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Abstract.  The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a 
moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The 
transformed distributions of deflection, temperature, axial displacement and bending moment are obtained 
by using Laplace transformation. By applying a numerical inversion method, the results of these fields are 
then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are 
discussed and presented graphically. Some specific and special results are derived from the current study. 
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1. Introduction 
 

The dynamical reaction of solid and strong materials subjected to moving loads is of strong of 

engineering and building fields, for example, structural designing, sea industrial, quake designing 

and tribology. For instance ground movement and stresses are instigated in immersed soils by 

quick moving vehicular loads or surface impact waves because of explosives. Many researchers 

have considered dynamic reaction of beams subjected to a moving force. 

Tang (1967) presented the steady-state behavior of a plate strip on a foundation of Kelvin 

material to a moving force. Cheng (1987) discussed the dynamic behavior of thin plates resting on 

elastic foundations and subjected to moving forces by means of variational calculus. Lin and 

Trethewey (1990) presented dynamic analysis of beams subjected to dynamic loads induced by the 

arbitrary movement of a spring-mass-damper system via Bernoulli–Euler theory. Olsson (1991) 

presented a moving force problem and studied the dynamic response of a simply-supported beam 

subjected to a uniform moving force. Jaiswal and Iyengar (1993) discussed dynamic response of 

an infinitely long beam resting on elastic foundation and subjected to a moving load. Lee and Ng 

(1994) presented dynamic behavior of a cracked beam due to the action of a moving load via Euler 

beam theory. Chang and Liu (1996) presented the vibration response of a nonlinear beam resting 

on elastic foundations to a moving force. Lu and Xuejun (1998) dealt with the dynamic response 

of infinite beam to a moving line force. Hasheminejad and Rafsanjani (2011) studied the 
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elasto-dynamic response of a simply-supported beam subjected to a moving transverse load. 

Rajabi et al. (2013) investigated the dynamic response of a functionally graded (FG) 

simply-supported Euler–Bernoulli beam due to the action of a moving oscillator. 

The dynamic response of micro- or nano-structures subjected to moving forces is an available 

area for many researchers. Şimşek (2010) used the modified couple stress theory to present 

vibration of an embedded Euler–Bernoulli microbeam due to a moving microparticle. Kiani (2011) 

presented the vibration response of nanoplates to a moving nanoparticle using Eringen’s nonlocal 

theory. Yang et al. (2013) investigated the dynamic behavior of Timoshenko's beams resting on a 

six-parameter foundation and subjected to a moving force. Pirmohammadi et al. (2014) 

investigated the vibration response of a single-walled carbon nanotube to a moving harmonic force 

via the nonlocal elasticity theory. Şimşek et al. (2015) dealt with the vibration behavior of a 

microplate under the action of a moving load. Hosseini and Rahmani (2017) analyzed the dynamic 

behavior of a FG Euler–Bernoulli nanobeam under a moving constant force. 

The point of this article is to develop the governing equations of nonlocal Euler–Bernoulli 

beams subjected to transverse moving load (Zenkour et al. 2014, Abouelregal and Zenkour 2015, 

2017, Carrera et al. 2015). The thermoelastic modification model of heat conduction is based on 

the thermal relaxation times is applied. The Laplace transform technique is utilized as a part of the 

deduction. The effects due to the nonlocal, moving load velocity and the exponential decay 

parameters will be investigated and represented graphically. 

 

 

2. Mathematical modeling for nanobeams 
 

The model under consideration is of a simply-supported Euler–Bernoulli nanobeam due to the 

action of a moving load with velocity 𝜐 along the axial direction of the nanobeam (Fig. 1). The 

initial condition is that the nanobeam is unstrained, unstressed and at initial temperature 𝑇0 over 

its entirety. The ratio 𝐿/ is supposed to be large enough to consider the shear deformation 

negligible. The displacement field of any point of nanobeam is given by 

𝑢1 = 𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,     𝑢2 = 0,     𝑢3 = 𝑤(𝑥, 𝑡)                   (1) 

Without heat sources the generalized heat conduction equation is given by (Lord and Shulman 

1967, Green and Lindsay 1972, Zenkour 2015) 

 𝐾𝛻2𝜃 = (1 + 𝜏0
𝜕

𝜕𝑡
) (𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
) + 𝛾𝑇0 (1 + 𝛼0𝜏0

𝜕

𝜕𝑡
)

𝜕2𝑢

𝜕𝑡𝜕𝑥
               (2) 

Substituting Eq. (1) into Eq. (2) yields the following equation 

 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2 =
𝜌𝐶𝐸

𝐾
(1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕𝜃

𝜕𝑡
−

𝛾𝑇0

𝐾
𝑧 (1 + 𝛼0𝜏0

𝜕

𝜕𝑡
)

𝜕3𝑤

𝜕𝑡𝜕𝑥2              (3) 

According to Eringen’s nonlocal elasticity theory (Eringen 1972, 1983), Eringen and Edelen 

1972) the stress at a point is a function of strains at all points in the continuum. So, the nonlocal 

stress-strain equations are expressed as 

𝜎𝑥 − 𝜉
𝜕2𝜍𝑥

𝜕𝑥2 = −𝐸 *𝑧
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝜃+                    (4) 
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Fig. 1 Schematic diagram for a nanobeam subjected to a moving load 

 

 

Based on Euler’s nanobeam theory, the equation of motion for free vibration of nanobeams 

subjected to a distributed transverse load including nonlocal elasticity is written as 

𝜕2𝑀

𝜕𝑥2 = 𝜌𝐴
𝜕2𝑤

𝜕𝑥2 − 𝑞(𝑥, 𝑡)                     (5) 

in which 𝑀 is given by 

 𝑀(𝑥, 𝑡) = ∫ 𝑧𝜎𝑥d𝑧
ℎ/2

;ℎ/2
 (6) 

Multiplying Eq. (6) by 𝑧 and integrating the results over the area 𝐴 yields 

 𝑀 − 𝜉
𝜕2𝑀

𝜕𝑥2 = −𝐸𝐼 *
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑀𝑇+                 (7) 

The moment of beam due to the presence of thermal effects is given by 

 𝑀𝑇(𝑥, 𝑡) =
12

ℎ3 ∫ 𝑧𝜃(𝑥, 𝑧, 𝑡)d𝑧
ℎ/2

;ℎ/2
                      (8) 

The substitution of Eq. (5) into Eq. (7) gives 

 𝑀 = 𝜉 (𝜌𝐴
𝜕2𝑤

𝜕𝑥2 − 𝑞) − 𝐸𝐼 *
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑀𝑇+              (9) 

Now, equation of motion of nonlocal Euler–Bernoulli nanobeam is expressed in terms of 

transverse displacement 𝑤 as 

 *
𝜕4

𝜕𝑥4 +
𝜌𝐴

𝐸𝐼

𝜕2

𝜕𝑡2 (1 − 𝜉
𝜕2

𝜕𝑥2)+ 𝑤 −
1

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) 𝑞 + 𝛼𝑇 (1 + 𝜏1
𝜕

𝜕𝑡
)

𝜕2𝑀𝑇

𝜕𝑥2 = 0 (10) 

Eqs. (2) and (11) describe the governing equations of the generalized nonlocal thermoelasticity 

theories with thermal relaxation times for nanobeams. 

It can be seen that some special cases of interest can be obtained and the corresponding 

nonlocal thermoelastic models can be recovered as: 
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 The basic equations of the coupled theory of thermoelasticity (CTE theory) for a 

thermoelastic nanobeams are obtained when 𝜏0 = 𝜏1 = 0. 

 For generalized theory of thermoelasticity proposed by Lord and Shulman (1967) (LS 

theory) with one relaxation time, when 𝜏0 > 0, 𝜏1 = 0 and 𝛼0 = 1. 

 For generalized theory of thermoelasticity Green–Lindsay (1972) (GL theory) with two 

relaxation times 𝜏1 ≥ 𝜏0 > 0 and 𝛼0 = 0. 

It can be observed that when the parameter 𝜉 is neglected, one can obtain the basic equations 

of the classical (local) thermoelasticity case. 

 

 

3. Sinusoidal variation thermal solution 
 

To solve the present problem, we assume that the solution of temperature increment varies in 

terms of a sin (
𝜋𝑧

ℎ
) function. So, the temperature increment 𝜃(𝑥, 𝑧, 𝑡) is considered as 

 𝜃(𝑥, 𝑧, 𝑡) = 𝛩(𝑥, 𝑡) sin (
𝜋𝑧

ℎ
)                        (11) 

Substituting the above relation into Eqs. (9), (10) and (3) yields the following 

 𝑀 = 𝜉 (𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝑞) − 𝐸𝐼 *
𝜕2𝑤

𝜕𝑥2 +
24𝑇0𝛼𝑇

𝜋2ℎ
(1 + 𝜏1

𝜕

𝜕𝑡
) 𝛩+ (12) 

 *
𝜕4

𝜕𝑥4 +
𝜌𝐴

𝐸𝐼

𝜕2

𝜕𝑡2 (1 − 𝜉
𝜕2

𝜕𝑥2)+ 𝑤 −
1

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) 𝑞 +
24𝛼𝑇

𝜋2ℎ
(1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕2𝛩

𝜕𝑥2 = 0 (13) 

 
𝜕2𝛩

𝜕𝑥2 −
𝜋2

ℎ2 𝛩 =
𝜌𝐶𝐸

𝐾
(1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕𝛩

𝜕𝑡
−

𝛾𝑇0𝜋2ℎ

24𝐾
(1 + 𝛼0𝜏0

𝜕

𝜕𝑡
)

𝜕3𝑤

𝜕𝑡𝜕𝑥2            (14) 

The following non-dimensional parameters are presented 

 

*𝑢′, 𝑤′, 𝑥′, 𝑧′, 𝐿′, 𝑏′, ′+ = 𝜂𝑐*𝑢, 𝑤, 𝑥, 𝑧, 𝐿, 𝑏, +,   *𝑡′, 𝑡0
′ , 𝜏1

′ + = 𝜂𝑐2*𝑡, 𝑡0, 𝜏1+,

𝜉′ = 𝜂2𝑐2𝜉,     𝛩′ =
𝛩

𝑇0
,     𝑞′ =

𝐴𝑞

𝐸𝐼
,     𝑀′ =

𝑀

𝜂𝑐𝐸𝐼
,     𝑐 = √

𝐸

𝜌
,     𝜂 =

𝜌𝐶𝐸

𝐾

    (15) 

Using the above non-dimensional variables, Eqs. (13)-(15) can be rewritten as (dropping the 

primes for convenience) 

 𝑀 = 𝜉 (
12

ℎ2

𝜕2𝑤

𝜕𝑡2 − 𝑞) −
𝜕2𝑤

𝜕𝑥2 −
24𝑇0𝛼𝑇

𝜋2ℎ
(1 + 𝜏1

𝜕

𝜕𝑡
) 𝛩                (16) 

 *
𝜕4

𝜕𝑥4 +
12

ℎ2

𝜕2

𝜕𝑡2 (1 − 𝜉
𝜕2

𝜕𝑥2)+ 𝑤 − (1 − 𝜉
𝜕2

𝜕𝑥2) 𝑞 +
24𝑇0𝛼𝑇

𝜋2ℎ
(1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕2𝛩

𝜕𝑥2 = 0 (17) 

 
𝜕2𝛩

𝜕𝑥2 −
𝜋2

ℎ2 𝛩 = (1 + 𝜏0
𝜕

𝜕𝑡
)

𝜕𝛩

𝜕𝑡
−

𝛾𝜋2ℎ

24𝐾𝜂
(1 + 𝛼0𝜏0

𝜕

𝜕𝑡
)

𝜕3𝑤

𝜕𝑡𝜕𝑥2 (18) 

The external concentrated load 𝑞(𝑥, 𝑡)  with constant strength 𝑄0  is traveling along the 

nanobeam axis at a constant speed 𝜐. This load may be expressed in the form 

 𝑞(𝑥, 𝑡) = 𝑄0𝛿(𝑥 − 𝜐𝑡)                         (19) 
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4. Solution using Laplace transforms technique 
 
It is difficult to find an exact and analytical solution for the two coupled equations (17) and (18). 

Therefore, the Laplace transform technique is employed to eliminate time. Applying the Laplace 

transform technique to Eqs. (16)-(18) and considering zero homogenous initial conditions, the 

governing equations can be obtained by 

�̅� = − (
d2

d𝑥2 − 𝐴3𝑠2) �̅� − 𝐴2�̅� −
𝜉𝑄0

𝜐
e;

𝑠

𝜐
𝑥
                    (20) 

 (
d4

d𝑥4 − 𝐴3𝑠2 d2

d𝑥2 + 𝐴1𝑠2) �̅� = −𝐴2
d2�̅�

d𝑥2 + �̅�(𝑠)e;
𝑠

𝜐
𝑥
                  (21) 

 (
d2

d𝑥2 − 𝐵1) �̅� = −𝐵2
d2�̅�

d𝑥2                                     (22) 

where 

 
𝐵1 = 𝐴4 + 𝑠(1 + 𝜏0𝑠),   𝐵2 = 𝑠(1 + 𝛼0𝜏0𝑠)𝐴5,     �̅�(𝑠) =

𝑄0

𝜐
(1 − 𝜉

𝑠2

𝜐2)

𝐴1 =
12

ℎ2 ,     𝐴2 =
24𝑇0𝛼𝑇

𝜋2ℎ
(1 + 𝜏1𝑠),     𝐴3 =

12𝜉

ℎ2 ,     𝐴4 =
𝜋2

ℎ2 ,     𝐴5 =
𝛾𝜋2ℎ

24𝐾𝜂

        (23) 

Eliminating the function �̅� from Eqs. (21) and (22), the following differential equation for �̅� 

can be obtained as 

 (
d6

d𝑥6 − 𝐴
d4

d𝑥4 + 𝐵
d2

d𝑥2 − 𝐶) �̅� = 𝛾1e;
𝑠

𝜐
𝑥
                   (24) 

where 

 𝐴 = 𝐵1 + 𝐴2𝐵2 + 𝐴3𝑠2,     𝐵 = 𝑠2(𝐴1 + 𝐴3𝐵1),     𝐶 = 𝐴1𝐵1𝑠2,     𝛾1 =  �̅�(𝑠) (
𝑠2

𝜐2 − 𝐵1) (25) 

Considering the characteristic equation 

 𝑚6 − 𝐴𝑚4 + 𝐵𝑚2 − 𝐶 = 0                        (26) 

with the roots 𝑚1
2, 𝑚2

2 and 𝑚3
2, the analytical solutions for transverse deflection �̅� can be 

expressed as 

 �̅� = ∑ (𝐶𝑗e;𝑚𝑗𝑥 + 𝐶𝑗:3e𝑚𝑗𝑥)3
𝑗<1 + 𝐶7e;

𝑠

𝜐
𝑥
                  (27) 

where 

 𝐶7 =
𝛾1

(
𝑠

𝜐
)

6
;𝐴(

𝑠

𝜐
)

4
:𝐵(

𝑠

𝜐
)

2
;𝐶

                         (28) 

In a similar manner, one can obtain 

 �̅� = ∑ (𝐹𝑗e;𝑚𝑗𝑥 + 𝐹𝑗:3e𝑚𝑗𝑥)3
𝑗<1 + 𝐶8e;

𝑠

𝜐
𝑥
                 (29) 
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From Eq. (22), the relation between the parameters 𝐹𝑗 and 𝐶𝑗 can be derived as 

 𝐹𝑗 = 𝛽𝑗𝐶𝑗,     𝐹𝑗 = 𝛽𝑗𝐶𝑗:3,     𝛽𝑗 = −
𝐵2𝑚𝑗

2

𝑚𝑗
2;𝐵1

,     𝐶8 = −
𝐵2𝑠2

𝑠2;𝐵1𝜐2 𝐶7            (30) 

So 

 �̅� = ∑ 𝛽𝑗(𝐶𝑗e;𝑚𝑗𝑥 + 𝐶𝑗:3e𝑚𝑗𝑥)3
𝑗<1 + 𝐶8e;

𝑠

𝜐
𝑥
                   (31) 

Substituting the expressions of �̅� and �̅� from Eqs. (27) and (32) into Eq. (23), we get the 

solution for the bending moment �̅� as 

 �̅� = − ∑ (𝑚𝑗
2 − 𝐴3𝑠2 + 𝐴2𝛽𝑗)(𝐶𝑗e;𝑚𝑗𝑥 + 𝐶𝑗:3e𝑚𝑗𝑥) − 𝐶9e;

𝑠

𝜐
𝑥3

𝑗<1          (32) 

where 

 𝐶9 = (
𝑠2

𝜐2 − 𝐴3𝑠2) 𝐶7 + 𝐴2𝐶8 +
𝜉𝑄0

𝜐
                      (33) 

Finally, the axial displacement and its normal strain are given, respectively, by 

 �̅� = 𝑧 ∑ 𝑚𝑗(𝐶𝑗e;𝑚𝑗𝑥 − 𝐶𝑗:3e𝑚𝑗𝑥)3
𝑗<1 +

𝑠

𝜐
𝐶7e;

𝑠

𝜐
𝑥
 (34) 

 �̅� = −𝑧 ∑ 𝑚𝑗
2(𝐶𝑗e;𝑚𝑗𝑥 + 𝐶𝑗:3e𝑚𝑗𝑥)3

𝑗<1 −
𝑠2

𝜐2 𝐶7e;
𝑠

𝜐
𝑥
 (35) 

 

 

5. Application 
 

In this article, the dimensionless temperature 𝛩(𝑥, 𝑡) may be expressed as an exponential 

decay function at the first end of the nanobeam 𝑥 = 0. That is 

 𝛩(𝑥, 𝑡) = 𝛩0e;𝑘𝑡     at     𝑥 = 0                      (36) 

The time constant of the decay 𝑘 must be always positive. The thermal shock problem is 

available if 𝑘 = 0. The above condition in the Laplace transform domain will be 

 �̅�(0, 𝑠) =
𝛩0

𝑘:𝑠
(

1;e−𝑡0𝑠

𝑡0𝑠2 ) = �̅�(𝑠)                     (37) 

The considered nanobeam is assumed to be simply-supported at the axial ends 𝑥 = 0, 𝐿. So, 

one gets in the Laplace transform domain 

 �̅�(0, 𝑠) = �̅�(𝐿, 𝑠) = 0,     
d2�̅�(𝑥,𝑠)

d𝑥2 |
𝑥<0,𝐿

= 0                (38) 

Also, the temperature at the end boundary in the Laplace transform domain satisfies the relation 

 
d�̅�

d𝑥
|
𝑥<𝐿

= 0                             (39) 
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(a) Transverse deflection 𝑤 versus 𝑥 (b) Temperature 𝜃 versus 𝑥 

  

(c) Axial displacement 𝑢 versus 𝑥 (d) Bending moment 𝑀 versus 𝑥 

Fig. 2 The transverse deflection, temperature, displacement and moment distributions for different values of 

the nonlocal thermoelastic parameters 𝜉 ̅

 

 

From Eqs. (27) and (31), we find that the conditions in Eqs. (37)-(39) have been satisfied then 

we get linear system of six equations in terms of the constants 𝐶𝑖 (𝑖 = 1,2, . . . ,6). Solving this 

system gives the final form of the constants 𝐶𝑖. It is difficult to get the inversion of Laplace 

transform of the complicated solutions for the studied fields in Laplace transform space. Therefore, 

the results will be analyzed numerically using a method based on Fourier series expansion 

technique in the following section. 

The Riemann-sum approximation method is applied to obtain numerical results for the lateral 

vibration, thermal temperature, axial displacement, and bending moment in time domain. In this 

method, any function 𝑓̅(𝑥, 𝑠) in Laplace domain can be inverted to time domain 𝑓(𝑥, 𝑡) as 

𝑓(𝑥, 𝑡) =
e𝜁𝑡

𝑡
*

1

2
Re{𝑓(̅𝑥, 𝜁)} + Re ,∑ (−1)𝑛𝑓̅ (𝑥, 𝜁 +

i𝑛𝜋

𝑡
)𝑁

𝑛<0 -+ ,     i = √−1     (40) 

where 𝜁 is an arbitrary real number given experimentally by 𝜁𝑡 = 4.7 (Tzou 1995, 1996). 
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(a) Transverse deflection 𝑤 versus 𝑥 (b) Temperature 𝜃 versus 𝑥 

  
(c) Axial displacement 𝑢 versus 𝑥 (d) Bending moment 𝑀 versus 𝑥 

Fig. 3 The transverse deflection, temperature, displacement and moment distributions for different values of 

the decaying parameter 𝑘 

 

 

6. Numerical results 
 

In this section, silicon (Si) nanobeam at 𝑇0 = 293 𝐾 is used as an example. The effects of the 

moving load velocity �̅� (�̅� = 103 𝜐), nonlocal parameter 𝜉̅ (𝜉̅ = 103 𝜉), the external moving 

load strength 𝑄0 and decaying parameter 𝑘 on the temperature, displacement, lateral vibration, 

and moment are analyzed numerically. The basic physical material properties are 

𝐸 = 169 GPa,     𝜈 = 0.22,     𝜌 = 2330 kg/m3,     𝐾 = 156 W/(mK)

𝐶𝐸 = 713 J/(kg K),      𝛼𝑇 = 2.59 × 10;6 /(K)    
           (41) 

The results are obtained for fixed parameters like 𝑡 = 0.1, 𝐿/ = 10, 𝑏/ = 0.5, 𝐿 = 1 and 

𝑧 = /3. 
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(a) Transverse deflection 𝑤 versus 𝑥 (b) Temperature 𝜃 versus 𝑥 

  
(c) Axial displacement 𝑢 versus 𝑥 (d) Bending moment 𝑀 versus 𝑥 

Fig. 4 The transverse deflection, temperature, displacement and bending moment distributions for different 

values of the moving load velocity �̅� 

 
 
 
6.1 Nonlocal parameter effect 
 

The influence of dimensionless nonlocal parameter 𝜉̅  on dimensionless deflection, 

temperature, axial displacement, and moment is investigated first in Figs. 2(a)-2(d). In this case, 

three values of nonlocal parameter, 𝜉̅ = 1 and 𝜉̅ = 3 (nonlocal case), and 𝜉̅ = 0 (local case), 

are considered. The moving load velocity �̅� and the decaying parameter 𝑘 remain constants as 

�̅� = 3 and 𝑘 = 0.1, respectively. The results show that the temperature 𝜃 and axial displacement 

𝑢 are decreasing along the axial axis. It is also found that lateral vibration 𝑤 satisfies the 

boundary condition at 𝑥 = 0, 𝐿. From Figs. 2(a), 2(c), 2(d), it is also observed that the amplitude 

values of deflection 𝑤, axial displacement 𝑢 and bending moment 𝑀 decrease when nonlocal 

parameter 𝜉̅ increases. Additionally, Fig. 2(b) shows that the increasing in the value of 𝜉̅ causes  

9



 

 

 

 

 

 

Ashraf M. Zenkour and Ahmed E. Abouelregal 

  

(a) Transverse deflection 𝑤 versus 𝑥 (b) Temperature 𝜃 versus 𝑥 

  
(c) Axial displacement 𝑢 versus 𝑥 (d) Bending moment 𝑀 versus 𝑥 

Fig .5 The transverse deflection, temperature, displacement and bending moment distributions for different 

values of the external moving load strength 𝑄0 

 

 

decreasing in the values of temperature 𝜃. It is thus concluded that nonlocal parameter 𝜉̅ has 

significant effect on all the field quantities. The observations in Figs. 2(a)-2(d) could be explained 

by the fact that the numerical results in the local generalized thermoelasticity model are different 

compared to the results in the nonlocal generalized thermoelasticity theory. 

 
6.2 Decaying parameter effect 
 

Figs. 3(a)-3(d) plot the distribution of the lateral vibration, temperature, displacement and 

bending moment along the axial direction under an applied moving load with different decaying 

parameter 𝑘 values when other considered parameter (𝜉̅,�̅�,𝑄0) remain constants. In the case of 

𝑘 = 0, a thermal shock problem is considered. As indicated by Figs. 3(a) and 3(b), the increasing 

in the value of the decaying parameter causes decreasing in the values of lateral vibration 𝑤 and 

temperature 𝜃 which is very obvious in the peek points of the curves. Also, the results show that 
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the values of the displacement 𝑢 start decreasing with the decaying parameter in the range 

0 ≤ 𝑥 ≤ 0.45, thereafter increasing to maximum amplitudes in the range 0.45 ≤ 𝑥 ≤ 1 (see Fig. 

3(d)). It is also indicated by Fig. 3(d) that the increasing in the value of the parameter 𝑘 causes 

increasing in the values of the bending moment 𝑀. Comparing the results in Figs. 3(a)-3(d) it can 

be concluded that the exponential decaying parameter 𝑘 has a great effects on the distribution of 

field quantities. 

 

6.3 Moving load velocity effect 
 

Effects of moving load velocity �̅� on the dimensionless field quantities are shown in Figs. 

4(a-d), where the parameters 𝜉̅, 𝑘 and 𝑄0 are assumed to be constants. It is observed that the 

magnitudes of the considered fields increase with increasing moving load velocity. On the other 

hand, it is clear from Fig. 4(b) that the moving load velocity has weak effect on the temperature 

distributions. It can also be concluded that the values of the lateral vibration, displacement and 

bending moment fields are sensitive to the values of moving load velocity. 

 

6.4 Moving load strength effect 
 

In Figs. 5(a)-5(d) the lateral vibration, the temperature, the displacement, and the bending 

moment distributions of nanobeams are presented for different values of the magnitude of the 

external moving load strength 𝑄0. The effects of the strength of external moving load parameter 

on transient behaviors of the nanobeam are gotten. We found that, the increasing in the value of the 

strength 𝑄0  causes increasing in the values of the lateral vibration, axial displacement and 

bending moment fields which are very obvious in the peek points of the curves. From Fig. 5(b) we 

have noticed that, the strength parameter 𝑄0 has an insignificant effect on the temperature field. 

 

6.5 Different theories of nonlocal thermoelasticity 
 

The graphs in Figs. 6(a)-6(d) represent four curves predicted by three different theories of 

nonlocal thermoelasticity obtained as a special case of the present work. These computations were 

carried out in the coupled theory (CTE) by setting (𝜏1 = 𝜏0 = 0), in Lord-Shulman theory (LS) 

putting (𝜏1 = 0, 𝛼0 = 1 and 𝜏0 > 0) and in the generalized theory of thermoelasticity proposed 

by Green and Lindsay (GL) when 𝜏1 ≥ 𝜏0 > 0 and 𝛼0 = 0. The distinction of the reaction in the 

theories of the coupled thermoelasticity, Green and Lindsay theory and Lord–Shulman theory is 

dissected in the similar graph. It is noted that the estimations of the studied field in the 

thermoelastic nanobeam gotten from classical theory were distinctive to that obtained by using LS 

theory as well as GL theory but in the similar behavior. Despite the fact that the thermal wave 

proliferates with a limited speed in the coupled theory of thermoelasticity, there are great 

differences between this theory and the other generalized theories of thermoelasticity. The 

comparable results of three theories for the nonlocal thermoelasticity show that the thermal 

relaxation effect of all the studied fields, i.e., 𝜏0 and 𝜏1, has a great effect on the propagation of 

the deflection, the temperature, the displacement, and the bending moment of thermoelastic 

nanobeam. 
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(a) Transverse deflection 𝑤 versus 𝑥 (b) Temperature 𝜃 versus 𝑥 

  
(c) Axial displacement 𝑢 versus 𝑥 (d) Bending moment 𝑀 versus 𝑥 

Fig. 6 The transverse deflection, temperature, displacement and bending moment distributions for different 

theories of thermoelasticity 

 

 

 

7. Conclusions 
 

In this work, the behavior of the deflection, temperature, axial displacement and bending 

moment of thermoelastic nanobeam due to the action of a moving force are investigated. 

Numerical techniques based on Laplace transformation has been used. The effects of nonlocal and 

external load strength parameters on all field quantities have been discussed and presented 

graphically. According to the results shown in all figures, it is found that the moving load velocity, 

external load strength and nonlocal parameters have significant effects on all fields. The study of 

dynamic response of nanobeam structures on moving forces has drawn a lot of attention due to its 

wide applications in the transportation industry. 
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List of symbols 
 

𝑎 internal characteristic length 

𝐴 = 𝑏 area of nanobeam cross-section 

𝑏 (−𝑏/2 ≤ 𝑦 ≤ 𝑏/2) width of nanobeam 

𝐶𝐸 specific heat at constant strain 

𝐸 Young’s modulus 

𝑒 = 𝜕𝑢/𝜕𝑥 normal strain 

𝐸𝐼 flexural rigidity 

𝑒0 material constant 

 (−/2 ≤ 𝑧 ≤ /2) thickness of nanobeam 

𝐼 = 𝑏3/12 inertia moment of nanobeam cross-section 

𝐾 thermal conductivity 

𝑘 time constant of the decay 

𝐿 (0 ≤ 𝑥 ≤ 𝐿) length of nanobeam 

𝑀 flexural moment 

𝑀𝑇 moment of nanobeam due to the presence of thermal effect 

𝑞(𝑥, 𝑡) distributed transverse load 

𝑄0 constant strength of external moving load 

𝑠 Laplace’s variable 

𝑇0 environment temperature 

𝑢 axial displacement 

𝑤 lateral deflection of nanobeam in the 𝑧 direction at some position 𝑥 

𝛼𝑇 = 𝛼𝑡/(1 − 2𝜈) stress-temperature modulus 

𝛼𝑡 thermal expansion coefficient 

𝜉 = (𝑒0𝑎)2  nonlocal parameter 

𝛿(∙) Dirac’s function 

𝜈 Poisson’s ratio 

𝜌 material density 

𝜐 constant speed of external moving load 
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𝜃 = 𝑇 − 𝑇0 excess temperature distribution 

𝛩0 thermal constant 

𝜎𝑥 nonlocal normal stress 

𝜏0 first thermal relaxation time 

𝜏1 second thermal relaxation time 
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