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Abstract.   So far, all reviews and control approaches of spin relaxation have been done on lateral single 
electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice 
relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be 
adjustable up to 0.7 in a material like GaAs under high- electric field magnitudes. In this article we have 
proposed a single electron QD structure, where confinements in all of three directions are considered to be 
almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, 
which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances 
the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and 
decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to 
the least possible value. 
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1. Introduction 

 

A promising candidate for realization of a single qubit by a confined electron in a 

semiconductor quantum dot, that whose spin states  and 
 
represent the logical qubit states 

(Loss and DiVincenzo 1998). The electron in the quantum dot is not isolated from environment 

and there exists a coupling between them, which limits the lifetime of the stored information as a 

result. Then, by controlling the spin-qubit interaction, one can increase the lifetime of stored 

information till the quantum gates are capable of performing the information processing tasks.  
Spin-orbit interaction is the main source of the spin flips for the 3D and 2D electron states in 

the GaAs-type crystal without an inversion center. Besides, in such a polar-type crystal one finds a 

strong coupling of electrons to the bosonic environment via the piezoelectric interaction with 

acoustic phonons. The combination of these two mechanisms provides an effective spin-lattice 

relaxation (Khaetskii and Nazarov 2001). 

In this article we have studied spin-orbit interaction (SOI) as a limiting factor of the lifetime of 

quantum information. 

This paper attempts to discuss size affecting on the electron spin relaxation for a single-electron 

GaAs quantum dot that the confinement for the electron in the x and y and z directions is almost 

identical.  
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2. Content 
 

In a magnetic Field, B, the spin states of the electron are split by the Zeeman energy Δ= |g| μBB, 

providing a two level quantum system that can be used as a qubit (Loss and DiVincenzo 1998). 

At first we have considered a single electron in a isotropic parabolic confinement potential with 

form of (m
*
/2) ω0

2
(x

2
+y

2
) in the presence of a perpendicular magnetic field to the surface of the 

QD, which has been investigated by Fock and Darwin (Darwin 1930, Fock 1928). The 

Hamiltonian of this system is 

      (1) 

      (2) 

      

(3) 

Where, p= (px, py, 0) and A=B/2(-y, x, 0) are the electron momentum and the magnetic potential 

vector respectively. e is the electron charge, c is the speed of light, m* is electron effective mass 

and ω0 is frequency of the confining parabolic potential, g0 is the bulk g factor, μB is the Bohr 

magneton and σz is the diagonal Pauli matrices. 

The interaction Hamiltonian, H1, will be diagonal if we write it as a function of Fock-Darwin 

number operators n±=a±
+
a± (Jacak et al. 1998) 

 

(4) 

      

(5) 

 

(6) 

Where 

 
(7)

 

Here, ωc is cyclotron frequency and l=√ħ/m*Ω will be the Fock-Darwin radius. 

One can easily obtain eigenvalues of the H1 as 

 
(8)

 

Where, n+, n-=0, 1, 2, …and ωz = |g|μBB/ħ is the Zeeman frequency. 

The last term of the system Hamiltonian, Hz, Eq. (1) suggests confinement of a quantum well in 

z growth direction with ground state (de Sousa and Das Sarma 2003) 
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(9) 

 
(10) 

Where Ai is Airy function and δ1=-2.3381 is the first zero of the Ai, than in Wentzel-Kramers-

Brillouin (WKB) approximation, is given as (Abu-Safe 2003) 

 

(11) 

In this approximation, the width of the well is given by an effective width as 

 

(12) 

And the ground-state energy is E0z=- δ 1eE/κ. 

In the spin flip process, firstly spin-orbit interaction causes an orbital spins-up and spins-down 

to mix with different spins of other orbitals, then the acoustic phonons causes the transition of the 

newly produced eigenfunctions among the Zeeman sublevels. 

First of all, in order to calculate transition rate of spin relaxation, we obtain the corrected 

eigenfunctions considering the spin-orbit interaction as a perturbation. Afterward using the Fermi 

Golden Rule we obtain the spin relaxation rate by phonon between Zeeman sublevels of the 

ground state (de Sousa and Das Sarma 2003) 

                                                                                                                                                             

(13) 
Where, v is volume of the system and ωq is the phonon frequency. 

 

2.1 Spin orbit interaction 
 
The SOI is taken in to account by adding the Dresselhaus (Dresselhaus 1955) and Rashba 

(Bychkov and Rashba 1984) terms for conduction band electrons. 

A kind of spin-orbit interaction called Bychkov- Rashba will appear because of structure 

inversion asymmetry in solid state system described by the following Hamiltonian 

 
(14) 

Where, αBR is the coefficient of Bychkov-Rashba interaction and is taken to be proportional to 

the average effective electric field 

 (15) 
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That α0 depends on band structure parameters (de Andrada e Silva et al. 1994, 1997). 

Another kind of spin-orbit interaction is because of bulk inversion asymmetry, called 

Dresselhaus which is divided in to two types of linear Dresselhaus and cubic Dresselhaus 

described by the following Hamiltonians 

 
(17) 

 
(18) 

In which γc is the determined by the band structure parameters. 

Here we express Hamiltonians of the Rashba and linear Dresselhaus together, also Hamiltonian 

of the cubic Dresselhaus based on the Fock-Darwin operators as follows (de Sousa and Das Sarma 

2003) 

 
(19) 

 
(20) 

Where, σ±= (σx ± iσy) /2 

And spin-orbit energy scale defined as 

 
(21) 

      

(22) 

 

(23) 

 

(24) 

Where λ1=3/4 γc δ+ δ-
2
, λ2=3/4 γc δ- δ+

2
, λ3=1/4 γc δ+

3
, λ4=1/4 γc δ-

3
. Since lengths of the spin-orbit 

interaction (Bulaev and Loss 2005) are LBR= ħ
2
/2 m* αBR, LD= ħ

2
/2 m* γc <Kz

2
>, LD3=ħ

2
l0

2
/2γcm* 

(≈2μm). Which are so much larger than the size of quantum dot, considering the spin-orbit 

interaction as a small perturbation (Bulaev and Loss 2005), we will obtain the two lowest electron 

eigenstates in first-order perturbation theory. 

 

(25) 
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(26) 

And we get E0=E0
(0)

. 

Where in Fig. 1, S-, S+ shows the eigenspinors of the two eigenfunctions of Ψ-, Ψ+ and as shown 

in this figure, θ is deviation of the S+ from the net spin-down. Thus, electron spin in the solid state 

contrary to what we might think won’t have complete spin-up and spin-down polarizations and 

true polarizations depend on the intensity of the spin-orbit interaction. 

It would be easily shown that expected values of the Pauli matrices on the spinor S+ will be 

 

(27) 

 
(28) 

 
(29) 

 

 

 

Fig. 1 The spin polarization in two Zeeman energy levels on Bloch sphere 
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And, also expected values of the spinor S- are as follows 

 

(30) 

 

(31) 

 

(32) 

Where, F= (λ3+λ1/3)/β+  

As seen, in above, the spins in high and low Zeeman energy levels are anti-parallel. 

Comparing above values to the expected values of the Pauli matrices on an arbitrary vector n in 

the polar coordinates with an amplitude of one on Bloch sphere 

 

(33) 

Hence, by adjusting values of the α± and β± (1-F) in relation to each other, one can decrease the 

spins-up and down mixing to the least possible value. 

 

 

 

Fig. 2 Deviation from the net spin-down as a function of the Fock-Darwin radius 
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As shown in above diagram the minimum value of Ɵ for the discussed GaAs quantum dot will 

happen for l=7 nm. 

The used parameters for the Galium Arsenide are as follows: 

m =0.067 me (where me is the free electron mass) g=-0.44 and γc=27.5 ev.A
°3

. 

The linear Dresselhaus coefficient γc<Kz
2
> = 4.5 mev.A

° 
for the confinement width of 11 nm in 

the ground state of a quantum well is triangular and αBR equals 3.3 mev.A
°
 (Miller et al. 2003). 

 

 

3. Conclusions 

 

In this article, we have studied a quantum dot, in which confinement in all of three directions is 

nearly equal. Then we have figured out spin deviation angle from its initial direction. We found 

out that the spin deviation angle has a direct relationship to defined spin orbit energy scales in Eqs. 

(21), (22), (23). 

By reducing length of the confinement in x and y directions, we have increased effect of the 

cubic Dresselhaus, which caused reduction of the linear Dresselhaus. Also, Reduction of the Fock-

Darwin radius caused reduction of the linear Dresselhaus effect and resulted in adjusting the 

coefficients α± and β± (1-F) and getting this ratio near one, thus we prevented spin relaxation 

among Zeeman sublevels. 
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