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Abstract.  This article discusses the microvibration analysis of a cantilever configured reaction wheel 
assembly. Disturbances induced by the reaction wheel assembly were measured using a previously designed 
platform. Modelling strategies for the effect of damping are presented. Sine-sweep tests are performed and a 
method is developed to model harmonic excitations based on the corresponding test results. The often 
ignored broadband noise is modelled by removing spikes identified in the raw signal including a method of 
identifying spikes from energy variation and band-stop filter design. The validation of the reaction wheel 
disturbance model with full excitations (harmonics and broadband noise) is presented and flaws due to 
missing broadband noise in conventional reaction wheel assembly microvibration analysis are discussed. 
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1. Introduction 

 

In recent years satellite microvibrations and related issues have become increasingly important 

in the design of satellites carrying high-pointing accuracy instruments such as Hinode (Solar-B), 

GOCE, SDO and JWST. These satellites are equipped with highly vibration-sensitive instruments, 

resulting in stringent requirements for the satellite structure stability. Microvibrations are termed 

as low level mechanical disturbances usually in the range of micro-g’s (µg) typically occurring at 

frequencies from a few Hz up to 1 kHz (ECSS-E-HB-32-26A 2013). Microvibrations are usually 

generated by internal mechanisms on board satellites, such as Reaction Wheel Assemblies 

(RWAs), Momentum Wheel Assemblies (MWAs), cryocoolers, pointing mechanisms, thrusters, 

etc., which in this context are called disturbance sources (Zhang et al. 2009). The disturbances are 

caused by sources and transmitted through the spacecraft structure to the on-board 

instrumentation, here defined receivers, affecting its performance (Toyoshima et al. 2003). The 

dynamics of the microvibration sources will also couple with those of the satellite structure 
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making the prediction of microvibration effects even more complicated (Takahara et al. 2004). 

From a practical standpoint, the reduction of the vibration level at a sensitive location of a 

structure can be attempted by action at the source(s), receiver(s) and along the vibration path(s). 

Passive damping technology and active control techniques are commonly used to achieve the 

desired performance (Aglietti et al. 2004, Tan et al. 2005). 

The first step towards satellite microvibration analysis is to characterise the potential 

disturbance sources. Among the various sources on satellites, RWAs are often considered as one 

of the most important (Miller et al. 2007) and due to their complex dynamics, RWA 

microvibration characterisation is often difficult to perform. RWAs with the flywheel mounted 

symmetrically in the midst of a shaft supported by bearings on either side (mid-span configured 

RWAs) have been thoroughly studied in many papers. Early studies were mainly based on the 

general RWA disturbance test results and modelling for specific disturbance features (Bosgra and 

Prins 1982). Disturbances due to RWA components such as bearing, motor, flywheel (mass 

imbalances) etc., were carefully characterised from test results by Bialke (1992) and later modelled 

(Bialke 1996). RWA induced disturbances were modelled empirically assuming they consist of 

discrete harmonics superimposed with each other (Melody 1995). Most of the analyses on 

harmonic responses of a RWA were based on empirical modelling of disturbances due to each 

component (Laurens and Decoux 1997a, Laurens and Decoux 1997b). Analytical and empirical 

models of a RWA were developed also considering gyroscopic effects (Masterson et al. 2002, 

Masterson et al. 1999). Equations of Motion (EoMs) including flywheel mass imbalance were 

derived using energy methods and model parameter extractions were discussed in detail in similar 

works (Heimel 2011, Kim et al. 2010, Liu et al. 2008, Shin et al. 2010). 

However, considering RWAs where the flywheel is mounted cantilever at one end of the shaft, 

disturbance models built for the typical symmetric mid-span configured RWAs are no longer 

valid, and hence new models need to be developed. On the other hand, due to ever increasing 

satellite stability requirements, broadband noise at mid and high frequencies has also become an 

important issue (ECSS-E-HB-32-26A 2013). Mechanical noise that exhibits smaller amplitudes 

compared to the main harmonics is therefore required to be included in the models, however there 

is a lack of appropriate methods to accurately model these types of microvibrations. 

A broadband noise modelling method was introduced by Liu et al. (2008), and it was 

concluded that no purely analytical model was able to simulate broadband noise, thus it had to be 

modelled empirically. A hybrid broadband noise model was presented by Blaurock (2009), where 

an arbitrary broadband noise forcing function was realized as a speed dependent polynomial. This 

requires both an analytical “shape function” and test results at each speed. Apart from Blaurock 

(2009), there appear to be no other efforts that have attempted the modelling of RWA generated 

broadband noise for these applications. 

A method to automatically identify spikes in the frequency spectrum (including harmonics and 

resonances) and accurately model higher harmonic excitations is introduced. This method allows 

the modelling of broadband noise with a simple and practical procedure and the quality of the 

simulation obtained using this mathematical model is validated by comparison against real test 

results. 

 

 

2. RWA and mass imbalance disturbance model 
 
2.1 Reaction wheel assembly 
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Microvibration analysis of a cantilever configured reaction wheel assembly 

RWAs are high speed rotating mechanisms mainly used for satellite attitude control and 

slewing manoeuvres (Kenney 1963). A typical RWA consists of a rotating flywheel connected to a 

shaft suspended by mechanical bearings and driven by a brushless DC motor. A typical 

mechanical configuration of a RWA is “mid-span”, where the flywheel Centre of Mass (CoM) is 

located in the middle of the shaft with bearings at equal distance to the flywheel on each side; see 

Fig. 1(a). Alternatively, cantilever configured RWAs present the flywheel located at one end of the 

shaft with bearings on one side of the flywheel; see Fig. 1(a). In this paper, disturbances induced 

by a cantilever configured RWA are studied. In addition, a specially designed soft-suspension 

system is used to replace the traditional rigid support. The RWA, with its suspension system, was 

described by Zhou et al. (2011) and the schematic is presented in Fig. 1(b). 

Generally speaking, disturbances generated by a typical RWA can be split into three categories 

based on their origin: ball bearing imperfections, motor imperfections and flywheel (static and 

dynamic) mass imbalances (Bialke 2011). At typical rotation speeds, flywheel mass imbalance 

disturbances are usually the highest ones. At some speeds the disturbances can be amplified by the 

RWA internal dynamics, i.e., RWA resonances. Mass imbalances generate disturbances at the 

same frequency of rotation of the flywheel fundamental harmonic (or H1). Irregularities in ball 

bearing, motor, lubrication etc., generate disturbances that usually occur at integral and/or 

fractional multiples of fundamental harmonic frequencies as sub- and super-harmonics (H0.5, H2, 

H2.7, H3 etc.) and their amplitudes are usually significantly smaller than those of fundamental 

harmonics. 

 
 

 

 

 
(a) Mid-span and cantilevered RWA (b) Cantilevered RWA with soft suspension system 

Fig. 1 RWA configuration 

 
 

 

Fig. 2 Simplified RWA model 
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2.2 Mass imbalanced disturbance model 
 

The mass imbalanced disturbance model of the cantilever configured RWA (referred as 

“RWA” for simplicity) was developed by Zhang et al. (2011) and subsequently re-elaborated to 

include the gyroscopic effect (Zhang et al. 2013). It is here briefly summarized for convenience of 

the readers. The RWA was simplified as the model shown in Fig. 2. 

The RWA was assumed axisymmetric about its shaft pointing direction. The flywheel was 

modelled as a rigid disk with mass Mw, torsional inertia IRw, and polar inertia IZw. In addition, it is 

connected by a massless and rigid shaft of length d to the soft-suspension system. The inertial 

frame XwYwZw and the body frame xwywzw coincided at the CoM of the flywheel O with zw-axis (or 

Zw-axis) defined in the shaft pointing direction. Rotations about the three axes in their 

corresponding frames are θw, φw and ψw. Let Ω be the constant flywheel rotation speed and assume 

flywheel is at steady speed rotation,    ̇ . The wheel-base is modelled as a rigid disk of mass 

Mb and radial moment of inertia IRb. The dynamic mass imbalance can be model as a point mass m, 

placed at radius r on the flywheel and distance l from the shaft. Note that the amplitudes of the 

imbalance force are defined as the values proportional to the radial distance from the mass 

imbalance to the shaft axis. Although the radial distance and the flywheel radius are the same in 

Fig. 2, in practice, this radial distance has not to be the flywheel radius. The point mass creates 

radial forces and moments when the flywheel spins. The flexible components in this system are the 

soft-suspension system that connects the flywheel and the wheel-base (denoted with subscript “w”) 

and the soft-suspension system that connects the wheel-base to the ground (denoted with subscript 

“b”). The wheel-base-to-ground soft-suspension is able to represent the hard-mounted boundary 

condition when the spring stiffness values assume an infinite value and the “free-free” boundary 

condition when the spring stiffness values are considered zero. 

The suspension system was modelled as a combination of five Degrees of Freedom (DoFs). 

This includes two combinations of linear spring and dashpot, two pairs of torsional spring and 

dashpot, each in one of the two radial translational DoFs (x and y); a pair of linear spring and 

dashpot in the axial translational DoF (z), see Fig. 2. Because of axisymmetry, the linear springs 

stiffness, ktw and ktb, are the same in the two radial translation DoFs, as well as the two torsional 

springs stiffness krw and krb, the two linear dashpot damping coefficients ctw and ctb, and the two 

torsional dashpot damping coefficients crw and crb. On the other hand, in the axial translation DoF, 

kzw/kzb, and czw/czb, represent the axial springs stiffness and the axial dashpot damping coefficients, 

respectively. The generalised Lagrangian coordinates in the WA model are ten: xw, yw, zw, θw, φw, 

xb, yb, zb, θb and φb, whereas ψw and ψb are not considered due to the assumption of flywheel steady 

speed rotation and, consequently, domination over angular speed perturbation in the torque DoF. 

The mass imbalanced disturbance model was derived using an energy method (or Lagrangian 

approach) (Zhang et al. 2012a) and assuming infinite stiffness values for the suspension system 

which connects the wheel-base to the ground, i.e., representative of a hard-mounted boundary 

condition. Subsequently, only five DoFs of RWA are considered (Zhang et al. 2011). 

Although the model captures RWA structural modes with gyroscopic effects, fundamental 

harmonics and their amplifications, it does not consider either sub- and super-harmonics or 

broadband noise. Harmonic model parameters are amplitude coefficients, Ci and harmonic 

numbers hi for each harmonic. Since parameters are extracted from the corresponding harmonic 

disturbances at each DoF, phases between harmonics are assumed zero (or in-phase). Broadband 

noise is expressed as Wj (Ω), which is dependent on rotation speed at each DoF. Assuming all 

excitations are superimposed in the time domain at each DoF, the forcing vector can be expressed as 
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where superscripts rt, rr and at indicate radial translational, radial rotational and axial translational 

DoF respectively. Wj (Ω) is the j
th
 DoF broadband noise excitation, n is the total number of 

harmonics in the model and i is the i
th
 harmonic considered in the model. 

 
 
3. RWA disturbance tests 

 
3.1 Test description 
 

A simple measurement platform was designed to measure RWA-induced disturbances in a 

hard-mounted boundary condition. Three independent test setups are required to retrieve the six 

disturbance forces and moments (Fx, Fy, Fz, Mx, My and Mz). Detailed introductions of the platform 

and experimental setups are described by Zhang et al. (2012b). 

In this study a cantilever configured RWA, 90 mm width, 90 mm height and 85 mm depth, (or 

90×90×85 mm
3
) was adopted. The RWA consisted of a Brass-made rotor, an Aluminium 6082-

made housing and a thermoplastic polymer-made suspension system, leading to a total mass of 1.5 

kg. The rotor had a mass of 0.75 kg (including the DC motor) and a radial moment of inertia about 

the suspension system CoM, Irw, of 5.1×10
-4

 kgm
2
. WA natural frequencies were retrieved from 

sine-sweep tests and discussed by Zhang et al. (2011). 

The RWA was spun from 60 to 6000 rpm with a 60 rpm step increase and 5 s data were 

recorded at each speed. Force signals at each sensor were sampled at 2048 Hz with block size 

2048, thus giving 1 Hz frequency resolution and 1 kHz useful frequency band (with anti-aliasing 

filter considered). 

Disturbance tests were carried out in the Astronautics Dynamics Laboratory at the University 

of Southampton. For instance, the typical background noise for Fz (with power on) is plotted in 

Fig. 3(a) for example. It is also compared with typical RWA induced disturbances (soft and rigid 

suspensions) in Fig. 3(b). 

The total Root Mean Square (RMS) value of Fz background noise in Fig. 3 a) is about 3.5 mN 

(10 Hz to 1 kHz). The contribution mainly comes from the spikes at 50 Hz and 150 Hz due to the 

UK power supply frequency. In practice they cannot be completely avoided although efforts were 

spent to reduce them, for example using some shielding. The two spikes appear throughout the test 

speed range with constant amplitudes, but they are much smaller compared to the harmonic 

responses, thus can be ignored. 
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(a) Background noise only (b) Comparison with typical soft- and rigid- 

suspension RWA disturbance signal (600 rpm) 

Fig. 3 Typical background noise of Fz (power on) 

 

   
(a) Fx spectrum map (b) Fz spectrum map (c) My spectrum map 

   
(d) Fx PSD waterfall plot (e) Fz PSD waterfall plot (f) My PSD waterfall plot 

Fig. 4 Spectrum maps and PSD waterfall plots of selected DoFs 

 

 

3.2 Test results 
 

Fig. 4 presents spectrum maps and Power Spectral Density (PSD) waterfall plots for Fx, Fz and 

My. The reader should note that, because of axisymmetry Fy and Mx assume similar values to Fx 

and My, respectively, and subsequently are not presented.  

To improve results visibility in the spectrum maps, all disturbance amplitudes are scaled with 

10log10 (amplitudes). The PSD waterfall plots are plotted in a linear scale and up to 5000 rpm. 

Typical dynamic characteristics of a RWA are observed in Fig. 4. For example harmonic 

responses are clearly shown in spectrum maps in Fig. 4 (a)-(c). The red lines starting from the 

origin of the axes are fundamental harmonics and generate the highest responses. The other lines at 

different slopes are super- or higher harmonics (note no sub-harmonics appear in any case). It is 

also possible to see the other lines corresponding to the natural frequencies of RWA structural 

modes and also background noise (150 Hz line for example). 

Radial Trans. mode 

Axial Trans. mode 

“Rocking” mode 
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Table 1 Frequencies and amplitudes of primary resonances from disturbance tests 

DoF Frequency Amplitude 

Fx 41 Hz (or 2460 rpm) 1.36 N 

Fy 40 Hz (or 2400 rpm) 1.34 N 

Fz 44 Hz (or 2640 rpm) 1.36 N 

Mx 40 Hz (or 2400 rpm) 0.135 Nm 

My 41 Hz (or 2460 rpm) 0.136 Nm 

 

 

Fig. 5 Higher harmonic responses of Fz 

 

 

The RWA structural modes are further discussed in Section IV. In the three PSD waterfall plots 

in Fig. 4 (d)-(f), only the fundamental harmonic responses can be seen. Since the soft-suspension 

system is used instead of a rigid design, higher harmonic responses have considerably smaller 

amplitudes than the fundamental harmonics. 

From the practical point of view, they can be ignored in this RWA, but they are still modelled 

in this paper to complete the RWA disturbance model. In contrast, higher harmonics may be as 

equivalently important as fundamental harmonics in rigid design, for example in (Masterson et al. 

1999). 

As a further examination of Fx from the disturbance test results, Fig. 4(a) shows how higher 

harmonic responses are not obvious until 2280 rpm and then abruptly appear at high speeds 

indicating large amplitude changes.  

Fundamental and higher harmonics were also extracted from the test results. Fundamental 

harmonic responses in radial DoFs (i.e., x and y) grow with the square of the speed before 

resonances. In contrast, a very sharp spike appears as resonance in the axial translational DoF 

(Zhang et al. 2012b). Frequencies and amplitudes of responses at resonances (i.e. the primary 

resonances) are listed in Table 1.  

Responses of the first five integer higher harmonics (H2 to H6) of Fx, My and Fz are also 

extracted from disturbance test results, for example Fz higher harmonic responses are presented in 

Fig. 5. 

In Fig. 5 RWA structural modes are clearly visible. Moreover, other resonances can be 

observed. For instance, the spike at around 2500 rpm on H2 and resonances around 4300 rpm (i.e., 

a horizontal mode) can be noted. They are not considered in the disturbance modelling. 

Meanwhile, harmonic responses grow at much higher levels above the “separation speed” 2280 

rpm compared to responses in the low speed region. These phenomena observed in higher 

harmonic responses are mainly due to nonlinearity. The extracted fundamental and higher 

harmonic responses are used for harmonic excitation modelling and disturbance model validation.  
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4. RWA disturbance model validation 

 
4.1 Linear harmonic excitations modelling 
 

Harmonic and broadband noise excitations act as inputs to the RWA disturbance model. In this 

section the modelling of the harmonic excitations and the validation of the structural modes are 

discussed. 

The RWA structural modes are validated against test results. Campbell diagrams were obtained 

from the RWA mathematical model by assuming undamped free system, and therefore the classic 

eigenvalue problem was solved. The detailed process and results are discussed in (Zhang et al. 

2012b). 

The modelling process of the harmonic excitations includes two parts: identifying harmonics 

(hi) and estimating amplitude coefficients (Ci). The estimation of Ci for each harmonic involves 

also estimating the speed power (ni). For simplicity, the first five integer harmonics (h1 to h5) are 

considered to demonstrate the modelling method. The method developed to estimate Ci is also 

introduced in this article.  

In general, problems concerned with the estimation of Ci for the soft-suspension RWA are that: 

• Flywheel mass imbalances are not exactly known, but only performance values from 

manufacture are given (typical static mass imbalance: < 5 g.mm).  

• Fundamental harmonic responses severely interact with RWA structural modes in the test 

speed range, thus nonlinearity. 

• Influences of dynamic amplifications must be considered.  

• In practice, harmonic response amplitudes are not exactly proportional to the square of the 

spin speed (Seiler and Allegranza 2009). 

In contrast for a conventional RWA design and the modelling methods developed in the past: 

• Fundamental harmonic responses grow continuously and exponentially without any 

interaction in the test speed range. 

• No dynamic amplifications are experienced in the test speed range.  

• Harmonic responses are assumed proportional to the square of the spin speed. 

Furthermore, these issues are all interrelated, thus making the modelling of harmonic 

excitations significantly more complicated than in the literature. Therefore, it is necessary to 

develop a method to efficiently and accurately simulate them. The method introduced here is a 

hybrid empirical and analytical method. The method is based on simulating the input harmonic 

parabola with its parameters obtained from the corresponding harmonic response test results. The 

overall modelling methodology is presented in Fig. 6. 

The initial step is to find the spin speed, in this context defined “cut-off speed”, where dynamic 

amplifications are not yet influential in harmonic responses. Estimation of the “cut-off speed” is 

performed for fundamental harmonics only. The initial test values for the fundamental harmonic 

are the maximum mass imbalances (quoted by the RWA manufacturer) as amplitude coefficients 

(i) and power two (or squared) for the angular velocity (ii). The amplitude is estimated at each 

speed for each DoF (iii). This process is repeated up to the maximum speed for each DoF (iv). The 

corresponding test results are subsequently compared with simulated inputs for each DoF (v). A 

program was written to automatically adjust the amplitude coefficients and speed powers so that 

simulated harmonic amplitudes would match the test harmonic responses in all DoFs up to a the 

“cut-off speed” (vi).  

As each DoF has a slightly different estimated “cut-off speed”, for the whole disturbance  
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Fig. 6 Harmonic excitation modelling process 

 

  
(a) Simulated H1 and estimated “cut-off speed” (b) Simulated H5 with “cut-off speed” from H1 

Fig. 7 Simulated Fx harmonic excitation with “cut-off speed” 

 

 

modelling process the average value of DoFs is considered. The process of simulating fundamental 

harmonic amplitudes introduced here is repeated for other harmonics considered in the model (in 

this case H2 to H5) up to the “cut-off speed”. In other words, once the “cut-off speed” is found 

from fundamental harmonics, the simulation of any other harmonic is a trade-off process between 

amplitude coefficient and speed power to match simulated and test results up to the “cut-off 

speed”.  

The trade-off process is carried out using the same program as in (vi). During the trade-off 

process, the speed power is checked with the defined tolerance (15% of power two). Results have 

shown the average value of vc is about 1500 rpm. As an example, Fig. 7 presents the simulated 

fundamental harmonic and the fifth harmonic of Fx. 

From Fig. 7, the simulated harmonic amplitudes match very well with the corresponding test 

harmonic responses at least up to the “cut-off speed”. Thereafter harmonic responses start being 

amplified by structural modes or resonances and the simulated harmonic amplitude continues 

growing with the estimated speed power. Similar results are also seen for other harmonics and 

DoFs. 
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(a) Fx inputs (b) My inputs (c) Fz inputs 

Fig. 8 Simulated harmonic excitations (H1 to H5) 

 
Table 2 Amplitude coefficients and speed powers of simulated harmonic excitations 

Harmonic 

Number 

Amplitude 

Coefficient (kg m) 

Speed 

Power 

Amplitude Coefficient 

(kg m
2
) 

Speed 

Power 

Amplitude 

Coefficient (kg m) 

Speed 

Power 

Fx My Fz 

H1 4.5×10
-6

 

 

 

2.12 

3.26×10
-7

 

 

 

2.25 

1.35×10
-7

 

 

 

2.24 

H2 4×10
-8

 1×10
-9

 8×10
-9

 

H3 1×10
-8

 3×10
-10

 2×10
-9

 

H4 5×10
-9

 1×10
-10

 1×10
-9

 

H5 4×10
-9

 2×10
-10

 8×10
-10

 

 

 

Simulated harmonic excitations of Fx, My and Fz are shown in amplitude waterfall plots in Fig. 

8. As a matter of fact higher harmonics have much smaller amplitudes compared to fundamental 

harmonics, especially for high order harmonics. 

The final amplitude coefficients (Ci) and speed powers (ni) of simulated harmonic excitations 

are listed in Table 2. 

 

4.2 Linear harmonic responses simulation 
 

Harmonic responses are simulated using the state space method. Generally, a dynamic system 

can be expressed as 

 )()()()( tQtKxtxCtxM    (2) 

where M, C and K are mass matrix, damping matrix and stiffness matrix respectively. x(t) is the 

response displacement vector and Q(t) is the input or excitation vector. If the system is linear, its 

state space form can be derived. Let x1(t)=x(t) and    2 t tx x , (2) then becomes: 
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Harmonic responses are simulated for the two conditions based on the suspension system  

388



 

 

 

 

 

 

Microvibration analysis of a cantilever configured reaction wheel assembly 

Table 3 RWA damping at static for disturbance modelling 

Mode Damping Ratio Damping Value 

Translational ξt 0.15 ctw 68.2 kg/s 

Rocking ξr 0.15 crw 0.026 kg m
2
/s/rad 

Axial ξz 0.02 czw 8.3 kg/s 

 

   
(a) Fx (b) My (c) Fz 

Fig. 9 Simulated H1 responses compared with test results (low level damping) 

 

   
(a) Higher harmonic responses (b) PSD waterfall plot (c) Spectral map 

Fig. 10 Simulated Fz harmonic response 

 

 

damping, i.e., damping values from low level sine-sweep test and high level sine-sweep test. 

Damping ratios have been extracted from disturbance test results, with the RWA reference FE 

model, and the resulting damping values are listed in Table 3. 

Recalling from disturbance test results, RWA induced disturbances exhibit low damping 

characteristics in Fz but highly damped radial DoFs in Fx, Fy, Mx and My. Therefore it is expected 

that the disturbance model with low level damping ratios (ζ=0.02) is not appropriate to simulate 

the dynamics in radial DoFs. Subsequently, high level damping ratios (ζ=0.15) are adopted in the 

disturbance model. In this way, a systematic approach of modelling damping values and 

disturbances can be formulated. Simulated fundamental harmonics with low level damping ratios 

are presented in Fig. 9. 

In Fig. 9(c), simulated responses and test results match well in Fz at all frequencies. In contrast 

in Fx and My in Fig. 9 (a)-(b), the disturbance model with low level damping ratios could not 

simulate the highly damped resonant amplitudes in radial DoFs, but results are well matched at 

other frequencies.  

Simulated higher harmonic responses of Fz are presented in Fig. 10(a). They are also plotted as 

PSD waterfall plot and spectral maps in Fig. 10 (b)-(c) respectively. 
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(a) Fx (b) My 

Fig. 11 Simulated H1 responses compared with test results (high damping value) 

 

  
(a) My amplitude waterfall plot (b) My spectral map 

Fig. 12 Simulated My harmonic response 

 

 

In Fig. 10(a), the disturbance model with low level damping has accurately captured harmonic 

responses and resonances below 2280 rpm. Disturbances above this speed and resonances not 

considered in the disturbance model, such as resonances at 2400 rpm and 4140 rpm, could not be 

simulated. The simulated higher harmonic amplitudes are too small to be seen in the waterfall plot 

in a linear scale as expected but are revealed in spectral map.  

Higher harmonics in radial DoFs are not presented here but they are simulated using the same 

method and they have shown similar characteristics as in Fig. 10(a). 

Simulated fundamental harmonic responses with high level damping ratio are presented in Fig. 

11. 

In Fig. 11, resonant amplitudes of simulated fundamental harmonic responses are better 

matched with the test results compared to the previous cases shown in Fig. 9. The slight disparity 

(360 rpm or 6 Hz) between simulated and test resonance is still under investigation. Besides this, 

fundamental harmonic responses have been accurately simulated in radial DoFs.  

In Fig. 12 an example of simulated disturbances in radial rotational DoF are plotted as 

amplitude waterfall plots and spectral maps. 

To summarise, in order to be consistent with the test data the model implements different 

values of damping about the axial DoF and the radial DoF. The responses along the axial DoF and 

the radial DoF are shown in Fig. 9(c) and Fig. 11, respectively. 

Simulated frequencies and amplitudes of responses at resonances (i.e., the primary resonances) 

are compared with test results and listed in Table 4. 
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Table 4 Frequencies and amplitudes of primary resonances from simulation 

DoF 
Model Test 

Frequency Amplitude Frequency Amplitude 

Fx 47 Hz (or 2820 rpm) 1.39 N 41 Hz (or 2460 rpm) 1.36 N 

Fy 47 Hz (or 2820 rpm) 1.39 N 40 Hz (or 2400 rpm) 1.34 N 

Fz 44 Hz (or 2640 rpm) 1.36 N 44 Hz (or 2640 rpm) 1.36 N 

Mx 47 Hz (or 2820 rpm) 0.137 Nm 40 Hz (or 2400 rpm) 0.135 Nm 

My 47 Hz (or 2820 rpm) 0.137 Nm 41 Hz (or 2460 rpm) 0.136 Nm 

 

 

Fig. 13 Broadband noise modelling process 

 

 
5. Broadband noise model development 

 
5.1 Introduction 
 

Generally, in the frequency spectrum amplitudes of broadband noise are notably smaller 

compared to those of specific harmonic response spikes. The broadband noise modelling method 

developed in this article is an empirical method that utilizes a number of band-stop filters in order 

to block the identified spikes (include any harmonic and resonance), hence the remaining noise in 

the disturbance signal is broadband noise; such a signal is used as the broadband noise model. The 

modelling process of broadband noise at any spin speed can be illustrated in Fig. 13. 

 

5.2 Spikes identification 
 

Distinct spikes in a disturbance signal such as harmonics and resonances must be identified 

first. In this article, the method is based on the cumulative RMS (already defined in Section 3.1, 

last paragraph, pg. 7) value plot of a disturbance signal. For example, a PSD and cumulative RMS 

value plot of Fz at 1800 rpm is used to demonstrate the broadband noise modelling and later the 

full disturbance model validation; these are shown in Fig. 14 respectively.  
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(a) 0 to 500 Hz (b) Zoomed: 50 to 500 Hz 

Fig. 14 PSD and cumulative RMS value plot of Fz (1800 rpm) 

 

 

Fig. 15 PSD and cumulative RMS of background noise (200 Hz to 500 Hz) 

 

 

Generally, in a typical cumulative RMS value plot a step change at a frequency indicates a 

spike with distinctive amplitude and this amount of energy is contributed to the signal. The 

distinctive spike could be either harmonic or resonance. The RMS value at the maximum 

frequency is the total energy accumulated in the signal at that speed.  

The cumulative RMS value plot is particularly useful for broadband noise modelling, since all 

distinctive spikes (regardless of harmonics or resonances) that fall within the defined criteria (e.g., 

a critical RMS value, discussed later) can be easily identified in the signal. 

For soft-suspended RWA, broadband noise and background noise are also similar regardless of 

the speed, particularly in the high frequency band; see Fig. 3(b) as an example. The critical RMS 

value is obtained from the RMS values of two neighbouring spikes in the background noise. Fig. 

15 shows a segment (between 200 to 500 Hz) PSD and cumulative RMS plots of the background 

noise. 

In Fig. 15, it is found that distinctive spikes appear approximately every 20 Hz. These spikes 

have similar amplitudes, thus the cumulative RMS value grows smoothly without distinct steps, 

see also the blue line in Fig. 15. These spikes in the background noise are similar to those at high 

frequencies in the broadband noise when the RWA spins. Due to this reason, the RMS value 

difference of every two neighbouring spikes in the frequency band in the background noise is 

calculated and their average value is used as the critical RMS value for identifying spikes in 

disturbance signal at any speed. In this case, the critical RMS value is estimated to be about 

1.5×10
-5

 N. 

Using this method, steps with RMS value difference exceeding the critical RMS value in the 

cumulative RMS plot of a disturbance signal (such as in Fig. 14(b)) are identified. These identified 

steps correspond to the spikes which need to be removed from the signal. In fact, this method is 

accurate enough to identify and remove all harmonics, resonances and also some other distinctive  
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(a) Identified spikes and broadband noise (b) Raw and filtered time histories 

Fig. 16 Example of identified spikes and broadband noise model (Fz at 1800 rpm) 

 
Table 5 Parameters of the band-stop filter to remove spike at 258 Hz 

Parameters Values 

Pass-band corner frequency 257.9 Hz 

Stop-band corner frequency 258.1 Hz 

Pass-band ripple 1 

Stop-band attenuation 3 

The lowest order 1 

Normalized cut-off frequency band [257.5 258.5] Hz 

 

 

spikes in the noise. For example, identified spikes of Fz at 1800 rpm in the frequency band of 

interest (0 to 500 Hz) are shown in Fig. 16(a) plotted as red circles. 

 
5.3 Band-stop filtering 
 

Typical Butterworth band-stop filters are adopted to remove the identified spikes. Because each 

identified spike needs a band-stop filter to remove it, characteristics of bandstop filters depend on 

the frequency of each spike and the universal filter parameters. For instance, parameters of the 

filter to remove the spike at 258 Hz are given in Table 5. 

The resulting magnitude and phase of this filter are plotted in Fig. 17. 

The band-stop filter has been designed with a narrow cut-off frequency band (in this case ± 0.5 

Hz for every spike) removing only the identified spike hence minimizing influences to the 

surrounding signals. The reducing magnitude at each identified frequency is designed for -36 dB 

for every spike so that the amplitude changes at identified spikes do not overshoot the general 

broadband noise level. On the other hand, this reduction level is large enough to remove some 

spikes with small amplitudes at once (e.g., 100 Hz and 276 Hz) but only partially reduce large 

spike amplitudes (e.g., 30 Hz and 44 Hz). Therefore an iteration process of spike identification and 

filtering is programmed to completely remove them.  

The final filtered Fz disturbances at 1800 rpm are plotted in both the frequency domain (Fig. 

16(a)) and the time domain (Fig. 16(b)) and are also compared with the corresponding raw 

disturbances. In the frequency domain, it is clear that identified spikes have been removed and 

amplitudes are close to neighbouring signals, i.e., broadband noise. In the time domain, broadband 

noise amplitudes remain at almost the same level in the entire frequency band as expected.  
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Fig. 17 Band-stop filter example (Fz at 1800 rpm, 258 Hz spike) 

 

  
(a) Harmonic response only (b) Harmonic and broadband noise responses 

Fig. 18 Simulated responses of Fz at 1800 rpm with and without broadband noise 

 

 

Since broadband noise at each speed is similar for the soft-suspended RWA presented in this 

article, the broadband noise obtained at any speed is accepted as the universal broadband noise, 

i.e., they are speed independent. Consequently, the universal broadband noise model can be 

superimposed with harmonic excitations at any speed to simulate the full excitation at that speed 

for each DoF. The method can also be used for conventional RWA broadband noise modelling. In 

case it becomes speed dependent due to possible broadband amplifications at high frequencies 

such as in Fig. 3(b), a speed dependent shape function is required and it could be obtained either 

empirically or analytically. 

 
5.4 Full disturbance model validation 
 

RWA full disturbance model includes harmonic and broadband noise excitations allowing their 

responses to be predicted with also the consideration of RWA structural modes and gyroscopic 

effects. All excitations are superimposed in the time domain for each DoF and used as inputs in the 

model. 

Responses of Fz at 1800 rpm considering only harmonic excitations are predicted and compared 

with the corresponding test results; see Fig. 18(a) as an example. Subsequently, the full excitation 

(harmonic and broadband noise) is applied and responses are presented in Fig. 18(b). All curves 
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Fig. 19 RMS values of simulated and test results (Fz at 1800 rpm) 

 

 

are plotted in a PSD logarithmic scale. 

Fig. 18(a) shows the simulated harmonic responses without considering broadband noise. They 

assume the typical disturbance form as those predicted using other modelling methods in the 

literature. Although harmonic responses and resonances have been correctly modelled in Fig. 

18(a), it is clear that at other broadband frequencies the simulated curve remains at much lower 

response level i.e., they are unexcited. The general response level is mainly influenced by the 

RWA structural mode, in this case the radial translational mode at 44 Hz only in Fz. It is worth 

mentioning that all these flaws in the disturbance model derived from not considering broadband 

noise are not obvious in a liner scale, but clearly revealed in logarithmic scale. On the other hand, 

since energy in the signal is mainly contributed from harmonic responses and resonant 

amplifications, the traditional RWA disturbance models are still accurate to a certain extent.  

Fig. 18(b) shows the predicted responses from the RWA disturbance model considering all 

excitations. In this case the complete frequency band has been excited and the simulated results 

precisely match the test results. Although harmonic responses and resonant amplitudes have 

slightly increased due to the additional broadband noise, their absolute amplitudes remain 

significantly smaller compared to harmonic responses and resonant amplitudes, subsequently they 

have very little influence but they significantly elevate the regions that have not been previously 

excited . 

Cumulative RMS values of simulated responses are calculated and plotted in Fig. 19 with test 

results. The detailed representation of curves between 50 and 500 Hz after the primary resonance 

(1800 rpm or 30 Hz) is also plotted in the figure. 

Fig. 19 provides qualitative comparisons between simulated and test results at all frequencies. 

From the figure it is clear that RMS or energy curves are closely matched across the entire 

frequency band, especially at high frequencies (after the primary resonance or 30 Hz) where 

broadband noise has most influence. 

 
 
6. Conclusions 

 

In this article, a methodology for modelling the mechanical disturbances produced by a 

Cantilever Configured Reaction Wheel Assembly has been presented and validated against test 

results. Due to the cantilever configuration, the dynamics along the radial DoFs are coupled 

between each other and the traditional models based on symmetric designs are not valid anymore. 
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In this article, the coupled RWA disturbance model is solved numerically using the state space 

approach. A method is developed to model linear harmonic excitations. This method is based on 

the empirical modelling of harmonic responses up to the speeds where the dynamic amplification 

due to resonance is not influential. Linear harmonic responses are simulated in the time domain. In 

the disturbance model, low and high level damping values are used for axial translational DoF and 

radial DoFs respectively and results have shown good agreement between simulated and test 

results for each case. A method is also introduced to model the traditionally ignored broadband 

noise. Band-stop filters are designed to remove the identified spikes (using energy method or a 

cumulative RMS plot) in the disturbance signal, with the remaining being broadband noise. Also 

the full RWA disturbance model is validated against test results by considering harmonic 

responses and broadband noises. The excellent level of correlation between test results and model 

predictions confirms that the methods developed in this article can accurately simulate the 

cantilevered RWA-induced disturbances.  

In conclusion, the microvibration study discussed in this article presents a modelling method 

which is programmed to perform RWA microvibration analysis automatically, systematically and 

efficiently and it can be applied to the conventional (and also relatively simpler) designs such as 

symmetrical mid-span configured RWAs.  

 

 

Acknowledgements 
 

The author would like to thank SSBV UK for their support. 

 
 

References 
 

Aglietti, G.S., Langley, R.S., Rogers, E. and Gabriel, S.B. (2004), “Model building and verification for 

active control of microvibrations with probabilistic assessment of the effects of uncertainties”, 

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 

Science, 218(4), 389-399. 

Bialke, B. (2011), “Microvibration disturbance fundamentals for rotating mechanisms”, Proceedings of the 

34th Annual Guidance and Control Conference, Breckenridge, CO. 

Bialke, B. (1996), “Microvibration disturbance sources in reaction wheels and momentum wheels”, 

Proceedings of the European Conference on Spacecraft Structures, Materials & Mechanical Testing, 

Noordwijk, The Netherlands. 

Bialke, B. (1992), “A new family of low cost momentum/reaction wheels”, Proceedings of the Annual AAS 

Guidance and Control Conference, Keystone, CO. 

Bosgra, J. and Prins, J.J.M. (1982), “Testing and investigation of reaction wheels”, Proceedings of the 

Automatic Control in Space, 9th Symposium. 

ECSS-E-HB-32-26A, ECSS-E-HB-32-26A Spacecraft Mechanical Loads Analysis Handbook, ESA 

Requirements and Standards Division, ESA Requirements and Standards Division. 

Heimel, H. (2011), “Spacewheel microvibration - sources, appearance, countermeasures”, Proceedings of 

the 8th Int’l ESA Conference on Guidance & Navigation Control Systems, Karlovy Vary, Czech Republic 

Kenney, H.B. (1963), “A Gryo momentum exchange device for space vehicle attitude control”, AIAA J., 

1(5), 1110-1118. 

Kim, D.K., Oh, S.H., Yong, K.L. and Yang, K.H. (2010), “Numerical study on a reaction wheel and wheel-

disturbance modeling”, J. Korean Soc. Aeronaut. Space Sci., 38(7), 702-708. 

Laurens, P. and Decoux, E. (1997a), “Microdynamic behaviour of momentum and reaction wheels”, 

396



 

 

 

 

 

 

Microvibration analysis of a cantilever configured reaction wheel assembly 

Proceedings of the Second Space Microdynamics and Accurate Symposium, Toulouse, Fracne. 

Laurens, P. and Decoux, E. (1997b), “Understanding and monitoring space mechanisms through their 

microdynamic signature”, Proceedings of the 7th European Space Mechanisms and Tribology 

Symposium, Noordwijk, Netherlands. 

Liu, K.C., Maghami, P. and Blaurock, C. (2008), “Reaction wheel disturbance modeling, jitter analysis, and 

validation tests for solar dynamics observatory”, Proceedings of the AIAA Guidance, Navigation and 

Control Conference and Exhibit, Honolulu, Hawaii. 

Masterson, R.A., Miller, D.W. and Grogan, R.L. (2002), “Development and validation of reaction wheel 

disturbance models: empirical model”, J. Sound Vib., 249(3), 575-598. 

Masterson, R.A., Miller, D.W. and Grogan, R.L. (1999), “Development of empirical and analytical reaction 

wheel disturbance models”, Proceedings of the Structures, Structural Dynamics and Materials 

Conference, St. Louis, MO, USA. 

Miller, S.E., Kirchman, P. and Sudey, J. (2007), “Reaction wheel operational impacts on the GOES-N jitter 

environment”, Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, 

South Carolina, USA. 

Seiler, R. and Allegranza, C. (2009), “Mechanism noise signatures: identification and modelling”, 

Proceedings of the 14th European Space Mechanisms and Tribology Symposium, Vienna, Austria. 

Shin, Y.H., Heo, Y.H., Oh, S.H., Kim, D.K., Kim, K.J. and Yong, K.L. (2010), “Identification of input force 

for reaction wheel of satellite by measured action forceon decelerating”, Tran. Korean Soc. Noise Vib. 

Eng., 20(3), 263-271. 

Takahara, O., Yoshida, N. and Minesugi, K. (2004), “Microvibration transmissibility test of solar-B”, 

Proceedings of the 24th International Symposium on Space Technology and Science, Miyazaki, Japan 

Tan, A., Meurers, T., Veres, S., Aglietti, G. and Rogers, E. (2005), “Robust control of microvibrations with 

experimental verification”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science, 219(5), 453-460. 

Toyoshima, M., Jono, T., Takahashi, N., Yamawaki, T., Nakagawa, K. and Arai, K. (2003), “Transfer 

functions of microvibrational disturbances on a satellite”, Proceedings of the 21st International 

Communications Satellite Systems Conference and Exhibit, Yokohama, Japan 

Zhang, Z., Aglietti, G. and Ren, W. (2012a), “Microvibration model development and validation of a 

cantilevered reaction wheel assembly”, Appl. Mech. Mater., 226-228, 133-137. 

Zhang, Z., Aglietti, G. and Zhou, W. (2011), “Microvibrations induced by a cantilevered wheel assembly 

with a soft-suspension system”, AIAA J., 49(5), 1067-1079. 

Zhang, Z., Ren, W. and Aglietti, G. (2012b), “Coupled disturbance modelling and validation of a reaction 

wheel model”, Proceedings of the European Conference on Spacecraft Structures, Materials & 

Environmental Testing, Noordwijk, The Netherlands. 

Zhang, Z., Aglietti, G.S. and Ren, W. (2013), “Coupled microvibration analysis of a reaction wheel 

assembly including gyroscopic effects in its accelerance”, J. Sound Vib., 332(22), 5748-5765. 

Zhang, Z., Yang, L. and Pang, S. (2009), “Jitter environment analysis for micro-precision spacecraft”, 

Spacecraft Envirom. Eng., 26(6), 528-534. 

Zhou, W.Y., Aglietti, G.S. and Zhang, Z. (2011), “Modelling and testing of a soft suspension design for a 

reaction/momentum wheel assembly”, J. Sound Vib., 330(18-19), 4596-4610. 

 

 

EC 

 

 

Nomenclature 
 

C  =      amplitude coefficient 

C  =      damping matrix 
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c  =      dashpot damping coefficient 

d  =      shaft length 

f  =      natural frequency 

F  =      force  

h  =      wheel-base half height/harmonic number 

I  =      inertia tensor 

Ir  =      transverse moment of inertia 

k  =      spring stiffness  

K  =      stiffness matrix 

L  =      flywheel half height 

M  =      mass/moment 

M  =      mass matrix  

m  =      imbalance mass 

n  =      number of harmonics/speed power 

O  =      centre of mass 

Q  =      input or excitation vector 

r      =       radial distance from flywheel centre of mass to imbalance mass 

t  =      time 

v  =      velocity 

W   =      broadband noise 

x        =      displacement response vector 

X, Y, Z  =      displacement in inertial frame 

θ, φ, ψ  =      rotations about the three orthogonal axes x, y and z respectively 

ζ  =      damping ratio 

Ω  =      flywheel rotation speed 

 

Sub- and super- scripts 

at  =      axial translational DoF 

i  =      the number of harmonics 

r  =      torsional (spring and dashpot) 

rt  =      radial translational DoF 

rr  =      radial rotational DoF 

t  =      linear (spring and dashpot) 

w  =      reaction wheel assembly 

x, y, z  =      in the three translational DoFs, respectively 

R  =      total radial (damping) 

θ, φ, ψ  =      in the three rotational DoFs, respectively 
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