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Abstract.    The transverse vibration of double walled carbon nanotube (DWCNT) embedded in elastic medium 
with an initial imperfection is considered. In this paper, Timoshenko beam theory is employed. However the nonlocal 
theory is used for modeling the nano scale of nanotube. In addition, the governing Equations of motion are obtained 
utilizing the Hamilton’s principle and simply-simply boundary conditions are assumed. Furthermore, the Navier 
method is used for determining the natural frequencies of DWCNT. Hence, some parameters such as nonlocality, 
curvature amplitude, Winkler and Pasternak elastic foundations and length of the curved DWCNT are analyzed and 
discussed. The results show that, the curvature amplitude causes to increase natural frequency. However, nonlocal 
coefficient and elastic foundations have important role in vibration behavior of DWCNT with imperfection. 
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1. Introduction 
 

Carbon nanotubes (CNTs) have received remarkable attention since they were first discovered 
by Iijima (1991). Due to their novel electronic, mechanical and other physical and chemical 
properties, CNTs have potential applications in atomic-force microscopes, field emitters, nano-
actuators, nano-motors, nano-bearings, nanosprings, nano-fillers for composite materials, and 
nanoscale electronic devices. 

Extensive studies have been conducted on the mechanical properties of CNTs such as static 
bending analysis, Pantano et al. (2004), Yang and Wang (2006), free vibration analysis and 
dynamic response, Mitra and Gopalakrishnan (2009) and Chang and Lee (2009), buckling analysis, 
Wang et al. (2007a) and Zhang et al. (2006a) and postbuckling analysis, Shen and Zhang (2007) 
and Zhang and Shen (2007). 

In recent years, the studies of CNTs using Eringen’s nonlocal elasticity theory, Eringen (1983, 
2002) have been attractive for scholars. The nonlocal elasticity theory has been applied to analyze 
the bending, buckling, and vibration behaviors of the CNTs based on the variety of beam models, 
Reddy and Pang (2008) and Wang et al. (2008) and shell models, Zhang et al. (2006b), Li and 
Kardomateas (2007). Wang (2005) discussed the molecular dispersion relationships for CNTs by 
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taking into account the small scale effect. 
 Wang and Hu (2005) studied flexural wave propagation in a single-walled CNT (SWNT) by 

using the continuum mechanics and dynamic simulation. Lu et al. (2007) investigated the wave 
propagation and vibration properties of single- or multi walled CNTs based on nonlocal beam 
model. Wang et al. (2007b) presented analytical solutions for the free vibration analysis of 
nonlocal Timoshenko beams. Reddy (2007) developed nonlocal theories for Euler–Bernoulli, 
Timoshenko, Reddy, and Levinson beams. Analytical solutions for bending, vibration and buckling 
were obtained considering the nonlocal effect on bending deformation, buckling load, and natural 
frequencies. More recently, Yang et al. (2008) investigated the pull-in instability of nano-switches 
subjected to combined electrostatic and intermolecular forces within the framework of nonlocal 
elasticity theory. Wang et al. (2006) modeled the CNTs as a nonlocal elastic cylindrical shell and 
dealt with the dispersion of longitudinal waves in a single-walled armchair CNT. 

 Wang and Varadan (2007) studied wave propagation in CNTs based on the nonlocal elastic 
shell theory. Hu et al. (2008) used nonlocal shell model to study the transverse and torsional waves 
in single and double-walled CNTs and verified these models by using molecular dynamic 
simulation. In addition, Ke et al. (2009) investigated the nonlinear free vibration analysis of 
double walled carbon nanotubes embedded in an elastic medium. In this research they used 
nonlocal Timoshenko beam theory. Nonlinear free vibrations of curved double walled carbon 
nanotubes using differential quadrature method has been studied by Cigeroglu and Samandari 
(2014). Mehdipour et al. (2012) have investigated the vibration analysis of curved single-walled 
carbon nanotube on a Pasternak elastic foundation. In addition, Pressure dependence of the 
instability of multi-walled carbon nanotubes conveying fluids was presented by He et al. (2008). 
Also, Demir and Civalek (2013) investigated torsional and longitudinal frequency and wave 
response of microtubules based on the nonlocal continuum and nonlocal discrete models. However, 
a new trigonometric beam model for buckling of strain gradient microbeams was presented by 
Akgöz and Civalek (2014). In addition, in another paper Civalek and Akgöz (2009), accomplished 
the Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal 
elasticity theory, however, the mentioned papers have not considered the imperfection on vibration 
analysis of Double-Walled-Carbon-Nanotubes. 

To the best of the authors’ knowledge, there is not any research on the vibration analysis of 
DWCNT considering both the elastic foundation and initial imperfection in geometric based on 
nonlocal Timoshenko beam model, up to now. In this paper, the governing equations of motion 
have been obtained via the Hamilton’s principle. Simply-simply supports as boundary conditions 
assumed. Furthermore, The Navier method has been used for determining the natural frequencies 
of curved DWCNT. Hence, some parameters such as nonlocality, curvature amplitude, Winkler 
and Pasternak elastic foundations and length of the curved DWCNT have been analyzed and 
discussed. The results show that, the curvature amplitude causes to increase natural frequency. 
However, nonlocal coefficient and elastic foundations play an important role in vibration of 
DWCNT with geometrical imperfection. 
 
 
2. Nonlocal nanobeam model 
 

According to Eringen’s nonlocal elasticity theory, Eringen (1983, 2002), the stress at a point x 
in a body depends not only on the strain at point x but also on those at all other points of the body. 
Thus, the nonlocal stress tensor σ at point x is expressed as below, Reddy (2007) 
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   ,
v

x x T x dx       (1)

 

     :T x C x x  (2)
 

where T(x) is the classic, macroscopic stress tensor at point x, ε(x) is the strain tensor, C(x) is the 
fourth-order elasticity tensor and denotes the ‘double-dot product’. α (|x′ ‒ x|, τ) is the nonlocal 
modulus or attenuation function incorporating into the constitutive equations the nonlocal effects 
at the reference point x produced by the local strain at the source x′, |x′ ‒ x| is the Euclidean 
distance, and τ = e0a/l is defined as small scale factor where e0 is a constant to adjust the model to 
match the reliable results by experiments or other models, and a and l are the internal and external 
characteristic length (e.g., crack length, wavelength), respectively. 

For a beam structure, the sizes in thickness and width are much smaller than the size in length. 
Therefore, for the beams with transverse motion in the x–z plane, the nonlocal constitutive 
relations can be approximated to one-dimensional form as below, Reddy (2007) 
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where E and G are Young’s modulus and shear modulus, respectively, εxx is the axial strain, and γxz 
is the shear strain. When the nonlocal parameter e0a is zero, we can obtain the constitutive 
relations of the classical theories. 
 
 
3. Vibration of double walled curved nanotube 
 

The double walled curved carbon nanotubes was modeled as a Timoshenko beam with length L, 
inner radius r1, outer radius r2, initial curvature H and equal thickness h for each tube embedded in 
an elastic medium. The surrounding medium is described by the Winkler foundation model with 
spring constant k. Based on the Timoshenko beam theory, the displacements of an arbitrary point 
in the beam along the x- and z-axes, defined as follows, Mehdipour et al. (2012) 
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Fig. 1 Geometry of double walled carbon nanotube with an imperfection resting on elastic foundation 
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(6)

 

where R is an initial imperfection in curved carbon nanotubes. The strain energy V of the double 
walled curved carbon nanotubes embedded in an elastic medium can be calculated from the 
following equation 

 

 
(7)

 

where the spring constant k is determined by the material constants of the elastic medium and 
A1 and A2 are the cross-sectional areas of the inner and outer tubes, respectively. Substituting Eqs. 
(5) and (6) into Eq. (7) gives 

 

 

(8)

 

Subscript i = 1 and 2 in Ui, ψi, Wi, σxxi, σxzi, εxxi, γxzi, Nxi, Mxi, Qxi refers to the inner and outer 
tubes respectively. The normal resultant force Nxi, bending moment Mxi, and transverse shear force 
Qxi are defined as 

xi xxi iAi
N dA   (9a)

 

xi xxi iAi
M zdA   (9b)

 

xi xzi iAi
Q dA   (9c)

 
The work done by the vdW forces is denoted by pq, Mehdipour et al. (2012) 

 

(10)

 

For the double walled curved carbon nanotubes, the vdW interaction forces between the two 
tubes can be expressed as 

(11a)
 

(11b)
 

where q1 and q2 are van der Waals forces and C1 is the vdW interaction coefficient as below 
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(12b)
 
The kinetic energy T is given by 

 

(13)

 
where I1 and I2 are the second moments of area of the inner and outer tubes and ρ is the mass 
density of the CNTs. The equations of motion of the nonlocal double walled curved carbon 
nanotubes embedded in an elastic medium can be derived from the Hamilton’s principle 

 

(14)

 
Substituting Eqs. (8), (10), and (13) into Eq. (14), integrating by parts and setting the 

coefficients of δUi, δWi and δψi to zero lead to the equations of motion as follows 
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where m0 = 0 for i = 1 and m0 = 1 for i = 2. 

Note that expressions of the normal resultant force, bending moment and shear force in the 
nonlocal beam theory are different from those in the classical Timoshenko beam theory due to the 
nonlocal constitutive relations (3) and (4). From Eqs. (3), (4), (5), (6) and (15), the normal 
resultant force, bending moment and shear force can be expressed as 
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where Ksi (i = 1, 2) is the shear correction factor depending on the shape of the cross-section of the 
tubes. By substituting Eq. (16) into Eq. (15), the explicit expressions of nonlocal normal resultant 
force Nxi, bending moment Mxi and shear force Qxi can be obtained as 

 

(17a)

 

 

(17b)

 

 

(17c)

 

Then, the equations of motion for the nonlocal double walled curved carbon nanotubes can be 
derived by inserting Eq. (17) into Eq. (15) 
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4. Solution method 
 

In this study, the free vibration equation of the curved DWCNT has been investigated by using 
the nonlocal TBM. The influences of transverse shear deformation and rotary inertia on the 
vibration frequencies are also investigated.  

The Navier method is a powerful solution technique to solve the differential equations. The 
Navier method of decomposition is used to obtain the governing ordinary differential equation 
(ODE) from a partial counterpart. For one-term approximation the deflection of the beam Ui (x, t), 
Wi (x, t), φi (x, t) separates as 
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By inserting Eq. (19) into governing equation, natural frequencies can be obtained 
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5. Numerical results 
 

In this case study, the diameter, aspect ratio, thickness of DWCNT and Young’s modulus of the 
nanotube are assumed to be de = 3.19 nm, tc = 0.137 nm, and E = 2.407 TPa, respectively. The 
mass density of the DWCNT is 2300 kg/m3 with nonlocal parameter e0a of 2 nm. Also, the 
Winkler modulus and Pasternak modulus are estimated at the values of Kw = 1 MPa and KG = 5 nN, 
in that order, Murmu and Pradhan (2009). Moreover, the amplitude of curve H is 1 nm, Mayoof 
and Hawwa (2009). 

To validate the results the amplitude of curvature assumes to be zero and elastic foundation is 
eliminated. One can find the comparison results in Table 1. 

As it is shown in Table 1, present work has good consistency with the corresponding results 
reported by Ke et al. (2009). 

 
 

Table 1 Comparison of first four natural frequency with Ke et al. (2009) 

Mode Ke et al. (2009) Present Error 

1 3.1438 3.1416 0.07% 

2 6.2832 6.2832 0% 

3 9.3509 9.4247 0.78% 

4 12.536 12.5664 0.13% 
 

186



 
 
 
 
 
 

Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium... 

Fig. 2 Variation frequency parameter respect to nonlocality with various curvatures 
 
 
A variation of the frequency parameter of curved DWCNT with respect to nonlocal parameters 

is depicted in Fig. 2. It can be seen from the figure that the frequency parameter (Ω) decreases with 
the increase of values of the dimensionless nonlocal parameter (μ). Decreasing the dimensionless 
natural frequency against increasing nonlocal parameter occurs for all the three cases considered 
for amplitude of curvatures. Hence the size effects in nonlocal elastic model reflected in the 
vibration of the curved DWCNT. 

In addition, the effect of Winkler and Pasternak elastic foundations are discussed in this 
research. For this purpose, the variation of frequency parameter with respect to amplitude of 
curvatures considering the various Winkler and Pasternak values, is plotted in Figs. 3 and 4. 

As it is shown in Figs. 3 and 4, by increasing the amplitude of curvature, frequency parameter 
increases. Also it should be noted that, increasing the values of Winkler elastic foundation, leads to 
decreasing the natural frequency. It is interesting to say that the Pasternak foundation has inverse 
effect on vibration of curved DWCNT. 

 
 

Fig. 3 Variation frequency parameter respect to amplitude of curvature with different 
Winkler elastic foundations 
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Fig. 4 Variation frequency parameter respect to amplitude of curvature with different 
Pasternak elastic foundations 

 
 
Moreover, to see the effects of curvature clearly, the difference percent (DP) is defined as a 

parameter that shows the percent increment of frequency for a curved DWCNT (H ≠ 0 nm) 
compared with a straight nanotube (H = 0 nm). 
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Certainly, DP gives a better illustration for the pure effects of the amplitude of curvature H. 

Figs. 5, 6, 7 and 8, represent the difference percent DP as a function of the waviness amplitude H, 
while the effects of a certain parameter such as the stiffness of model, the length of curved 
DWCNT and the nonlocal parameter have been evaluated in each figure. Obviously, the variation 
of fundamental frequencies is increased when the waviness is amplified, in all the figures. 

 
 

Fig. 5 The different percent DP against the curvature amplitude with different values of 
Pasternak elastic foundation 
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Fig. 6 The different percent DP against the curvature amplitude with different values of 
Winkler elastic foundation 

 
 
As it is shown in Figs. 5 and 6, by increasing the amplitude of curvature, difference percent 

increases. It means, in higher curvature amplitudes the variation of curvature amplitude becomes 
sensitive in frequency parameter. Also it should be noted that, by increasing the values of Winkler 
and Pasternak elastic foundation, difference percent increases. It is interesting to say that Pasternak 
foundation has a more important role than Winkler foundation in difference percent. 

In addition, to see the effect of nonlocality a length of the curved DWCNT on difference 
percent, the variation of difference percent with respect to amplitude of curvatures with various 
nonlocality and length of the curved DWCNT, are plotted in Figs. 7 and 8. 

As it is shown in Figs. 7 and 8, by increasing amplitude of curvature, difference percent 
increases. It means, in higher curvature amplitude the variation of curvature amplitude becomes 
sensitive in frequency parameter. Also it should be noted that, by increasing the values of 
nonlocality, difference percent increases. It is interesting to say that, by increasing the length of the 
curved DWCNT, difference percent decreases. 

 
 

Fig. 7 The different percent DP against the curvature amplitude with different values of nonlocality 
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Fig. 8 The different percent DP against the curvature amplitude with different values of the length 
 
 
 

Table 2 Natural frequencies respect to various parameter 

H μ 
KW = 106 KW = 108 

KG = 5×10-9 KG = 10×10-9 KG = 20×10-9 KG = 5×10-9 KG = 10×10-9 KG = 20×10-9

H = 0 mn 

μ = 0 10.3096 10.7283 11.5200 10.6469 11.0528 11.8228 

μ = 0.1 9.8755 10.3118 11.1332 10.1648 10.5892 11.3906 

μ = 0.2 8.8700 9.3533 10.2518 9.0412 9.5158 10.4003 

μ = 0.3 7.7716 8.3190 9.3178 7.7985 8.3441 9.3402 

μ = 0.4 6.8235 7.4409 8.5430 6.7062 7.3335 8.4496 

μ = 0.5 6.0721 6.7585 7.9557 5.8206 6.5335 7.7654 

μ = 0.6 5.4920 6.2425 7.5223 5.1185 5.9166 7.2541 

μ = 0.7 5.0449 5.8531 7.2024 4.5613 5.4418 6.8723 

μ = 0.8 4.6978 5.5567 6.9636 4.1150 5.0736 6.5845 

μ = 0.9 4.4252 5.3282 6.7826 3.7531 4.7847 6.3646 

μ = 1 4.2084 5.1496 6.6433 3.4560 4.5553 6.1941 

H = 1 mn 

μ = 0 11.9569 12.3197 13.0150 12.2489 12.6033 13.2838 

μ = 0.1 11.5847 11.9588 12.6739 11.8323 12.1988 12.9006 

μ = 0.2 10.7404 11.1429 11.9071 10.8823 11.2797 12.0352 

μ = 0.3 9.8528 10.2901 11.1131 9.8740 10.3104 11.1319 

μ = 0.4 9.1236 9.5941 10.4720 9.0362 9.5111 10.3959 

μ = 0.5 8.5762 9.0751 9.9987 8.4000 8.9088 9.8479 

μ = 0.6 8.1757 8.6977 9.6574 7.9296 8.4667 9.4500 

μ = 0.7 7.8824 8.4225 9.4103 7.5819 8.1421 9.1602 

μ = 0.8 7.6648 8.2193 9.2290 7.3221 7.9007 8.9463 

μ = 0.9 7.5008 8.0666 9.0931 7.1250 7.7184 8.7857 

μ = 1 7.3750 7.9498 8.9897 6.9731 7.5784 8.6629 
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According to Table 2, it can be seen obviously, that the dimensionless frequency increases by 
increasing the amplitude of curvatures. It is interesting to say that natural frequencies also increase 
by increase the Pasternak elastic foundation. However, dimensionless natural frequencies also 
decrease by increasing the nonlocal coefficient. The results in Table 2 can be used for design of 
curved DWCNT in the future. 

 
 

6. Conclusions 
 
Free vibration analysis of double walled carbon nanotubes (DWCNT) embedded in elastic 

medium with initial imperfection is investigated in this study. In this paper, Timoshenko beam 
theory is employed. However the nonlocal theory is used for modeling the nano scale of nanotube. 
In addition, the governing equations were obtained due to the Hamilton principle. Simply-simply 
boundary conditions are assumed for this case. Furthermore, the Navier exact solution was used 
for determining the natural frequencies of DWCNT with imperfection. Hence, some parameter 
such as nonlocality, curvature amplitude, Winkler and Pasternak elastic foundations and length of 
the DWCNT were discussed. According to the results, the curvature amplitude causes to increase 
the natural frequency. However, nonlocal coefficient and elastic foundations play an important role 
in vibration behavior of imperfect DWCNT. 
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