑥 , 

respectively and are defined as follow 
 

(0)
0 0

0
( , , ) ( )

L

ijkl klij x x e a x dxC      
 

(30) 

 

(1) 2
1 1 ,

0
( , , ) ( )

L

ijkl kl xij l x x e a x dxC      
 

(31) 

 

in which Cijkl are the elastic constants and e0a and e1a enurmerate the effect of nonlocal stress field 

and l is the length scale parameter of material and represents the influence of higher order strain 

gradient stress field. When the nonlocal functions α0 (x, x′, e0a) and α1 (x, x′, e1a) satisfy the 

developed conditions by Eringen (1983), the constitutive relation for a functionally graded 

nanobeam can be stated as 
 

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C           
 (32) 

 

In which 2 denotes the Laplacian operator. Assuming e1 = e0 = e and discarding terms of order 

O(2), the general constitutive relation in Eq. (32) can be rewritten as (Li et al. 2015) 
 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC     
 (33) 

 

Thus, the constitutive relations for a nonlocal Euler-Bernoulli FG nanobeam can be stated as 
 

2 2
2 2

2 2
( )( )xx xx

xx xxE z
x x

 
   

 
  

   
(34) 

 

where, μ = ea and λ = l. By integrating Eq. (34) over the cross-section area of nanobeam provides 

the following nonlocal relations for FGM beam model as 
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2 2 2
2 2
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where the cross-sectional rigidities are defined as the following forms 

 
2( , , ) ( ) (1, , )

A
A B D E z z z dA   

(37) 

 

The governing equations of Euler-Bernoulli FGM nanobeams in terms of displacements are 

obtained by inserting for N, M from Eqs. (35) and (36), respectively, into Eqs. (27) and (28) as 

follows 
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3. Solution procedure 
 

The solution of governing equations of nonlocal FGM nanobeam can be presented by 

 

( , ) exp[ ( )]nu x t U i x t  
 (40) 

 

( , ) exp[ ( )]nw x t W i x t  
 (41) 

 

where (Un , Wn) are the wave amplitudes. By inserting Eqs. (40) and (41) into Eqs. (38) and (39) 

respectively, we have 
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1,1 1,2

2,1

2

2,2

1,1 1,2

2,

2 2 4 3 2 5

3 2 3

2 2 4 2 6

max

2 2 2 2

0 1

2 2

11

2 2 4

2,2 2 2

2 2

0

, ,

( ) )

(1 ) , (1 ) ,

(1 )

(1 )

(1T R

A i B

i i B

N N D

k A k B

k B

k D

m m

m

m I I

I iI

iI

I

 



  

   



 

 

   

  



   

    

  

  

    



 





  

 

 
 

By setting the determinant of above matrix to zero, the circular frequency ω can be obtained. 

Also, the phase velocity of waves can be calculated by the following relation 
 

pc





 
(43) 

 

which displays the dispersion relation of phase velocity cp and wave number β for the FGM 

nanobeam. Also, the escape frequencies of the FG nanobeam can be obtained by setting β → ∞. It 

is worth mentioning that after the escape frequency, the flexural waves will not propagate anymore. 
 

 

4. Numerical results and discussions 
 

This section is devoted to investigate the propagation behavior of temperature-dependent 

functionally graded nanobeam undergoing rotation in thermal environment. The nanobeam is 

modeled based on Euler-Bernoulli beam theory. An FG nanobeam with width b = 1 nm and length 

L = 10 nm is considered according to Fig. 1. The material properties of such FG nanobeam is 

presented in Table 1. The frequencies are verified with those of Eltaher et al. (2012) for various 

nonlocal parameters and a good agreement is observed as presented in Table 2. Variation of the 
 
 

 

Fig. 1 Configuration of rotating FG nanobeam 

 
 

Table 2 Comparison ofthe frequency for power-law FG nanobeams 

μ p = 0.1 p = 0.5 p = 1 

 Eltaher et al. (2012) Present Eltaher et al. (2012) Present Eltaher et al. (2012) Present 

0 9.2129 9.1887 7.8061 7.7377 7.0904 6.9885 

1 8.7879 8.7663 7.4458 7.3820 6.7631 6.6672 

2 8.4166 8.3972 7.1312 7.0712 6.4774 6.3865 

3 8.0887 8.0712 6.8533 6.7966 6.2251 6.1386 
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(a) p = 0 (b) p = 0.2 

 

  

(c) p = 1 (d) p = 5 

Fig. 2 Variation of phase velocity of rotating FG nanobeam versus wave number for various angular 

velocities and gradient indices (µ = 1 nm, λ = 0.1 nm, ΔT = 200) 

 

 

phase velocity (cp) of rotating FG nanobeam versus wave number (β) for various angular velocities 

(Ω) and gradient indices (p) at a constant value of nonlocality parameter (µ = 1 nm) length scale 

parameter (λ = 0.1 nm) and temperature ΔT = 200 is plotted in Fig. 2. It is clear that, with the 

increase in wave number, the phase velocity increases but for β > 0.1 the phase velocity will 

decrease and in β ≥ 10 tends to a constant value and don’t change anymore. Also, at a constant 

value of wave number with the increase in angular velocity, phase velocity will increase too. 

However, at β ≤ 0.1 diagrams of different angular velocities are more distinguished. So, angular 

velocity of rotating FG nanobeams has no considerable effect on phase velocities at higher values 

of wave number. In addition, phase velocity will decrease with the increase in gradient index. This 

is due to higher portion of metal phase by increase of gradient index. 

Fig. 4 shows the variation of phase velocity (cp) of rotating FG nanobeam versus wave number 

(β) for various length scale parameters (λ) and temperature changes (ΔT) at constant values of 

nonlocality parameter (µ = 1 nm) and gradient index (p = 1), It is observable that, in β ≤ 0.1 with 

the increase in wave number, phase velocity increases, but for β ≥ 0.1 diagram of various length 
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(a) µ = 0.5 nm (b) µ = 1 nm 
 

  

(c) µ = 1.5 nm (d) µ = 2nm 

Fig. 3 Variation of phase velocity of rotating FG nanobeam for various length scale and nonlocal 

parameters (Ω = 1, ΔT = 200, p = 1) 
 

 

  

(a) Ω = 1 (b) Ω = 3 

Fig. 4 Variation of phase velocity of rotating FG nanobeam versus wave number for various length 

scale parameters and temperature changes (µ = 1 nm, p = 1) 
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scale parameters are distinguished. Also, phase velocity does not change with the increase in wave 

number in β ≥ 10 for every value of temperature change. In addition, at a constant value of wave 

number increasing in temperature leads to lower phase velocities, especially at higher wave 

numbers. 

Variation of phase velocity (cp) of rotating FG nanobeam versus angular velocity (Ω) for 

various temperature changes (ΔT) and wave numbers at µ = 1 nm, λ = 0.5 nm and p = 1 is plotted 

in Fig. 5. It can be seen that, with the increase in angular velocity, phase velocity increases for 

every value of temperature change. But, this increment in phase velocity is significantly influenced 

by the value of wave number. In fact, increase of phase velocity with the rise of angular velocity is 

more prominent at lower wave numbers. Also, at a constant value of angular velocity, increasing in 

temperature causes the decrease in phase velocities, since stiffness of nanobeams degrades with 

increase of temperature. 

 

 

  

(a) β = 0.03 (b) β = 0.04 

 

  

(c) β = 0.06 (d) β = 0.08 

Fig. 5 Variation of phase velocity of rotating FG nanobeam versus angular velocity for various 

temperature changes (µ = 1 nm, λ = 0.5 nm, p = 1) 
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Fig. 6 Variation of escape frequency of rotating FG nanobeam versus length scale parameter for 

various gradient indices (µ = 1 nm, ΔT = 200) 

 

 

 

Fig. 7 Variation of escape frequency of rotating FG nanobeam versus angular velocity for various 

temperature changes (µ = 1 nm, λ = 0.5 nm, p = 1) 

 

 

In Fig. 6 variation of escape frequency (ωes) of rotating FG nanobeam versus length scale 

parameter (λ) for various gradient indices (P) is plotted at constant values of nonlocality parameter 

(µ = 1 nm) and temperature (ΔT = 200), It is clear from the figure that, increase in length scale 

parameter, causes the increase in escape frequency. Also, it is observable that, with the increase in 

gradient index, the slope of diagram of various gradient indices decreases. 

Fig. 7 shows the variation of escape frequency (ωes) of rotating FG nanobeam versus angular 

velocity (Ω) for various temperature changes (ΔT) with the constant values of nonlocality 

parameter (µ  = 1 nm), length scale parameter (λ = 0.5 nm) and gradient index (p = 1). It is 

observable that, with the increase in angular velocity, escape frequency remains constant. Because, 

escape frequencies are obtained by setting wave number to infinity. Although, increase in 

temperature causes decrease of escape frequency, regardless of the value of angular velocity. 
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5. Conclusions 
 

In this paper, wave dispersion characteristics of a rotating functionally graded (FG) nanobeam 

are explored based on Euler-Bernoulli beam theory. Material properties of rotating nanobeam are 

supposed to be graded according to Mori-Tanaka distribution function. Finally, through some 

parametric study, the effect of different parameters such as angular velocity, gradient index, 

nonlocality parameter, temperature rise and wave number on wave dispersion behavior of rotating 

FG nanobeam are studied. It is found that increasing in the angular velocity causes the increase in 

phase velocity. However, effect of angular velocity on wave frequency and phase velocity is 

significant at lower wave numbers. Also, the increasing in nonlocality parameter causes decrease 

in wave frequency and phase velocity at a constant angular velocity. Length scale parameter 

introduces a stiffness-hardening effect on the nanobeam structure and increases the phase 

velocities and escape frequencies. However, the escape frequency is not influenced by the change 

in angular velocity. Also, phase velocities and escape frequencies of rotating FG nanobeam will 

decrease with increase of temperature, especially at higher wave numbers. 
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