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Abstract.   This paper proposes a method to estimate the underwater target object's yaw angle using a sonar 
image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for 
style transfer generates realistic template images of the target object by predicting shapes according to the 
viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a 
shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. 
The proposed method was also applied to AUV in field experiments. The proposed method, which provides 
bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as 
underwater localization or multi-view-based underwater object recognition. 
 

Keywords:   sonar GAN; underwater GAN; object detection; sonar simulator; underwater sonar image; 

underwater object detection; acoustic landmark 

 
 
1. Introduction 

 

Autonomous Underwater Vehicles (AUVs) have been widely utilized for various underwater 

missions (Loc et al. 2014, Kim et al. 2018b, Tang et al. 2019, Hong and Kim 2020). Underwater 

object recognition is one of the necessary algorithms for AUV operations. Research to recognize 

various underwater objects using information scanned by the sonar sensors has been conducted. 

Among sonar sensors, forward scan sonar (FSS), which provides a relatively high-resolution 

acoustic signal in the form of images, has been used to recognize underwater target objects such as 

human-made landmarks, natural terrain, divers, and sea creatures (Kim and Yu 2017, Karimanzira 

et al. 2020, Maki et al. 2020). Furthermore, the recognized information can be applied for AUV’s 

navigation and obstacle avoidance and surveillance systems using AUVs (Johannsson et al. 2010, 

Kim et al. 2019). 

One of the significant problems in recognizing a fixed underwater object with the FSS is that it 

is difficult to predict the direction in which the AUV will meet the target object. AUVs can estimate 

the distance and azimuth angle to the object using the sonar and depth sensor and can figure out the 

roll and pitch angles of AUV itself using the IMU or DVL. On the other hand, the yaw angle between  
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Fig. 1 Appearance of the same object in sonar images changing depending on the viewing angles 

 

 

AUV and the object, which can indicate the direction in which the AUV meets the object, is 

challenging to measure only with on-board sensors of the AUV. However, the shape of the object 

changes drastically by viewing angles due to the unique imaging mechanism of the FSS, as shown 

in Fig. 1. Due to this characteristic of the FSS, the object recognition accuracy is limited if the yaw 

angle between AUV and the object is not known (Yu 2008). 

If the object's yaw angle is estimated, the AUV can recognize the target object more accurately. 

It will also be possible to increase object recognition reliability by introducing several sonar-based 

algorithms that classify objects through cross-validation based on observation of the object in 

multiple views (Myer et al. 2011, Lee et al. 2019). Furthermore, the estimated yaw angle information 

can help the AUV correct its pose and position when the AUV reencounters an observed object. 

This paper proposes a method to recognize the yaw angle of an underwater object using the FSS 

image. Furthermore, as an application of the proposed method, we verified whether the proposed 

method could be utilized to estimate the heading angle of AUV after deploying landmarks into the 

field. Aforementioned, the FSS has the characteristic that the shape of the object changes rapidly by 

viewing angle. This characteristic can be difficult when using the FSS for object classification. On 

the contrary, if all shapes of the target object according to the viewing angles can be predicted in 

advance, we can not only recognize the target object but also estimate the angle by comparing the 

shape of the object in a sonar image with the predicted shape of the object at each angle. 

Addressing this feature of the FSS, the proposed method works as shown in Fig. 2. First, the 

sonar simulator predicts the shape according to the viewing angles of the target object. The simulated 

image accurately calculates the object's shape, but the real sonar images have noises due to the 

interference between acoustic waves and the surrounding terrains. A neural network (NN) for style 

transfer predicts realistic template images according to the target object's angles in sonar images by 

adding these effects to the simulated shapes. Finally, the proposed method calculates the similarity 

between the predicted template images and the underwater object's shape captured in the real sonar 

image. Then, by checking whether the calculated similarity exceeds a threshold and which angle of 

the template image has the highest similarity, we can estimate the underwater target object's yaw 

angle. 

The proposed method has the following advantages. First, the proposed method can recognize 

the object's yaw angle in addition to detecting the target object. The estimated yaw angle information 

can be applied for the operation of AUV, such as correcting the heading angle. Next, the proposed 

method can estimate the yaw angle more accurately using the NN. A disadvantage of the sonar sensor 

is that the acoustic signal has a low signal-to-noise ratio (SNR) due to interference among acoustic 

beams. The proposed method employed the neural style transfer (NST) to emulate the sonar images' 
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degradation effects and synthesize realistic template images, so the yaw angle of the underwater 

object can be estimated more accurately. Lastly, a template matching method considering the 

imaging mechanism of the sonar images was introduced. In the proposed method, the similarity 

between template images and real sonar images is calculated. Cross-correlation is a mainly used 

metric to measure the similarity between two digital images. However, the sonar image has different 

characteristics from the digital optical image. We calculated the similarity between two sonar images 

based on acoustic beams rather than pixels, focusing on the sonar sensor's imaging mechanism for 

more precise yaw angle estimation. 

The remaining of this paper is organized as follows. Section 2 explains the proposed yaw angle 

estimation method through sonar image simulation, NST, and template matching in more detail. In 

Section 3, we describe the experiments to develop the proposed method and present the experimental 

results. This paper closes with the conclusion in Section 4. 

 

 

2. Proposed method 
 

2.1 Pipeline 
 

This paper proposed a method to recognize the yaw angle of an underwater target object from 

sonar images. Aforementioned, the shape of an object appears differently according to the viewing 

angles, making it difficult to recognize the object. Taking advantage of this feature, we proposed a 

method to estimate the yaw angle and detect the target object by predicting the shapes of the object 

according to the angles in advance. 

The pipeline of the proposed method to estimate the yaw angle is as follows. First, the shapes of 

the object according to the angles are predicted by an FSS simulator. We implemented the FSS 

simulator sonar by modeling the imaging mechanism of the FSS. However, the simulator 

approximates the imaging mechanism to calculate multiple shapes observed at various angles 

quickly. On the other hand, the actual sonar image has noises occurred by the interference and 

scattering of acoustic waves. Therefore, to estimate the angle accurately by comparing the predicted 

shape and the shape in the sonar image, a NN synthesizes realistic template images by applying style 

transfer to the predicted shapes. 

 

 

 

Fig. 2 The proposed method for underwater objects’ yaw estimation 
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Finally, the underwater object's angle is estimated by calculating the similarities between the 

captured object in the sonar image and the template image for each angle. The proposed method can 

also detect the target object by checking whether the calculated similarity exceeds a threshold value. 

The estimated yaw angle information can be applied to operations of AUVs. As an application, 

we utilized the proposed method for the localization of AUV. The angle information of the object 

estimated from the sonar images becomes the bearing information of the AUV based on the object. 

Therefore, if the AUV stores the angle of an underwater object once and reencounters the object 

while it operates, the AUV can correct its heading by estimating the object's angle once more. We 

designed several landmarks and employed them into the sea. We could then verify whether the AUV 

could estimate its heading from the landmark using the proposed method. 

This section explains three elements of the proposed method in more details; the FSS simulator 

that predicts in which shape the object will be observed according to a viewing angle, the NN that 

synthesizes realistic template images based on the predicted shapes, and the template matching 

algorithm that calculates the similarity to estimate the angle finally. 

 

2.2 FSS Simulator to Predict Shapes According to Angles 
 

The proposed method estimates the target object's yaw angle based on the characteristic that the 

shapes of the object in the sonar images appear distinctively according to the viewing angle. To 

recognizing the yaw angle, the shape of the target object according to the viewing angles should be 

predicted in advance. For this purpose, we implemented the FSS simulator, which calculates the 

shape of given objects at the desired angle. 

To implement the FSS simulator, we first analyzed the imaging mechanism of the FSS. FSS took 

images of an underwater scene by insonifying acoustic waves, as shown in Fig. 3. The FSS 

emits N acoustic beams within its azimuth range to acquire topographic information of a particular 

scanning area. Then, the FSS receives the echoes of the acoustic waved for a certain period. The 

echo of each acoustic beam creates one column of the sonar image. By mapping the intensity of the 

received echo to the pixel from 1 to M according to the time-of-flight (TOF) of the acoustic beam, 

the FSS finally obtains an M by N image for the underwater scene. 

 

 

 

Fig. 3 Imaging mechanism of the FSS 
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Fig. 4 Acoustic beam modeling and terminologies for the FSS simulator 

 

 

The FSS simulator is implemented by emulating the imaging mechanism of the FSS (Kim et al. 

2018a). By modeling the physical phenomena affecting an acoustic wave while the acoustic wave 

travels, we can calculate the shape of how a given object will appear in the sonar image. An acoustic 

beam transmitted from the FSS has a spreading angle 𝜑 . As shown in Fig. 4, we modeled the 

acoustic waves of the FSS, which has a spreading angle, using the movement of K discrete sample 

rays. Then, if one sample ray emitted to the azimuth angle 𝜃 is denoted as 𝑣𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗, the vector of points 

on the sample ray can be expressed as follows. 

 𝑝 = 𝑡 ∙ 𝑣𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗, (1) 

where t is a constant. 

The transmitted ray is reflected off the surface of a given object and then returns to the FSS. Then, 

the reflection point exists on both the ray and the surface of the objects. Therefore, the reflection 

point 𝑝𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗ can be calculated as follows. 

𝑝𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑁⃗⃗ ∙𝑝1⃗⃗ ⃗⃗  

𝑁⃗⃗ ∙𝑣𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
∙ 𝑣𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗,             (2) 

where 𝑁⃗⃗  is a normal vector of the object surface, and 𝑝1⃗⃗⃗⃗  is a position vector of one vertex of the 

surface. 

A sonar image is generated depending on the intensity of the echo reflected at the point 𝑝𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

returned to the FSS. The intensity of acoustic waves is affected by various parameters such as the 

material of the reflected surface and interference with other acoustic waves. However, it is difficult 

and makes computation complicated to model such phenomena and consider all the parameters. The 

proposed method requires calculating the shapes of the target object according to viewing angles, so 

multiple images should be simulated. To synthesize multiple images in a short time, we calculated 

the intensity of the echo 𝐼𝑝𝜃,𝑘
 as follows, considering only the initial intensity of the transmitted 

acoustic waves 𝐼0 , the transmission loss according to the distance-of-flight, and the angle of 

incidence of the ray 𝛼 (Etter 1995). 
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𝐼𝑝𝜃,𝑘
= 𝑤

𝐼0

|𝑝𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
2 cos2 𝛼,               (3) 

where 𝑤 is a constant for normalization. 

The intensity calculated by Eq. (3) is the intensity returned by only one sample ray. All the 

intensities by K sample rays should be summed up and mapped to pixel coordinates to synthesize 

an entire sonar image. Therefore, the sonar image 𝐼𝑠 is constructed by the equation below. 

𝐼𝑠(𝑟, 𝜃) = ∑ 𝐼𝑝𝜃,𝑘1≤𝑘≤𝐾,|𝑝𝜃,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |=𝑟 ,                    (4) 

for 𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥  and 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 , and where 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , 𝜃𝑚𝑖𝑛  and 𝜃𝑚𝑎𝑥  are the 

parameters to define the field of view (FOV) of the FSS. 

 

2.3 Style transfer using neural network 
 

The shape of the given object predicted by the implemented FSS simulator is different from the 

real sonar images, as shown in Fig. 5. The FSS simulator considered only some significant factors 

and assumed the ideal situation for a quick calculation. However, in the real world, acoustic waves 

are affected by more factors such as interference between acoustic waves and scattering by floating 

materials while it travels. As a result, the actual sonar images have much noise. Although the FSS 

simulator accurately calculates a given object's overall shape, the output image is not realistic. 

The proposed method recognizes an underwater object's yaw angle by comparing shapes in real 

sonar images and predicted shapes of the object according to angles. Therefore, it is necessary to 

make the output image of the FSS simulator realistic like the actual sonar images for more accurate 

angle estimation. 

To make the realistic predicted image, we employed the NST. The realistic template images of 

the given images can also be simulated by calculating all the factors that affect acoustic waves' 

intensity. However, the acoustic wave's traverse is challenging to model due to several variables and 

phenomena (Palmese and Trucco 2006). Using NN, we could synthesize realistic template images 

by transferring the style of the approximately simulated images based on the distribution extracted 

from a large number of data without modeling. 

 

 

 

Fig. 5 Difference between the simulated shapes and real sonar images of an object 
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(a) Architecture of the generator 

 
(b) Architecture of the discriminator 

Fig. 6 Architecture of the neural network for simulating the realistic sonar images. 4x4 is the size of the 

convolutional kernel, f denotes the kernel depth, and s means the stride of the kernel 

 

 

Among NN for the style transfer, we adopted the pix2pix model (Isola et al. 2017). Pix2pix is a 

generative adversarial network (GAN) to transfer an input image domain into a target domain. Using 

the pix2pix model, we could synthesize realistic template images of the target object by transferring 

the predicted shape into the domain of real sonar images. 

The pix2pix network has a suitable architecture for handling sonar images. Fig. 6 describes the 

structure of the NN. The generator of the pix2pix model is a U-Net (Ronneberger et al. 2015) 

consisting of 16 layers. The U-Net is an encoder-decoder that has skip connections. It extracts 

features from the input images through the encoder. Then, the U-Net synthesized images with 

transferred style maintaining the contents of the input image by adding characteristics of the target 

domain to the extracted features through the decoder. Using the skip connections, the U-Net can 

transfer styles of a given image localizing the position of features more accurately. 

The discriminator of the pix2pix model is a PatchGAN composed of five convolutional layers. 

The discriminator should determine whether the generator transferred the style of the given image 

realistically. Therefore, the convolutional layer, which shows outstanding performance in regression 

and classification problems, is used for the discriminator. Moreover, the discriminator classifies the 

input images by dividing the image into multiple local patches. Therefore, the generator can 

represent the details of the image well when transferring the style. 

Finally, we designed a loss function of the pix2pix model to make the NN synthesize realistic 

images better. A sonar image is a form in which noise is added to the intensity of the echo reflected 

at the point corresponding to the specific range and azimuth angle. To make the NN predict this 
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additive noise, we defined the loss function as follows. 

𝐿𝑜𝑠𝑠(𝐺, 𝐷) = 𝔼𝑥,𝑦[log𝐷(𝑥, 𝑦)] + 𝔼𝑥,𝑧[1 − log𝐷(𝑥, 𝐺(𝑥, 𝑧))] 

 +𝜆𝔼𝑥,𝑦,𝑧[‖𝒩(𝑦 − 𝑥) − 𝒩(𝐺(𝑥, 𝑧) − 𝑥)‖1] (5) 

where G and D are the generator and discriminator respectively, x is the given simulated image, y is 

real sonar image corresponding to x, z is a random noise vector, and 𝒩(𝑥) is a function that maps 

x to [-1, 1]. The first and second terms are standard loss function of the GAN. The last term gives 

feedback to the NN so that the effect added to the simulated image, which can also be considered as 

semantic information of the underwater scene, becomes similar to the real sonar image. This term 

allows the NN to predict the additive noise to make the simulated image look realistic. 

 

2.4 Yaw angle estimation by template matching 
 

The underwater target object's yaw angle can be recognized by comparing the shape of the object 

captured in the sea with the template images of the target object for each angle realistically 

synthesized through the NN. We measure the similarity between the two images to compare the 

object in real sonar images with the template images. 

We employed a metric to calculate the similarity between two sonar images considering the 

characteristics of sonar images (Cho et al. 2015). Because one acoustic beam constitutes a column 

of the image according to the sonar imaging mechanism, it is practical to analyze the image in 

column units rather than the pixel unit. The columns of the sonar image have several common 

characteristics. For example, a shadow follows a highlight. A region of highlight in one beam 

indicates an object at that range. Then, the acoustic beam cannot travel further because the object 

blocks it. Therefore, a column of the sonar image has a specific pattern that the shadows follow the 

highlights. 

The similarity between the sonar image and a template image can be calculated by sliding the 

template image size window and comparing each column of real image patch and template image, 

as below. 

𝑅𝜃 = max
𝑁′

1

𝑁𝑡
∑ (max

𝑀′
∑ 𝑆(𝑚 + 𝑀′, 𝑛 + 𝑁′)𝑇(𝑚, 𝑛)

𝑀𝑡
𝑚=1 )

𝑁𝑡
𝑛=1               (6) 

for 0 ≤ 𝑀′ ≤ 𝑀 − 𝑀𝑇 and 0 ≤ 𝑁′ ≤ 𝑁 − 𝑁𝑇, where the size of the sonar image is 𝑀 by 𝑁, the 

size of the template image is 𝑀𝑇 by 𝑁𝑇, and S and T denote the sonar image and template image, 

respectively. 

Finally, the proposed method can detect the target object and recognize its angle by calculating 

the similarity for the template images of all angles and checking which angle has the highest 

similarity and whether the similarity value exceeds a certain threshold, as below. 

𝜃𝑜𝑏𝑗 = argmax
𝜃

𝑅𝜃                             (7) 

where max
𝜃

𝑅𝜃 exceeds a threshold value. 
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2.5 Application to the AUV’s heading estimation 
 

As one application of the proposed method, we present an estimation of the AUV’s heading. The 

proposed method estimates the yaw angle of the underwater target object. The estimated angle is the 

relative bearing information of the object to the AUV. Therefore, if we assumed that the object is 

fixed, the AUV’s heading angle can be estimated based on the object. 

By installing landmarks in the field, the proposed method can be applied for heading angle 

correction of AUVs. When the AUV first identifies a landmark, the AUV estimates the landmark's 

angle and stores the information. If the AUV operates in the field and reencounters the same 

landmark, it can correct its yaw angle by identifying how much the landmark's yaw angle has 

changed. Likewise, the proposed method can be applied to other algorithms for AUV operation, such 

as bearing-based localization and mapping or pose estimation. 

 

 

3. Experiments 
 

3.1 Water tank experiments 
 

3.1.1 Data acquisition 
Water tank experiments were conducted to acquire a dataset to train the GAN for the style transfer 

and verify the proposed method, as shown in Fig. 7. The GAN training requires pairs of images 

simulated by the FSS simulator and real sonar images corresponding to their labels. A large number 

of and various types of images are needed to make the GAN produce high-quality output. Moreover, 

to verify the proposed yaw angle estimation method quantitatively, sonar images of an object 

according to the yaw angles are required. 

 

 

 

(a) Experimental setup (b) Design of the turntable 

Fig. 7 Water tank experiment for data acquisition 
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Table 1 Setup for the water tank experiment 

Parameter Value 

Dimension (width x length x height) 1.35 m × 3 m × 1.7 m 

FSS position from the center of the turntable (x, y, z) 1.6 m, 0 m, 0.9 m 

Tilt angle of the FSS 15°, 20°, 25° 

Object translation from the center of the turntable 0 m, 0.15 m 

 

 
Table 2 Specifications of DIDSON 

Features Value 

Field of view 

0.42 ~ 46.25 m (in range) 

-14.5° ~ 14.5° (in azimuth) 

-7° ~ 7° (in elevation) 

Operating frequency 1.8 MHz 

Spreading angle 14o 

Maximum resolution 0.3° 

Image size 512 × 96 

Depth rating 300 m 

 

 

We designed a turntable to efficiently acquires various types of images and images according to 

the yaw angles of the object instead of changing the viewing angle of the sonar sensor. The turntable 

can rotate an object placed on it to the desired angle using a waterproof stepping motor. Moreover, 

the object and the background in images could be separated well by assembling a wooden board on 

the motor. 

Objects of various shapes and materials, such as a plastic ball, concrete cone, rubber tire, and 

clay bricks, were placed in multiple positions on the turntable, and the sonar images of those objects 

were taken while rotating the turntable. Dual-frequency identification sonar (DIDSON) was used 

for the FSS (Belcher et al. 2002). Tables 1 and 2 show the setup for the water tank experiment and 

specification of DIDSON, respectively. 

We trained GAN using supervised learning. For the supervised learning of the GAN to transfer 

the style of roughly simulated images to realistic images, the images captured in the tank are used 

as labels, and corresponding simulated images are required as inputs. We synthesized input training 

images under the same condition of the tank experiment using the FSS simulator. The parameters of 

the FSS simulator such as 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 was set according to the specification of 

DIDSON. The number of sample rays K, which determines the simulated image’s precision, was set 

to 1,000. We then modeled the three-dimensional (3D) shapes of the turntable and the objects used 

in the tank experiment with the same dimension as the object using computer-aided design (CAD). 

Finally, an image having the same semantic information as the real sonar image was simulated by 

placing the 3D shapes and the virtual sonar sensor in the simulator world. 

Data augmentation techniques such as scaling and horizontal and vertical flipping were applied 

to the dataset obtained from the experiments and simulations. As a result, 2,204 training image pairs 

were acquired, as shown in Fig. 8. 
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Fig. 8 Image pairs to train and validate GAN for the sytle transfer 

 

 

  
(a) Type 1 (b) Type 2 

Fig. 9 Two types of objects to verify the proposed yaw angle estimation method 

 

 

The test images for verifying the proposed yaw angle estimation were also taken through the 

water tank experiment. The bricks are stacked in two types to check whether the proposed method 

can distinguish only the target object from other objects, as shown in Fig. 9. Then, to quantitatively 

evaluate the angle estimation, the FSS images were taken while rotating the bricks by 10 degrees 

interval using the turntable. 

 

3.1.2 Yaw angle estimation result 
We evaluated the accuracy of the estimated yaw angle of the underwater target object through 

the proposed pipeline. First, the target object's template images by the yaw angles are synthesized. 

The FSS simulator calculates the shape of the target object by yaw angles, as shown in Fig. 10(a). 

The GAN then synthesized realistic template images by applying the style transfer to the simulated 

shapes, as shown in Fig. 10(b). The number of template images or angle intervals can be determined 

according to the desired angle estimation resolution. In this paper, we synthesized 36 template 

images in 10-degree intervals. 

The underwater target object's yaw angle can be estimated by calculating the similarity between 

sonar images and template images. Table 3 and Fig. 11 show the calculated similarity for all 

combinations between 36 sonar images taken at 10-degree intervals and 36 template image 

simulated at 10-degree intervals. 
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(a) Simulated shapes 

using the FSS simulator 

(b) Realistic template images 

by applying the style transfer 

Fig. 10 Samples of generated template images for yaw angle estimation 

 

 
Table 3 Sampled yaw angle estimation result by matching with the generated template images 

 Template Images of Type 1 

 50° 90° 200° 340° 

Sonar 

images of 

Type 1 

50° 0.4950 0 0 0 

90° 0 0.7267 0 0 

200° 0 0 0.5360 0.4952 

340° 0 0 0 0.8389 

Sonar 

images of 

Type 2 

50° 0.6827 0.4240 0.8777 0.8067 

90° 0.2410 0.1027 0.0338 0.3657 

200° 0 0 0.0837 0.2102 

340° 1 0.8783 0.9215 1 

 

The similarity values calculated between sonar images captured object type 1 and template images 

of type 1 show a correlation when the value is high when the angle of the object and the template 

image coincide. As shown in Fig. 11, the proposed method could estimate the object's angle within 

10 degrees by finding which angle of the template image is most similar to a given image. To verify 

whether the proposed method can distinguish the target object from other objects, we calculated the 

similarity between sonar images of type 2 and template images of type 1. The calculated similarity 

value was low overall, or there was no correlation between the angles of the template and the real 

object. Therefore, the proposed method can identify that the given object is not the target object by 

applying a threshold value and checking the distribution of the similarity values across the template 

images. 

We also measured the similarity between sonar images and simulated images which style transfer 

using GAN was not applied to check its effect, as shown in Table 4. When the style transfer is not 

applied, there is a considerable difference between the template image and real sonar images. The 

difference makes the correlation between the angles of the object and the template image noisy. The 

proposed NST method could improve the yaw angle estimation precision by reducing the difference 

between the actual sonar images and the template images. 
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Fig. 11 Yaw angle estimation result 

 

 
Table 4 Template matching results with the simulated images without applying the style transfer 

 Template Images of Type 1 Before Applying Style Transfer 

 50° 90° 200° 340° 

Sonar 

images of 

Type 1 

50° 0.4968 0.3334 0.1811 0.2238 

90° 0.1605 0.5000 0.0670 0.1127 

200° 0.0971 0.0797 0.4372 0.1146 

340° 0.3425 0.1534 0.1944 0.5000 

 

 

3.2 Field experiments 
 

As an application of the proposed method, we tested the proposed method for heading estimation 

of an AUV in the field. We first designed a landmark, as shown in Fig. 12. Bricks were fixed on the 

wooden board in a ‘C’ shape. A board was then placed on the basket to distinguish the landmark 

from seaweeds or surrounding terrains easily. We installed the landmark on the seabed of Janggil-

bay, Pohang, Republic of Korea. 

 

 

Fig. 12 Designed landmark for the bearing estimation of the AUV in the sea trials 
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Fig. 13 Shape of landmark in sonar images captured in the sea trials 

 

 

Then, the AUV equipped with FSS was operated on the field. The AUV captured sonar images 

of the seabed while moving. When the landmark was captured in the sonar sensor, the AUV could 

estimate bearing information from the landmark using the proposed method. As shown in Fig. 13, 

the proposed method could detect the landmark appearing at various positions in the sonar images 

and estimate the AUV's heading angle based on the detected landmark. 

 

 

4. Conclusions 
 
This paper proposed a method to estimate the yaw angle of underwater target objects. Due to the 

sonar imaging mechanism, the shape of an object changes drastically according to viewing angles. 

Taking advantage of this characteristic, we proposed a method to estimate an object's yaw angle by 

predicting the shape according to the angle in advance. The proposed method simulates the shape 

according to angles roughly using a sonar simulator. Then, GAN synthesized realistic template 

images by transferring styles of the simulated shapes. Finally, the object's yaw angle was identified 

by calculating similarities between the shape in real sonar image and each template image according 

to angle. 

The estimation accuracy of the proposed method and the effect of style transfer using GAN were 

verified through water tank experiments. We also presented that the proposed method could be used 

for AUV operation in the field. Likewise, the proposed method can be applied to other AUV 

operations, such as object recognition using multi-view observing and bearing-based localization 

and mapping. 
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