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Abstract.  In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of 

rotating functionally graded nanobeam based on Eringen’s nonlocal theory and Euler–Bernoulli beam model is 

investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the 

functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law 

model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the 

rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions 

are derived through the Hamilton’s principle and generalized differential quadrature method (GDQM) is utilized to 

solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), 

porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating 

nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons 

about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simply-

clamped, clamped-clamped boundary conditions are carried out. 
 

Keywords:  vibration; functionally graded nanobeam; porosity; rotation; Eringen’s nonlocal elasticity; 
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1. Introduction 
 

Nanotechnology is capable to create new materials with immense range of applications such as, 

medicine, electro mechanical systems and energy production. Lately, carbon nanotubes and 

nanobeams have received a special consideration from scholars in nanotechnology community. In 

order to analysis of the mechanical features of structures, continuum and semi-continuum models 

and atomistic models were provided. Semi-continuum and atomistic models are not qualified for 

analyzing large scale systems and need heavy computations. On the other hand, the classical 

continuum theories are not suitable for analysis of nanostructures. Therefore, nonlocal elasticity 

theory of Eringen which considers the size effect is utilized for nanostructures analysis. 

The nonlocal elasticity theory presents an excellent tool for prediction of the nanostructures 

behavior and is a modified form of classical elasticity theory. Actually the stress at a reference 
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point is a function of strains at all points in the body. Eringen and Edelen (1972) presented the 

nonlocal continuum theory to take the size-dependent effect into account. Afterwards, multitude of 

literatures has appeared with considering the application of this theory in nanostructures 

oscillations. 

Peddieson et al. (2003) utilized this theory to study the static deformations of beams. Sudak 

(2003) investigated the buckling behavior of multiwalled carbon nanotubes using the Eringen’s 

nonlocal theory and understood that the small-scale effect contribute to the reduction of critical 

axial buckling. Zhang et al. (2004b) reported a multiple shell model for the analysis of the axial 

buckling of multiwalled carbon nanotubes under axial compression using the nonlocal continuum 

mechanics and the influence of the small-scale effect on the axial buckling strain was discussed. 

Murmu and Adhikari (2010a) utilized the nonlocal elasticity theory to study the free vibration 

analysis of a nonlocal double-elastic beam. Thai (2012), Thai and Vo (2012) investigated the 

buckling and vibration characteristics of nanobeam using the Eringen’s nonlocal theory. Kiani 

(2010) utilized this theory to study free transverse vibration analysis of embedded single-walled 

carbon nanotubes (SWCNTs) with various boundary conditions via meshless model. Zhang et al. 

(2007) reported the transverse vibration of double-walled carbon nanotubes including the thermal 

effects with utilization of nonlocal elasticity theory. Kiani and Mehri (2010) utilized the nonlocal 

elasticity theory to study vibration characteristics of a nanotube subjected to a moving nanoparticle. 

Ansari and Sahmani (2012) used this theory to study the small scale effect on vibration behavior of 

SWCNTs with arbitrary boundary conditions. 

Space planes require high-performance heat-resistant materials which can withstand ultrahigh 

temperatures and extremely large temperature gradients. To meet these needs, functionally 

gradient materials (FGMs) were proposed in 1985, Koizumi and Niino (1995). 

Commonly, FGMs are made of a combination of ceramics and a mixture of various metals, 

Zhao et al. (2012) and Ebrahimi (2013). Zenkour and Abouelregal (2015) considered thermoelastic 

interaction in functionally graded nanobeams subjected to time-dependent heat flux. Ebrahimi and 

Barati (2016) presented an exact solution for buckling analysis of embedded piezo- electro-

magnetically actuated nanoscale beams. Sankar (2001) reported an elasticity solution for 

functionally graded Euler-Bernoulli beam subjected to static transverse loads. In recent years, 

FGMs have received a special attention from researchers in industrial community. Such as, optics, 

chemical, nuclear, mechanical, electronics, Ebrahimi (2013). Literatures show that increasing 

attentions exists for dynamic and static analysis of FG beams, Larbi et al. (2013), Chakraborty and 

Gopalakrishnan (2003), Aydogdu and Taskin (2007), Ying et al. (2008), Kapuria et al. (2008), 

Yang and Chen (2008), Li (2008), Yang et al. (2008), Akgöz and Civalek (2014) and Barretta et al. 

(2015b). Pradhan and Chakraverty (2013) investigated the vibration characteristics of functionally 

graded beams based on the classical and first-order shear deformation beam theories by using the 

Rayleigh–Ritz method. 

Barretta et al. (2015a) used a nonlocal thermodynamic method and new nonlocal elastic model 

to study bending of functionally graded Bernoulli-Euler nanobeams. They utilized the nonlocal 

expressions of the free energy and reported that the nonlocal behavior for new nonlocal model is 

based on a participation factor and a small length-scale parameter, it should be noted that suitable 

choices of the participation factors can make the functionally graded Bernoulli-Euler nanobeam 

stiffer or more flexible. Barretta et al. (2016a) reported a modified gradient nonlocal elasticity 

model for functionally graded Timoshenko nanobeams via a nonlocal thermodynamic method by 

considering the first derivatives of the shear and axial strains. They investigated the influence of 

the gradient components which are usually disregarded in the unmodified Eringen model on the 
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bending treatment of functionally graded Timoshenko nanobeams. Ghadiri et al. (2016a) utilized 

the nonlocal elasticity theory and examined free vibration behavior of Euler-Bernoulli FG 

nanobeam accompanied by rotation and surface effects through differential quadrature method. 

Eringen differential model provides vanishing size effects in nanobeams subjected to point 

loads and is not appropriate for describing the treatment of a cantilever nanobeam under a 

concentrated load at free-end, Barretta et al. (2016b). In recent paper Barretta et al. (2016b) 

utilized the Eringen differential law together with an additional term involving the derivative of 

the axial stress and presented a modified version of Eringen differential law. Jin and Wang (2015) 

used the weak form quadrature element method and studied the free vibration analysis of 

functionally graded beams based on the classical beam theory. Eltaher et al. (2012) used the finite 

element method to study the free vibration analysis of functionally graded size-dependent for the 

Euler-Bernoulli beam theory. 

The porosity effect has significant role, and it should not be ignored in the vibrational study of 

functionally graded beams, because the porosities occur inside functionally graded materials 

during fabrication. Ebrahimi and Mokhtari (2015) used the differential transform method to 

investigated the free vibration characteristics of rotating porous beam with functionally graded 

microstructure based on Timoshenko beam theory. Then, Ebrahimi and Zia (2015) used the 

multiple scales and Galerkin’s methods to study the nonlinear transverse vibration properties of 

functionally graded porous Timoshenko beams. Şimşek (2016) investigated the nonlinear free 

vibration of a FG nanobeam using the nonlocal strain gradient and Euler-Bernoulli beam theories 

and a novel Hamiltonian approach with considering the von- Kármán’s geometric nonlinearity. 

In recent years, the scholars found that many nanodevices have a rotating motion and therefore, 

they edicate their researches to design the rotating nanomachines. As rotation effect is an important 

design factor in the study of nanostructures, it is necessary to understand the vibration behavior of 

the rotary nanodevices. Many researchers dedicate their studies to design of rotating nanomachines 

that can generate controllable rotation. Such as, biological molecular motors, unprecedented 

chemical synthesis, Chen et al. (2012), Tierney et al. (2011), Lubbe et al. (2011), Goel and Vogel 

(2008), Bath and Turberfield (2007) and Van Delden et al. (2005), turnstiles, Bedard and Moore 

(1995), ratchets, Serreli et al. (2007), artificial muscles, Liu et al. (2005), cars, Khatua et al. (2009) 

and Kudernac et al. (2011). Zhang et al. (2004a) reported a model for analysis a double-walled 

CNT as rotational bearings. Narendar (2011) presented an atomistic model for a rotating SWCNT 

using the nonlocal elasticity theory. Aranda-Ruiz et al. (2012) investigated the bending vibration 

characteristics of nonuniform rotating with clamp-free boundary conditions using the nonlocal 

elasticity theory via differential quadrature method (DQM). Pradhan and Murmu (2010) utilized 

the nonlocal elasticity theory and examined flapwise bending vibration characteristics of a rotating 

nanobeam with clamp-free boundary conditions via differential quadrature method (DQM). 

Narendar (2012) investigated flapwise bending vibration analysis of SWCNT with consideration 

of rotation effect and rotary inertia and transverse shear deformation via differential quadrature 

method (DQM). Guo et al. (2015) reported a model for micromotors made by a patterned 

Au/Ni/Cr nanodisk as bearing and a nanowire as rotor and they investigated the rotation 

characteristics of the micromotors (Fig. 1(a)). 

 Li et al. (2014) used the molecular dynamics simulations and reported a model for nano-

turbine was made by a CNT and graphene nanoplates (Fig. 1(b)). They used the gromacs software 

package and studied the rotating motion of a nano-turbine and and grapheme nanoplates. They 

comprehend that the thermal fluctuations at the nanoscopic length scale are very important. 

Ilkhanin and Hosseini-Hashemi (2016) used the modified couple stress theory to study the size 
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 (a)  (b)  

Fig. 1 (a) One of the applications of nanomotors presented by Guo et al. (2015); (b) Schematic 

of the nano-turbine presented by Li et al. (2014) 
 

 

dependent free vibrations of rotating nanobeams with considering the effects of Coriolis force and 

tangential load and understood that the influence of the scale parameter on natural frequency of the 

rotating nano-tube was stronger than tangential load. Ghadiri and Shafiei (2016) used the nonlocal 

elasticity theory to examine the flapwise bending vibrations of a nano-turbine blade. They 

investigated vibration characteristic of a cantilever and propped cantilever rotary nanoplate by 

DQM. Benvenuti and Simone (2013) investigated the equivalence between nonlocal and gradient 

elasticity models of one-dimensional boundary value problem. The local/nonlocal and fully 

nonlocal stress-strain laws was applied and corresponding equilibrium equations of a tensile rod 

were obtained by Benvenuti and Simone (2013). Then, corresponding closed-form solutions were 

obtained for the local/nonlocal and the fully nonlocal models. Romano et al. (2017) represented 

paradoxes in solving nonlocal elastic problems of simple beams, such as the cantilever under end-

point loading. They found that the elastic beam problem relevant to Eringen’s nonlocal integral 

law does not avouch existence being the paradoxes. For this purpose Romano et al. (2017) 

considered the local/nonlocal constitutive mixture and it was found that the local elastic fraction of 

the mixture impels well-posedness. Claim to find the exact solution for bending of Timoshenko 

and Euler-Bernoulli beams using Eringen’s nonlocal integral model was presented by Tuna and 

Kirca (2016). Then, comment on Tuna and Kirca (2016) work was reported by Romano and 

Barretta (2016). Romano and Barretta (2016) showed that the claim to find the exact solution by 

Tuna and Kirca (2016) is not valid. A comparison of the superiority of stress-driven nonlocal 

integral model versus the strain-driven nonlocal integral model was presented by Romano and 

Barretta (2017). It was found that the small-scale effects in Euler-Bernoulli nanobeams formulated 

according to stress-driven nonlocal integral model can be efficiently simulated. Also, it was 

understood that the stress-driven nonlocal integral model removes the indispensable difficulties 

represented by the strain-driven nonlocal integral model. 

 It should be noted that, none of the previous articles have considered the porosity and axial 

preload effects on a rotary functionally graded nanobeam based on the nonlocal elasticity theory 

for various boundary conditions. This paper will be practical for engineers who are designing 

nanoactuators, nanosensors, nano-turbines, molecular nano-motors and nano-electro-mechanical 

machines. 
 

 

2. Problem formulation 
 

Consider a functionally graded nanobeam with the length L, uniform thickness h and cross 

sectional area A. The coordinate system is shown in Fig. 2 and the nanobeam rotates about z-axis 

with constant angular velocity Ω and hub radius is R. 
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(a) (b) 

Fig. 2 (a) Rotating functionally graded nanobeam; (b) Cross section area of the porosed functionally 

graded nanobeam with even distribution of porosities 
 

 

It is supposed that the material attributes of the functionally graded nanobeam, such as Young’s 

modulus, mass density, vary continuously in the thickness direction according to the power law 

which are expressed as follows 

 1
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V z
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According to Eqs. (1)-(2), it can be seen that the top and bottom surfaces of the nanobeam are 

made by pure ceramic and pure metal, respectively. Using the rule of mixture, distribution of a 

material feature p, in the thickness direction is defined as follows, Şimşek and Yurtcu (2013) 
 

  1 1 2 2p z pV p V   (3) 

 

Where V1 and V2 are the volume fractions at the upper and lower surfaces of the nanobeam and 

these are related by the following equation 
 

1 2 1V V   (4) 
 

The material specifications at the upper surface of the nanobeam is p1 and the material 

specifications at the lower surface of the nanobeam is p2. According to Eqs. (1)-(4) and 

considering the even distribution of porosities, the effective material properties of the functionally 

graded nanobeam can be acquired as below, Shafiei et al. (2016a) 
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where k is a positive number which determines the material distribution in the z direction and α 

indicates the porosity volume fraction. For example density and Young’s modulus for functionally 

graded nanobeam with considering the porosity effect can be defined as 
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Here, ρ1 and ρ2 are the mass density for upper and lower surfaces, respectively. Also, E1 and E2 

indicates the Young’s modulus for upper and lower surfaces of the nanobeam, respectively. 

 

 

3. The Euler-Bernoulli beam theory 
 

Displacement field (u1, u2, u3) at any point of the Euler-Bernoulli beam (x, z) can be defined as 

follows 

 
 

1

,
, , ( , )

w x t
u x z t u x t z

x
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2

, , 0u x z t   (7b) 

 

   3 , , ,u x z t w x t  (7c) 

 

Where t is time, u and w are displacement components. The nonzero strain–displacement 

relations for the Euler-Bernoulli beam are acquired as follows 
 

   2

0 0

2

, ,
E

xx xx

u x t w x t
z z

x x
  

 
   

 
 (8) 

 

Here ε0
xx and κ0 are the extensional strain and the bending strain respectively. On the other hand, 

if the material of functionally graded beam obeys Hooke’s law, the normal stress can be 

determined as follows 
 

( ) E

xx xxE z   (9) 

 

The strain energy can be obtained by 
 

ij ij

V

U dV     
(10) 

 

Substituting Eq. (8) and Eq. (9) into Eq. (10) yields 
 

    0 0

0

L

xxU N M dx     (11) 

 

Where, N and M are the axial force and the bending moment respectively and are defined as 
 

xx

A

N dA   (12) 
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. xx

A

M z dA   (13) 

 

Also, the kinetic energy T and Variation of kinetic energy δT for Euler-Bernoulli beam can be 

determined as follows 

 
22 2L

yx z
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uu u1
T z dAdx

2 t t t
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(14b) 

 

Here, m0, m1 and m2 are the mass moments of inertia and can be defined as follows 
 

( ). i

i

A

m z z dz   (15) 

 

Also, the work is done by external forces Wext and the first variation of the external forces δWext 

for Euler-Bernoulli beam can be written as 
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where N  is 
 

rotation axialN N P   (16c) 
 

Here, Nrotation denotes the axial rotation force and Paxial is the initial axial force. 

On the other hand, the Hamilton’s principle can be written as 
 

 
0

0

t

extT U W dt     (17) 

 

Substituting Eqs. (8)-(16), into Eq. (17), the following Euler–Lagrange equations can be 

determined as follows 
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4. Nonlocal theory 
 

Nonlocal theory states that the stress at a reference point is a function of strains at all points in 

the body. Accordingly, for a homogeneous, isotropic, nonlocal elastic solid, ζij(x) at any point is 

defined as 

       ,ij ijkl kl
V

x x x C x dV x        (20) 

 

Here, ζij, Cijkl and ui are the stress tensor, elastic modulus tensor and the displacement vector, 

respectively. In addition, )|,(|~  xx   is the nonlocal kernel and |x ‒ x′| and 
~

 are the euclidean 

distance and nonlocal modulus, respectively. The strain tensor, εij, can be written as 
 

 , ,

1

2
ij i j j iu u    (21) 

 

Here, 
l

ae ).( 0  is a constant which represents external specification length l and internal 

specification length a and constant e0 which depends on each material. It should be noted that the 

length scale coefficient 39.0
2

42

0 






e  was given by Eringen (1983). Also, Zhang et al. 

(2005) found e0 = 0.82 by matching the nonlocal theoretical results of SWCNTs given by Zhang et 

al. (2004) with molecular dynamics simulations results given by Sears and Batra (2004). 

Eq. (21) is arduous to solve. Therefore, according to nonlocal theory, the spatial integrals given 

by Eq. (21) can be converted to equal differential constitutive equations under certain conditions. 

The constitutive relation was obtained by modified bessel function is as follows 
 

  2 2

01 . :e a C     (22) 

 

Here 2 denotes the Laplacian operator and C is fourth order elasticity tensor. 

The small-scale parameter (e0.a) depends on the boundary conditions, nature of motion, 

chirality, geometric sizes, number of walls and mode shapes. A conservative estimation of the 

small-scale coefficient is smaller than 2.1 nm for SWCNTs if the value of frequency is assessed to 

be greater than 10 THz, Wang (2005). Also, Wang et al. (2007) showed that the non-dimensional 

nonlocal parameter 
l

ae ).( 0
 is smaller than 0.6126 and 0.6138 for Euler–Bernoulli and 

Timoshenko cantilever nanobeams, respectively. Hereunto, there is no meticulous study made on 

predicting the magnitude of the length scale coefficient to simulate vibration behavior of 

functionally graded nanobeams, Eltaher et al. (2012), Ebrahimi and Salari (2015). Therefore, 

researchers investigated the mechanical behaviours of functionally graded nanobeams based on the 

nonlocal theory of Eringen by changing the value of the small scale parameter. In this study, the 

non-dimensional nonlocal parameter is considered to be in the range of 0-0.5. 

For nonlocal FG beams, the nonlocal stress-strain relation may be simplified as follows, 

Ebrahimi and Salari (2015) 
2

2
( )xx

xx xxE z
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Where (μ = (e0.a)2) 

Pursuant the nonlocal elasticity theory of Eringen, the force-strain and the moment-strain 

relations for the Euler-Bernoulli beam theory can be written as 
 

2 2

2 2xx xx

N u w
N A B

x x x

  

  
  

 (24) 

 
2 2
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M u w
M B C

x x x
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In relations above, (Axx, Bxx, Cxx) are the axial, coupling and bending stiffnesses, respectively 

and are defined as follows 
2( , , ) ( )(1, , )xx xx xx

A

A B C E z z z dA   (26) 

 

Substituting Eqs. (24)-(25), into Eqs. (18)-(19), axial normal force N and bending moment M, 

can be obtained as below 
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Finally, by substituting Eqs. (27)-(28) and Eqs. (18)-(19), the governing equations of motion 

for Euler-Bernoulli FG nanobeam including rotation effects and axial initial preload and porosity 

effect can be stated as 
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According to Fig. 2, the uniform beam rotates about an axis parallel to the z direction with a 

constant counter clockwise rotational speed, Ω. The rotation force is created as follows, Aranda-

Ruiz et al. (2012) and Pradhan and Murmu (2010) 
 

 2

L
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N dA R d       (31) 
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The boundary conditions for the Euler-Bernoulli functionally graded nanobeam can be obtained 

by following relations, Ebrahimi and Salari (2015) 
 

0 0 0N or u at x and x l     (32) 
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5. Solution procedure 
 

Bellman and Casti (1971), Bellman et al. (1972) and Ansari et al. (2010) presented the 

differential quadrature (DQ) method. Then, Shu (2000) and Shu and Richards (1992) modified the 

computation of weighting coefficients in this method. This method has high possiblity in solving 

equilibrium equations and has good accuracy to solve the partial differential equations. 

Because of easy formulation and good accuracy of this method some scholars preferred to work 

on the analysis of nanostructures through differential quadrature method (DQM), Aranda-Ruiz et 

al. (2012), Pradhan and Murmu (2010), Shafiei et al. (2016a), Murmu and Pradhan (2009), Wang 

and Wang (2014), Pourasghar et al. (2015), Vosoughi et al. (2012) and Ghadiri et al. (2016a, b). 

The most notable stage in this method is detecting the weight coefficients. In this way the partial 

derivatives are calculated using these coefficients. The rth order derivative of f (xi) is approximated 

as a weighted linear summation as follows, Shu (2012) 
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The weighing coefficients along x direction can be written as 
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In the equations above, superscript r is the order of the derivative and n is the number of grid 

points. By implementation of generalized differential quadrature method into governing equation 

Eqs. (29)-(30), the following equation is expressed as 
 

         

 

2 2
22 3 2 3

0 1, , , ,2 2
1 1 1 1

2 2
1

0 1 ,2 2
1

.

0

n n n n

xx i xx i i ii k i k i k i k
k k k k

n
i

ii k
k

A C u B C w e a m C u m C w
t t

u
m m C w

t t

   



  
      

 
  

 

   



 (41) 

 

       

 

     

     

3 4 1 1

, , , ,
1 1 1 1

2 2 2
2 3 4

0 1 2, , ,2 2 2
1 1 12

2 1 1

, , ,
1 1

( )

.

( )

n n n n
rotation axial

xx i xx i ii k i k i k i k
k k k k

n n n

i i ii k i k i k
k k k

n n
rotation axial

ii k i k i k
k k

B C u C C w C N P C w

m C u m C u m C w
t t t

e a

C C N P C w

   

  

 

 
    

 

  
  

  


  
  

 

   

  

 

   

1

2 2 2
1 2

0 1 2, ,2 2 2
1 1

0

n

k

n n
i

i ii k i k
k k

w
m m C u m C w

t t t



 

 
 
 
 

 
  
  

  
   

  



 

 
(42) 

 

In the present analysis, in order to obtain a better convergence, Gauss–Chebyshev technique is 

used and stated as follows 
 

 

 

11
1 cos 1,2,3, ... ,

2 1
i

i
i n

n
 

  
        

 (43) 

 

Substituting w = Weiωt into Eqs. (41)-(42) and Eqs. (32)-(34) into Eqs. (41)-(42), the problem 

will be transformed into the eigen value problem and Eq. (44) will be solved, Shafiei et al. (2016b). 
 

   4

total
w w   (44) 

 

It should be noted that the way to apply the boundary conditions by the GDQM is mentioned in 

Appendix A. 
 

 

6. Numerical results 
 

In this paper, the numerical results are studied for vibration analysis of the rotating Euler-

Bernoulli FG nanobeam, accompanied by porosity and axial preload effects for simply-simply, 
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simply-clamped, clamped-clamped boundary conditions. In order to the generalize and simplify 

the solution of the governing equation, non-dimensional parameters are defined as bellow 
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m
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Here, Ψ and Φ are the non-dimensional parameters for frequency and angular velocity, 

respectively. Also, μ and δ are the non-dimensional nonlocal parameter and non-dimensional hub 

radius, respectively. In Appendix B, variation of the non-dimensional fundamental frequency with 

respect to the sufficient number of grid points for rotating nanobeam related to simply-simply, 

simply-clamped and clamped-clamped boundary conditions are presented. It shows that, to get 

converged to exact results for GDQ method, 11 grid points are necessary. It should be noted that, 

for exact evaluating the second, third and the fourth modes of non-dimensional frequency, 19 grid 

points are enough. 

 

6.1 Results and discussion 
 

In this section, we have examined the vibration behavior of rotating Euler-Bernoulli FG 

nanobeam accompanied by porosity and axial preload effects for simply-simply, simply-clamped, 

clamped-clamped boundary conditions. 

Table 1 presents the first and second non-dimensional natural frequencies of rotating Euler-

Bernoulli nanobeam corresponding to simply-simply, simply-clamped, clamped-clamped boundary 

conditions (with L/d = 10, without porosity) for various values of μ, in comparison with results 

presented by Wang et al. (2007). 

Figs. 3-5 demonstrate the variation of non-dimensional fundamental frequencies with respect to 

the non-dimensional angular velocity (varying from 0 to 5) for pure ceramic material, pure metal 

material and functionally graded material (with k = 1,5) for different values of the nonlocal 

parameters regarding to simply-simply, simply-clamped, clamped-clamped boundary conditions, 

respectively. Here, nonlocal parameter can be considered 0, 0.2, 0.4. 

According to Figs. 3-5, it is found that when FG index power of the rotating nanobeam 

increases, the influence of nonlocal parameter on the non-dimensional fundamental frequences 

decreases (specially for simply-clamped, clamped-clamped boundary conditions). This means that, 

for pure ceramic and functionally graded materials with low FG-index, the nonlocal parameter has 
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Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam 

Table 1 Comparison of non-dimensional fundamental frequencies and non-dimensional second frequencies 

for simply-simply (S-S), simply-clamped (S-C), clamped-clamped (C-C) boundary conditions 

(with L/h = 10) for various values of μ with respect to results presented by Wang et al. (2007) 

B.C. Frequency 

μ = 0 μ = 0.1 μ = 0.3 μ = 0.5 

Present 

Wang 

et al. 

(2007) 

Present 

Wang 

et al. 

(2007) 

Present 

Wang 

et al. 

(2007) 

Present 

Wang 

et al. 

(2007) 

S-S 

Fundamental 

frequency 
3.1415920 3.1416 3.0685301 3.0685 2.6799956  2.68 2.3022302 2.3022 

Second 

frequency 
6.2831801 6.2832 5.7816627 5.7817 4.3013395 4.3013 3.4603981 3.4604 

S-C 

Fundamental 

frequency 
3.9266013 3.9266 3.820890 3.8209 3.2828384 3.2828 2.7899265 2.7899 

Second 

frequency 
7.0685764 7.0686 6.4648773 6.4649 4.7667505 4.7668 3.8324967 3.8325 

C-C 

Fundamental 

frequency 
4.7300395 4.73 4.5944554 4.5945 3.9183654 3.9184 3.3153208 3.3153 

Second 

frequency 
7.853197 7.8532 7.1402411 7.1402 5.1963037 5.1963 4.1560694 4.1561 

 

 

Table 2 Comparison of non-dimensional fundamental frequencies with various values of nonlocal 

parameters and porosity volume fraction parameters for simply-simply, simply-clamped, 

clamped-clamped boundary conditions. (FG_Index = 0.5, angular velocity = 3, axial preload = 10) 

Fundamental frequency α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Simply 

supported 

μ = 0 12.24254 12.34991 12.48741 12.66989 12.92384 13.3019 

μ = 0.1 12.01192 12.11663 12.25075 12.42874 12.67649 13.04538 

μ = 0.2 11.49955 11.59832 11.72486 11.89283 12.12669 12.47503 

μ = 0.3 10.97922 11.07188 11.19061 11.34826 11.56782 11.89501 

μ = 0.4 10.56802 10.65578 10.76825 10.91761 11.1257 11.4359 

μ = 0.5 10.27032 10.35448 10.46234 10.60562 10.80528 11.10302 

Clamped - 

Simply 

Supported 

μ = 0 15.68866 15.83332 16.01784 16.26149 16.5985 17.09632 

μ = 0.1 15.5097 15.6505 15.83017 16.06755 16.39611 16.88189 

μ = 0.2 15.08639 15.21921 15.38885 15.61323 15.92425 16.38494 

μ = 0.3 14.63395 14.75933 14.91963 15.13187 15.42647 15.86362 

μ = 0.4 14.27038 14.39027 14.54365 14.74691 15.02935 15.44903 

μ = 0.5 14.00789 14.12398 14.27257 14.46962 14.74364 15.15123 

Clamped 

μ = 0 20.59938 20.78791 21.02761 21.34286 21.77682 22.41402 

μ = 0.1 20.47686 20.66067 20.89454 21.20244 21.62678 22.25086 

μ = 0.2 20.19383 20.36789 20.58974 20.88243 21.28687 21.88368 

μ = 0.3 19.90291 20.06799 20.27874 20.55735 20.94335 21.51482 

μ = 0.4 19.67755 19.83608 20.03875 20.30711 20.67964 21.23258 

μ = 0.5 19.51915 19.67323 19.87039 20.13176 20.4951 21.03539 
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Pure ceramic 

 

FG, k = 1 

 
 

FG, k = 5 

 

 

Pure metal 

 

Fig. 3 Variation of the non-dimensional fundamental frequency parameter with respect to the non-

dimensional angular velocity parameter for pure ceramic, pure metal and functionally 

graded materials with k = 1 and 5 for various values of the nonlocal parameter regarding to 

simply-simply boundary condition 

 

 

a remarkable role, and in the vibrational behavior of nanobeams and it should not be ignored. Also, 

for porous FG nanobeam with simply-clamped, clamped-clamped boundary conditions, when the 

angular velocity of the rotating nanobeam increases, the influence of nonlocal parameter on the 

non-dimensional fundamental frequences decreases. 

Figs. 6-8 show the non-dimensional fundamental frequency with respect to the axial preload 

(varying from 0 to 30) for pure ceramic material, pure metal material and functionally graded 

material (with k = 0.1 and 5) for different values of the porosity volume fraction parameters α, 

regarding to simply-simply, simply-clamped, clamped-clamped boundary conditions. 

Here, the angular velocity and nonlocal parameter are 1 and 0.1, respectively. Also, porosity 

volume fraction parameter can be considered 0, 0.25 and 0.5. According to Figs. 6-8, for pure 

ceramic and functionally graded materials with low FG-index ( for example k = 0.1), when the 

porosity parameter is increased, the non-dimensional frequencies increase too, as were reported by 

Ebrahimi and Hashemi (2016) for tapered FG rotating Euler-Bernoulli nanobeam considering even 

distribution of porosity effect. The reason for this issue is due to this fact that by increasing the 

porosity parameter, the stiffness of the nanobeam decreases, Shafiei et al. (2016a). But, for pure 

metal and functionally graded materials with high FG-index (for example k = 5), smaller amount 

of porosity parameter, causes greater non-dimensional frequencies and the influence of porosity 

parameter on the frequeny increases. Similarly, this result has been reported by Ebrahimi and 
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Hashemi (2016) for tapered FG rotating Euler-Bernoulli nanobeam considering even distribution 

of porosity effect. Also, with the increase in axial tensile preload parameter, the stiffness of the 

rotating porose FG nanobeam increases and so the non-dimensional frequencies have greater 

values, as were reported by Murmu and Adhikari (2010b) for rotating Euler-Bernoulli nanobeam 

without porosity effect. 

From Figs. 6-8, it is observed that, when the FG-index of the rotating nanobeam increases, the 

influence of porosity parameter on the non-dimensional frequences decreases for simply-simply, 

simply-clamped, clamped-clamped boundary conditions. In this case, an opposite dynamical 

response was reported by Ebrahimi and Hashemi (2016) for tapered FG rotating Euler-Bernoulli 

nanobeam considering even distribution of porosity effect. Ebrahimi and Hashemi (2016) revealed 

the influence of porosity parameter on the fundamental frequencies of tapered FG rotating 

nanobeam increases with the increase in the FG-index. Also, for the rotating nanobeam with pure 

ceramic material, the influence of porosity on the frequences is greater than the rotating nanobeam 

with pure metal material. Figs. 9-11, show the variation of the non-dimensional fundamental 

frequency Ψ with respect to the axial preload (varying from 0 to 70) and angular velocity (Φ = 0, 2, 

4, 8) for various values of the nonlocal parameter μ regarding to simply-simply, simply-clamped, 

clamped-clamped boundary conditions, respectively. 

Here, the FG-Index and porosity parameters are 0.1 and 0.25, respectively. Also, the nonlocal 
 

 
Pure ceramic 

 

FG, k = 1 

 
 

FG, k = 5 

 

 
Pure metal 

 

Fig. 4 Variation of the non-dimensional fundamental frequency parameter with respect to the non-

dimensional angular velocity parameter for pure ceramic, pure metal and functionally 

graded materials with k = 1 and 5 for different values of the nonlocal parameter regarding to 

simply-clamped boundary condition 
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Pure ceramic 
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FG, k = 5 

 

 

Pure metal 

 

Fig. 5 Variation of the non-dimensional fundamental frequency parameter with respect to the non-

dimensional angular velocity parameter for pure ceramic, pure metal and functionally 

graded materials with k = 1 and 5 for different values of the nonlocal parameter regarding to 

clamped-clamped boundary condition 
 

 

parameter can be considered 0, 0.15 and 0.4. Table 2 shows the non-dimension fundamental 

frequencies for various values of nonlocal parameters and porosity volume fraction parameters 

corresponding to simply-simply, simply-clamped, clamped-clamped boundary conditions, 

respectively. 

Here, the FG-Index and angular velocity and axial preload are 0.5, 3 and 10, respectively. 

According to Figs. 3-5 and Figs. 9-11 and Tables 1 and 2, when the nonlocal parameter 

increases, non-dimensional fundamental frequencies decrease for simply-simply, simply-clamped, 

clamped-clamped boundary conditions. The substantial reason for this issue is due to this fact that 

by increasing the nonlocal parameter, the stiffness of the nanobeam decreases and so the value of 

non-dimensional fundamental frequency reduces, Ebrahimi and Salari (2015) and Ghadiri et al. 

(2016b). 

In this case, a reverse behavior of nonlocal parameter was reported by Shafiei et al. (2016b). 

According to their work the non-dimensional fundamental frequencies of rotating tapered axially 

FG nanobeam increases with the increase in nonlocal parameter. 

From Table 2, it is observed that the influence of nonlocal parameter on the frequencies of 

simply supported nanobeam is greater than simply-clamped and clamped-clamped nanobeam. It 

should be noted that, according to Table 2, the influence of porosity parameter on the fundamental 

frequencies of clamped-clamped nanobeam is greater than simply-clamped and simply supported 

nanobeam. 
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Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam 

Pure ceramic 
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Fig. 6 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload for pure ceramic, pure metal and functionally graded materials with k = 1 and 5 for 

different values of the porosity volume fraction parameter regarding to simply-simply 

boundary condition 
 

 

 

 

 
Pure ceramic 
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Fig. 7 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload for pure ceramic, pure metal and functionally graded materials with k = 1 and 5 for 

different values of the porosity volume fraction parameter regarding to simply-clamped 

boundary condition 
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Pure metal 

 

Fig. 7 Continued 
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Fig. 8 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload for pure ceramic, pure metal and functionally graded materials with k = 1 and 5 for 

different values of the porosity volume fraction parameter regarding to clamp ed-clamped 

boundary condition 

 

 

Figs. 3-5 and Figs. 9-11 show that when the angular velocity of the rotating porose FG 

nanobeam is increased, the non-dimensional frequences increase for all given nonlocal parameters, 

as were reported by Murmu and Adhikari (2010b) for rotating Euler-Bernoulli nanobeam without 

porosity effect. The reason is that as the nanobeam rotates, the stiffness of the nanobeam increases 
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Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam 

and hence non-dimensional frequencies increase. 

According to Figs. 3-11, order of non-dimensional fundamental frequencies for pure ceramic, 

pure metal and functionally graded materials can be obtained as: 

pure ceramic material> functionally graded material (k = 1) > functionally graded material (k = 

5) > pure metal material. The reason is that the FG-index tends to increase the weight and decrease 

the stiffness of the microbeam and so decreases the values of natural frequency. 
 

 

7. Conclusions 
 

The nonlocal Euler-Bernoulli beam theory was employed to discuss about the free vibration of 

rotating functionally graded nanobeams accompanied by the porosity and rotary effects and axial 

preload. The governing equations of motion and the related boundary conditions were obtained 

usind the Hamilton’s principle. Afterward, generalized differential quadrature method (GDQM) 

was used to discretize the governing differential equations related to simply-simply, simply-

clamped, clamped-clamped boundary conditions. In this research, the influences of the various 

parameters such as functionally graded power (FG-index), porosity parameter, nonlocal parameter, 

axial preload and angular velocity on natural frequencies of rotating FG nanobeams are 

investigated. 

 

 

  
 

 

 

 

Fig. 9 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload and angular velocity for different values of the nonlocal parameter regarding to 

simply-simply boundary condition 
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Fig. 10 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload and angular velocity for different values of the nonlocal parameter regarding to 

simply-clamped boundary condition 

 

 

The following results could be highlighted from this research: 
 

(1) In rotating FG nanobeams with considering the porosity effect and axial preload, the 

influence of porosity parameter over the fundamental frequencies of clamped-clamped 

nanobeam is more than the simply-clamped and simply supported nanobeam. 

(2) The influence of the nonlocal parameter over the fundamental frequencies of simply 

supported nanobeam is more than the simply-clamped and clamped-clamped nanobeam 

for rotating FG nanobeam with considering the porosity effect and axial preload. 

(3) In rotating porose FG nanobeams with axial preload, comparison of fundamental 

frequencies for pure ceramic, pure metal and functionally graded materials is as follows: 

(4) pure ceramic material > functionally graded material with volume fraction index (k = 1) > 

functionally graded material with volume fraction index (k = 5) > pure metal material 

(5) The influence of porosity on the frequencies for the rotating nanobeam with pure ceramic 

material is more than the rotating nanobeam with pure metal material. 

(6) The influence of porosity on the frequencies decreases with the increase in the FG-index 

of the rotating nanobeam for simply-simply, simply-clamped, clamped-clamped boundary 

conditions. 

(7) In rotating porose FG nanobeams with high FG-index (materials with more amount of 

metal), when porosity parameter increases, the non-dimensional frequencies decrease. But, 
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Fig. 11 Variation of the non-dimensional fundamental frequency parameter with respect to the axial 

preload and angular velocity for different values of the nonlocal parameter regarding to 

clamped-clamped boundary condition 

 

 

 

for nanobeams with low FG-index (materials with more amount of ceramic) with the 

increase in porosity parameter, the non-dimensional frequencies increase. 
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Appendix A 
 

Using generalized differential quadrature method, Eqs. (29)-(30) are simplified as follows 
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Here, d index denotes the domain and KA, KB, MA, MB, KC, KD, MC and MD are expressed as 
 

   

   

   

             

       

       

     

2

,

1

3

,

1

3

,

1

24 2 4

, , 0 ,

1 1 1

2 2

0 0 0 ,

1

21 3

1 , 0 1 ,

1 1

21

1 , 0

1

n

xx i k

k

n

xx i k

k

n

xx i k

k

n n n
rotation axial rotation axial

xx i k i k i k

k k k

n

i k

k

n n

i k i k

k k

n

i k

k

KA A C

KB B C

KC B C

KD C C N P C e a N P C

MA m I e a m C

MB m C e a m C

MC m C e a







  



 





 



     

 

  

 







  



 


 

           

3

1 ,

1

22 2 4

0 2 , 0 0 , 2 ,

1 1 1

n

i k

k

n n n

i k i k i k

k k k

m C

MD m I m C e a m C m C



  

 
    

 



    

(51) 

 

So, by employing the GDQM to the boundary conditions equations, the matrix of boundary 

conditions can be derived similar to Eq. (50) as 
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Here, b index denotes the boundary and KAb, KBb … KKb and KLb are expressed as bellow (for 

example 0,0
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Moreover, MAb, MBb … MKb and MLb are calculated as bellow 
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In order to solve the governing equations coupled with boundary conditions, the following 

matrix equation can be evaluated, Shu (2012). 
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i iK M     

   
 (55) 

 

Here, λ and ω are the mode shape and the natural frequency. Also, K* and M* are expressed as 
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Eventually, with solving the eigenvalue problem, the eigenvector and natural frequencies will 

be obtained. 
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Appendix B 
 

 

 

Fig. 12 Variation of the non-dimensional fundamental frequency with respect to the sufficient number 

of grid points for rotating nanobeam related to simply-simply, simply-clamped and clamped-

clamped boundary conditions. (Φ = 1, μ = 0, δ = 1, α = 0.25 and Paxial = 1) 
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