Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

Volume 14, Number 5, November 2022

Cement-based matrixes have low tensile strength and negligible ductility. Adding fibres to these matrixes will improve their mechanical properties and make these composites suitable for structural applications. Post-cracking tensile strength of steel fibers-reinforced cementitious composite materials is directly related to the number of transverse fibers passing through the crack width and the pulling-out behavior of each of the fibers. Therefore, the exact recognition of the pullout behavior of single fibers is necessary to understand the uniaxial tensile and bending behavior of steel fiber-reinforced concrete. In this paper, an experimental study has been carried out on the pullout behavior of 3D (steel fibers with totally two hooks at both ends), 4D (steel fibers with a total of four hooks at both ends), and 5D (steel fibers with totally six hooks at both ends) in which the fibers have been located either perpendicular to the crack width or in an inclined manner. The pullout behavior of the mentioned steel fibers at an inclination angle of 0, 15, 30, 45, and 60 degrees and with embedded lengths of 10, 15, 20, 25, and 30 millimetres is studied in order to explore the simultaneous effect of the inclination angle of the fibers relative to the alongside loading and the embedded length of fibers on the pullout response in each case, including the maximal pullout force, the slip of the maximum point of pullout force, pullout energy, fiber rupture, and concrete matrix spalling. The results showed that the maximum pullout energy in 3D, 4D, and 5D steel fibers with different embedded lengths occurs at 0 to 30° inclination angles. In 5D fibers, maximum pullout energy occurs at a 30° angle with a 25 mm embedded length.

Key Words
3D, 4D and 5D steel fibers; cement based matrix; pull-out behavior

(1) Seyyed Amir Hossein Madani, S. Mohammad Mirhosseini, Ehsanolah Zeighami:
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran;
(2) Alireza NezamAbadi:
Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

This paper depicts the diagram of cylindrical shells as an essential idea. It centers around an outline of exploration and use of cylindrical shell in expansive current circumstance. In view of investigation of the current and prospect of model as a piece of present exploration work, a straightforward contextual analysis is examined with Love's shell theory based on the frequenciesnf are downsized with ring supports. The software MATLAB is preferred to others because in this software computing coding is very easy to do. Just single command 'eig&339 furnishes shell frequencies and mode shapes by calculating eigenvalues and eigenvectors respectively. The shell vibration frequencies for cylindrical shells are compared with those results found in the open literature.

Key Words
half axial wave mode; Love's shell theory; MATLAB; natural frequencies; ring supports

Department of Mathematics, Govt. College University Faisalabad, 38000, Faisalabad, Pakistan.

This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Key Words
compression test; notch; PFC2D; pore

(1) Vahab Sarfarazi:
Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran;
(2) Kaveh Asgari:
Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman, Iran;
(3) Shirin Jahanmiri, Alireza Mohammadi Khachakini:
Hamedan University of Technology, Hamedan, Iran;
(4) Mohammad Fatehi Marji:
Department of Mining Engineering, Yazd University, Yazd, Iran.

Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.

Key Words
bond strength; geopolymer concrete; slag-based GPC

Civil Engineering Department, Salahaddin University-Erbil, Iraq.

Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

Key Words
mechanical properties; microstructure; nano green mortar; nano-metakaolin; nano-paper waste; short-term dry shrinkage

(1) Radwa Defalla Abdel Hafez:
Civil and Architectural Constructions Department, Faculty of Technology and Education, Sohag University, Egypt;
(2) Bassam A. Tayeh:
Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza, P.O. Box 108, Gaza Strip, Palestine;
(3) Raghda Osama Abd-Al Ftah:
Housing and Building National Research Center, Cairo, Egypt;
(4) Khaled Abdelsamie:
Faculty of Engineering, Civil Department, Sohag University, Egypt.

This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Key Words
banana fiber; bond stress; compressive strength; fiber-reinforced concrete; scanning electron microscopy; split tensile strength

(1) Mohammed M. Attia:
Civil & Architecture Construction Department, Faculty of Technology and Education, Suez University, Egypt;
(2) Abd Al-Kader A. Al Sayed, Shymaa M.M. Shawky:
The High Technological Institute, Ramadan 10th City, Egypt;
(3) Bassam A. Tayeh:
Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza, P.O. Box 108, Gaza Strip, Palestine.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: